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Abstract Classifying scenes (e.g. into “street”, “home” or “leisure”) is an important
but complicated task nowadays, because images come with variability, ambiguity,
and a wide range of illumination or scale conditions. Standard approaches build an
intermediate representation of the global image and learn classifiers on it. Recently, it
has been proposed to depict an image as an aggregation of its contained objects: the
representation on which classifiers are trained is composed of many heterogeneous
feature vectors derived from various object detectors. In this paper, we propose
to study different approaches to efficiently learn contextual semantics out of these
object detections. We use the features provided by Object-Bank [24] (177 different
object detectors producing 252 attributes each), and show on several benchmarks for
scene categorization that careful combinations, taking into account the structure of
the data, allows to greatly improve over original results (from +5 to +11%) while
drastically reducing the dimensionality of the representation by 97% (from 44,604
to 1,000). We also show that the uncertainty relative to object detectors hampers the
use of external semantic knowledge to improve detectors combination, unlike our
unsupervised learning approach.

Keywords Unsupervised learning · Transfer learning · Deep learning · Scene
categorization · Object detection
1 Introduction

Automatic scene categorization is crucial for many applications such as content-
based image indexing [37] or image understanding. This is defined as the task of
assigning images to predefined categories (“office”, “sailing”, “mountain”, etc.).
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Classifying scene is complicated because of the large variability of quality, subject
and conditions of natural images which lead to many ambiguities w.r.t. the corre-
sponding scene label.

Standard methods build an intermediate representation before classifying scenes
by considering the image as a whole [10, 28, 38, 40]. In particular, many such
approaches rely on power spectral information, such as magnitude of spatial fre-
quencies [28] or local texture descriptors [10]. They have shown to perform well in
cases where there are large numbers of scene categories.

Another line of work conveys promising potential in scene categorization. First
applied to object recognition [9], attribute-based methods have now proved to be
effective for dealing with complex scenes. These models define high-level represen-
tations by combining semantic lower-level elements, e.g., detection of object parts.
A precursor of this tendency for scenes was an adaptation of pLSA [15] to deal
with “visual words” proposed by [5]. An extension of this idea consists in model-
ing an image based on its content i.e., its objects [7, 24]. Hence, the Object-Bank
(OB) project [25] aims at building high-dimensional over-complete representations
of scenes (of dimension 44,604) by combining the outputs of many object detec-
tors (177) taken at various poses, scales and positions in the original image (leading
to 252 attributes per detector). Experimental results indicate that this approach is
effective since simple classifiers such as Support Vector Machines trained on their
representations achieve state-of-the-art performance. However, this approach suffers
from two flaws: (1) curse of dimensionality (very large number of features) and (2)
individual object detectors have a poor precision (30% at most). To solve (1), the
original paper proposes to use structured norms and group sparsity to make best use
of the large input. Our work studies new ways to combine the very rich information
provided by these multiple detectors, dealing with the uncertainty of the detections.
A method designed to select and combine the most informative attributes would be
able to carefully manage redundancy, noise and structure in the data, leading to better
scene categorization performance.

Hence, in the following, we propose a sequential 2-steps strategy for combining
the feature representations provided by the OB object detectors on which the linear
SVM classifier is destined to be trained for categorizing scenes. The first step adapts
Principal Components Analysis (PCA) to this particular setting: we show that it is
crucial to take into account the structure of the data in order for PCA to performwell.
The second one is based on Deep Learning. Deep Learning has emerged recently
(see [3] for a review) and is based on neural network algorithms able to discover
data representations in an unsupervised fashion [2, 14, 18, 19, 32]. We propose to
use this ability to combine multiple detector features. Hence, we present a model
trained using Contractive Auto-Encoders [33, 34], which have already proved to be
efficient on many image tasks and has contributed to winning a transfer learning
challenge [26].

