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We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these umits. The ability to create useful new features distin-
guishes back-propapgation from earlier, simpler methods such as
the perceptron-convergence procedure’,

There have been many attempts to design self-organizing
neural networks. The aim is to fnd a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the

desired state vector of the output units for each state vector of

the input units. If the input units are directly connected to the
oufput units it is relatively easy to fnd learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

t To whomt ¢orrespendence should be addressed.
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more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are comypletely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent, We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,

i, of the units that are connected to j and of the weights, wy,
on these connections

x; = g Yiwy {n

Units can be given biases by introducing an extra input 1o each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weighrs.

A unit has a real-valued output, y;,, which is a non-linear
function of its tota) input
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Fig. 1 A netwaork that has learned to detect mirror symmetry in
the input vector. The numbers on the arcs are weights and the
numbers inside the nodes are biases. The leamning required 1,425
sweeps through the set of 64 possible input vectors, with the weights
being adjusted on the basis of the accumulaled gradient after each
sweep, The values of the parameters in equation (9) were £ =0.1
and & =00, The initinl weights were random and were uniformly
distributed between —0.3 and 0.3, The key property of this solution
is that for a given hidden unit, weights that are symmetric about
the middie of the input vector are equal in magnitude and oppaosite
in sign. So if a symmetrical pattern is presented, both hidden units
will receive a net input of 0 from the input units, and, because the
hidden units have a nepative bias, both will be off. In this case the
output unit, having a positive bias, will be on. Note that the weights
on each side of the midpoint are in the ratio 1:2:4, This ensures
- that each of the eight patterns that can occur above the midpoint
sends a unique activation sum fo each hidden unit, so the only
pattern below the midpoint that can exactly balance this sum is
the symmetrical one. For all non-symmetrical patterns, both hidden
upits will receive non-zero activations from the input units. The
two hidden units have identical patterns of weights but with
opposite signs, so for every non-symmetric pattern one hidden unit
will come on and suppress the output unit.

It is not necessary to use exactly the functions given in equations
{1) and (2). Any input-output function which has a bounded
derivative will do. However, the use of a linear function for
combining the inputs to a unit before applying the nonlinearity
greatly simplifies the learning procedure.

The aim is to find a set of weights that ensure that for each
input vector the output vector produced by the network is the

same as (or sufficiently close to) the desired output vector. if

there is a fixed, finite set of input-output cases, the total error
in the performance of the network with a particular set of weights
can be computed by comparing the actual and desired output
vectors for every case. The total error, E, is defined as

E ﬁ%ﬁfj)(ncwdj,c)z - (3)

where ¢ is an index over cases {input-output pairs), j is an
index over output units, y is the actual state of an output unit
and d is its desired state. To minimize E by gradient descent
it is necessary to compute the partial derivative-of-E-with respect
to each weight in the network. This is simply the sum of the
partial derivatives for each of the input-output cases. For a
given case, the partial derivatives of the error.with- respect to
each_weight are computed in two passes. We have already
described the forward pass in which the units in each layer have
their states determined by the input they receive from units in
lower layers using equations {1) and (2). The backward pass
which propagates derivatives from the top layer back to the

bottom -one is more complicated.
.....—w—-ﬂ—-—————"-’""_»
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Christopher = Penelope Andrew = Christine

Margaret = Arthur Victaria = jJames Jennifer = Charles

Calln * Charlotte

Roberta = Marla Plarre = Franceaca

Gina = Emilio Lucia = Mareo Angeta = Tomasa

Allohan Saphia

Fig. 2 Two isomorphic family trees. The information can be
expressed as a set of tripies of the form {person | Xrelationship}
{person 2), where the possible refationships are {father, mother,
husband, wife, son, dauphter, uncle, aunt, brother, sister, nephew,
nicce} A layered net can be said to ‘know' these triples if it can
produce the third term of each tripie when given the first two. The
fisst two terms are encoded by activating two of the input units,
and the network must then complete the proposition by activating
the output upit that represents the third term.

Fig. 3  Activity levels in a five-layer network after it has learned.
The bottom layer has 24 input units on the left for representing
{person 1) and 12 input units on the right for representing the
relationship. The white squares inside these two groups show the
activity levels of the units, There is one active unit ia the first group
representing Colin and one in the second group representing the
relationship ‘has-aunt’ Each of the two input groups is totally
connected to its own group of & units in the second layer. These
groups learn to encode people and relationships as distributed
patterns of activity, The second layer is totally connected to the
centrai layer of 12 units, and these are connecied to the penultimate
layer of 6 units. The activity in the penultimate layer must activate
the correct output units, each of which stands for a panticular
{person 2). In this case, there are two correct answers (marked by
black dots} because Colin has two aunts Both the tnput units and
the output units are laid out spatially with the English people in
one row and the isomorphic lalians immediately below.

‘The backward pass starts by computing dE/ay for each of
the output units. Differentiating equation (3) for a particular
case, ¢, and suppressing the index ¢ gives

dE/3y;=y—d, 4
We can then apply the chain rule to compute aE/ax,

Differentiating equation {2) to get the value of dy,/dx; and
substituting gives

dE/ax,=3E 3y, y,(1—¥) (5)

‘This means that we know how a change in the total input x to
an output unit will affect the error. But this total input is just a
linear function of the states of the lower level units and it is
also a linear function of the weights on the connections, so it
is easy to compute how the error will be affected by changing
these states and weights. For a weight wy, from i to j the
derivative is

aE/aWﬂ ﬁBEfax‘. ax}/a\-‘iﬁ
=aE/ax; 6)