We validate the quality of our models in an extensive set of experiments in which
several setups of the sequential feature extraction process are evaluated on bench-
marks for scene classification [21, 23, 31, 41]. We show that our best results sub-
stantially outperform the original methods developed on top of OB features, while
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producing representations of much lower dimension. The performance gap is usu-
ally large, indicating that advanced combinations are highly beneficial. We show that
our method based on dimensionality reduction followed by deep learning offers a
flexibility which makes it able to benefit from semi-supervised and transfer learning.

2 Scene Categorization with Object-Bank

Let us begin by introducing the approach of the OB project [24]. First, the 177
most useful (or frequent) objects were selected from popular image datasets such
as LabelMe [35], ImageNet [6] and Flickr. For each of these 177 objects, a specific
detector, existing in the literature [11, 16], was trained. Every detector is composed
of 2 root filters depending on the pose, each one coming with its own deformable
pattern of parts, e.g., there is one root filter for the front-view of a bike and one for
the side-view. These 354 = 177 × 2 part-based filters (each composed by a root
and its parts) are used to produce features of natural images. For a given image,
a filter is convolved at 6 different scales. At each scale, the max-response among
21 = 1+ 4+ 16 positions (whole image, quadrants, quadrantswithin each quadrant)
is kept, producing a response map of dimension 126 = 6 × 21. All 2 × 177 maps
are finally concatenated to produce an over-complete representation x ∈ R

44,604 of
the original image.

In the original OB paper [24], classifiers for scene categorization are learned
directly on these feature vectors of dimension 44,604. More precisely, C classifiers
(Linear SVM or Logistic Regression) are trained in a 1-versus-all setting in order to
predict the correct scene category ycategory(x) among C different categories. Various
strategies using structured sparsity with combinations of �1/�2 norms have been
proposed to handle the very large input.

3 Unsupervised Feature Learning

The approach of OB for the task of scene categorization, based on specific object
detectors, is appealing since it works well in practice. This suggests that a scene is
better recognized by first identifying basic objects and then exploiting the underlying
semantics in the dependencies between the corresponding detectors.

However, it appears that none of the individual object detectors reaches a recog-
nition precision of more than 30%. Hence, one may question whether the ideal
view that inspired this approach (and expressed above) is indeed the reason of OB’s
success. Alternatively, one may hypothesize that the 44,604 OB features are more
useful for scene categorization because they represent high level statistical properties
of images than because they precisely report the absence/presence of objects—see
Fig. 1. OB tried structured sparsity to handle this feature selection but there may be
other ways—simpler or not.
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Fig. 1 Left Cloud Middle Man Right Television. Top False Detections Bottom True Detections.
Images from SUN [41] for which we compute the OB representation and display the bounding
box around the average position of various objects detectors. For instance, the television detector
can be viewed either as a television detector or a rectangle shape detector i.e. high-order statistical
properties of the image

This paper investigates several ways of learning higher-level features on top
of the high dimensional representation provided by OB, expecting that capturing
further structure may improve categorization performance. Our approach employs
unsupervised feature learning/extraction algorithms, i.e. generic feature extraction
methods which were not developed specifically for images. We will consider both
standard Principal Component Analysis and Contractive Auto-Encoders [33, 34].
The latter is a recent machine learning method which has proved to be a robust
feature extraction tool.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) [17, 30] is the most prevalent technique for
linear dimensionality reduction. A PCA with k components finds the k orthonormal
directions of projection in input space that retain most of the variance of the training
data. These correspond to the eigenvectors associated with the leading eigenvalues
of the training data’s covariance matrix. Principal components are ordered, so that
the first corresponds to the direction along which the data varies the most (largest
eigenvalue), etc…

Since we will consider an auto-encoder variant (presented next), we should men-
tion here a well-known result: a linear auto-encoder with k hidden units, trained
to minimize squared reconstruction error, will learn projection directions that span
the same subspace as a k component PCA [1]. However the regularized non-linear
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auto-encoder variant that we consider below is capable of extracting qualitatively
different, and usually more useful, nonlinear features.

3.2 Contractive Auto-Encoders

Contractive Auto-Encoders (CAEs) [33, 34] are among the latest developments in a
line of machine learning research on nonlinear feature learning methods, that started
with the success of Restricted Boltzmann Machines [14] for pre-training deep net-
works, and was followed by other variants of auto-encoders such as sparse [13, 19,
32] and denoising auto-encoders [39]. It was selected here mainly due to its practical
ease of use and recent empirical successes.

Unlike PCA that decomposes the input space into leading global directions of
variations, the CAE learns features that capture local directions of variation (in some
regions of input space). This is achieved by penalizing the norm of the Jacobian of
a latent representation h(x) with respect to its input x at training samples. In [34],
authors show that the resulting features provide a local coordinate system for a low
dimensional manifold of the input space. This corresponds to an atlas of charts,
each corresponding to a different region in input space, associated with a different
set of active latent features. One can think about this as being similar to a mixture
of PCAs, each computed on a different set of training samples that were grouped
together using a similarity criterion (and corresponding to a different input region),
but without using an independent parametrization for each component of themixture,
i.e., allowing to generalize across the charts, and away from the training examples.

In the following, we summarize the formulation of the CAE as a regularized
extension of a basic Auto-Encoder (AE). In our experiments, the parametrization of
this AE consists in a non-linear encoder or latent representation h of m hidden units
with a linear decoder or reconstruction g towards an input space of dimension d.

Formally, the latent variables are parametrized by:

h(x) = s(W x + bh), (1)

where s is the element-wise logistic sigmoid s(z) = 1
1+e−z , W ∈ Mm×d(R) and

bh ∈ R
m are the parameters to be learned during training. Conversely, the units of

the decoder are linear projections of h(x) back into the input space:

g(h(x)) = W T h(x). (2)

Using mean squared error as the reconstruction objective and the L2-norm of the
Jacobian of h with respect to x as regularization, training is carried out byminimizing
the following criterion by stochastic gradient descent:

JCAE(Θ) =
∑

x∈D
‖x − g(h(x))‖2 + λ

m∑

i=1

d∑

j=1

∣∣∣∣
∂hi

∂x j
(x)

∣∣∣∣
2

, (3)
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where Θ = {W, bh}, D = {x (i)}i=1,...,n corresponds to a set of n training samples
x ∈ R

d and λ is a hyper-parameter controlling the level of contraction of h. A notable
difference between CAEs and PCA is that features extracted by CAEs are non-linear
w.r.t. the inputs, so that multiple layers of CAEs can be usefully composed (stacked),
whereas stacking linear PCAs is pointless.

4 Extracting Better Features with Advanced Combination
Strategies

In this work, we study two different sub-structures of OB. We consider the pose
response defined by the output of only one part-based filter at all positions and scales,
and the object response which is the concatenation of all pose responses associated
to an object. Combination strategies are depicted in Fig. 2.

4.1 Simplistic Strategies: Mean and Max Pooling

The idea of pooling responses at different locations or poses has been success-
fully used in Convolutional Neural Networks such as LeNet-5 [22] and other visual
processing [36] architectures inspired by the visual cortex.

Here, we pool the 252 responses of each object detector into one component (using
the mean or max operator) leading to a representation of size 177 = 44,604/252. It
corresponds to the mean/max over the object responses at different scales and loca-
tions. Onemay view the object max responses as features encoding absence/presence
of objects while discarding all the information about the detector’s positions.

(a) (b) (c)

Fig. 2 Different Combination Strategies (a) and (b) pose and object PCAs (c) high-level CAE:
pose-PCA as dimensionality reduction technique in the first layer and a CAE stacked on top. We
denote it high-level because it can learn context information i.e. plausible joint appearance of
different objects
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4.2 Combination Strategies with PCA

PCA is a standard method for extracting features from high dimensional input, so
it is a good starting point. However, as we find in our experiments, exploiting the
particular structure of the data, e.g., according to poses, scales, and locations, can
yield to improved results.

Whole PCA. An ordinary PCA is trained on the raw output of OB (x ∈ R
44,604) with-

out looking for any structure. Given the high-dimensionality of OB’s representation,
we used the Randomized PCA algorithm of the scikits toolbox.1

Pose-PCA. Each of the two poses associated with each object detector is considered
independently. This results in 354 = 2 × 177 different PCAs, which are trained on
pose outputs (x ∈ R

126)—see Fig. 2.