B

and for the output of the i** unit the contribution to ¢€/ay,
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Fig. 4 The weighis from the 24 input units that represent people
ta the 6 units in the second layer that learn distributed representa-
tions of people. White reciangles, excitatory weights; black rec-
tangles, inhibitory weights; area of the rectangle encodes the mag-
nitude of the weight. The weights from the 12 English people are
in the top row of each unit. Unit 1 is primarily concerned with the
distinction bétween English and Hatian and most of the other units
ignore this distinction. This means that the fepresentation of an
English person is very similar to the representation of their Halian
equivalent. The network is muking use of the isomarphism between
the two family trees to allow it to share structure and it will therefore
tend to generalize sensibly from one tree to the ather. Unit 2
encodes which generation a person belongs to, and unit 6 encodes
which branch of the family they come from. The leatures captured
by the hidden units are not at all explicit in the input and outpul
encodings, since these use & separate unit for each person. Because
the hidden features capiure the underlying structure of the task
domain, the network generalizes correctly to the four triples on
which it was not trained. We trained the network for 1500 sweeps,
using & = 0 005 and o = 0.5 for the first 20 sweeps and & = 0.01 and
=09 for the remaining sweeps. To make it easier to interpret
the weights we introduced *weight-decay’ by decrementing every
weight by 0 2% after each weight change. After prolonged learning,
the decay was balanced by 6E/dw, so the final magnitude of each
weight indicates its usefulness in reducing the error. To prevent
the network needing large weights to drive the outputs to 1 or 0,
the error was considered to be zero if output units that should be
on had activities above 0.8 and outpur units that should be off kad
activities below 0.2
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Fig. § A synchrenous iterative net that is ren for three iterations
and the equivalent layered net. Fach time-step in the recurrent net
correspords to a layer in the layered net. The learning procedure
for Iayered nets can be mapped into a leaming procedure for
iterative nets. Two complications arise in performing this mapping:
first, in a layered net the output levets of the units in the intermedi-
ate layers during the forward pass are required for performing the
backward pass {sec equations (5) and {6)} So in an iterative net
it is necessary 10 store the history of output stites of euch unit.
Second, for a layered net o be equivalent to an iterative net,
correspending weights between different layers must have the same
value. To preserve this property, we average ¢E/dw for ail the
weights in each set of corresponding weights and then change each
weight in the set by an amount proportional to this uverage gradient.
With these two provisos, the learning procedure can be applied
directly 10 iterative nees. These nets can then either learn 1o perform
iterative searches or [earn sequential structures®
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resulting from the eflect of J on f is simply

BE/B.’C;' axj./a}'; = 65/6:(), ij

so taking into account all the connections emanating from unit
i we have

i

We have now seen how to compute 8E /9y for any unit in the
penultimate layer when given 3E£/3y for all units in the last
layer. We can therefore repeat this procedure to compute this
term for successively earlier layers, computing 3E/aw for the
weights as we go.

One way of using 9E /6w is to change the weights after every
input-output case. This has the advantage that no separate
memory is required for the derivatives. An alternative scheme,
which we used in the research reported here, is to accumulate
dE/aw over all the input-output cases before changing the
weights. The simplest version of gradient descent is to change
each weight by an amount proportional to the accumulated
aE /3w

Aw=—¢3E/ow (8)

This method does not converge as rapidly as methods which
make use of the second derivatives, but it is much simpler and
can easily be implemented by local computations in paralle}
hardware. It can be significantly improved, without sacrificing
the simplicity and locality, by using an acceleration method in
which the current gradient is used to modify the velacity of the
point in weight space instead of its position

Aw(t)=—edEfaw(i+aAw(t—1) (%)

where ¢ is incremented by 1 for each sweep through the whole
set of input-output cases, and o is an exponential decay factor
between 0 and 1 that determines the relative contribution of the
current gradient and earlier gradients to the weight change.

To break symmetry we start with small random weights.
Variants on the learning procedure havé been discovered
independently by David Parker (personal communication) and
by Yann Le Cun®.

One simple task that canrot be done by just connecting the
input units to the output units is the detection of symmetry. To
detect whether the binaty activity levels of a one-dimensional
array of input units are symmetrical about the centre point, it
is essential to use an intermediate layer because the activity in
an individual input unit, considered alone, provides no evidence
about the symmetry or non-symmetry of the whale input vector,
50 simply adding up the evidence from the individual input
units is insufficient. (A more formal proof that intermediate
units are required is given in ref. 2.) The learning procedure
discovered an elegant solution using just two intermediate units,
as shown in Fig. 1. )

Another interesting task is to store the information in the two
family trees (Fig. 2). Figure 3 shows the network we used, and
Fig.4 shows the ‘receptive fieids’ of some of the hidden units
after the network was trained on 100 of the 104 possible triples.

S0 far, we have only dealt with layered, feed-forward
networks. The equivalence between layered networks and recur-
rent networks that are run iteratively is shown in Fig. 5.

‘The most obvious drawback of the learning procedure is that
the error-surface may contain local minima so that gradient
descent is not guaranteed to find a global minimum. However,
experience with many tasks shows that the network very rarely
gets stuck in poor iocal minima that are significantly worse than
the global minimum. We have only encountered this undesirable
behaviour in networks that have just enough connections to
perform the task. Adding a few more connections creates extra
dimensions in weight-space and these dimensions provide paths
around the barriers that create poor local minima in the lower
dimensional subspaces.



536 LETTERSTO NA?URE MATURE VOL. 123 9 QCTOBER 1986

The learning procedure, in its current form, is not a plausible
model of learning in brains, However, applying the procedure
to various tasks shows that interesting internal representations
can be constructed by gradient descent in weight-space, and
this suggests that it is worth looking for more biclogically
plausible ways of doing gradient descent in neural networks
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