Object-PCA. Only each object response (x ∈ R
252) is considered separately, there-

fore 177 PCAs are trained in total. It allows the model to capture variations among
all pose responses at various scales and positions—see Fig. 2.

Note that, in all cases, whitening the PCA (i.e. dividing each eigenvector’s
response by the corresponding squared root eigenvalue) performs very poorly. For
post-processing, the PCA outputs x̃ are always normalized: x̃ ← (x̃ − μ)/σ accord-
ing to mean μ and the deviation σ of the whole, per object or per pose PCA outputs.
Thereby, we ensure contributions from all objects or poses to be in the same range.
The number of components in all cases has been selected according to the classifi-
cation accuracy estimated by 5-fold cross-validation.

4.3 Improving upon PCA with CAE

Due to hardware limitations and high-dimensional input, we could not train a CAE
on the whole OB output (“whole CAE”). However, we address this problem with the
sequential feature extraction steps below.

To overcome the tractability problem that forbids a CAE to be trained on the
whole OB output, we preprocess it by using the pose-PCAs as a dimensionality
reduction method. We keep only the 5 first components of each pose. Given this low-
dimensional representation (of dimension 1, 770), we are able to train a CAE—see
Fig. 2. The CAE has a global view of all object detectors and can thus learn to capture
context information, defined by the joint appearance of combinations of various
objects. Moreover, instead of using an SVM on top of the learned representations,
we can use a Multi-Layer Perceptron whose weights would be initialized by those of
this CAE. This setting is where the CAE has shown to perform best in practice [33].

1 Available from http://scikits.appspot.com/.

http://scikits.appspot.com/
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5 Experiments

5.1 Datasets

We evaluate our approach on 3 scene datasets, cluttered indoor images (MIT
Indoor Scene), natural scenes (15-Scenes), and event/activity images (UIUC-Sports).
Images from a large scale scene recognition dataset (SUN-397 database) have also
been used for unsupervised learning.

• MIT Indoor is composed of 67 categories and, following [24, 31], we used 80
images from each category for training and 20 for testing.

• 15-Scenes is a dataset of 15 natural scene classes. According to [21], we used 100
images per class for training and the rest for testing.

• UIUC-Sports contains 8 event classes. We randomly chose 70 / 60 images for our
training / test set respectively, following the setting of [23, 24].

• SUN-397 contains a full variety of 397well sampled scene categories (100 samples
per class) composed of 108,754 images in total.

5.2 Tasks

We consider 3 different tasks to evaluate and compare the considered combina-
tion strategies. In particular, various supervision settings for learning the CAE are
explored. Indeed, a great advantage of this kind of method is that it can make use of
vast quantities of unlabeled examples to improve its representations. We thus illus-
trate this by proposing experiments in which the CAE has been trained in supervised
or in semi-supervised way and also in a transfer context.

MIT Indoor (plain). Only the official training set of the MIT Indoor scene dataset
(5,360 images) is used for unsupervised feature learning. Each representation is
evaluated by training a linear SVM on top of the learned features.

MIT +SUN (semi-supervised). This task, like the previous one, uses the official
train/test split of the MIT Indoor scene dataset for its supervised training and evalua-
tion of scene categorization performance. For the initial unsupervised feature extrac-
tion however, we augmented the MIT Indoor training set with the whole dataset
of images from SUN-397 (108,754 images). This yields a total of 123,034 images
for unsupervised feature learning and corresponds to a semi-supervised setting. Our
motivation for adding scene images from SUN, besides increasing the number of
training samples, is that on MIT Indoor, which contains only indoor scenes, OB
detectors specialized on outdoor objects would likely be mostly inactive (as a sail-
boat detector applied on indoor scenes) and irrelevant, introducing an harmful noise
in the unsupervised feature learning. As SUN is composed of a wide range of indoor
and outdoor scene images, its addition to MIT Indoor ensures that each detector
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meaningfully covers its whole range of activity (having a “balanced” number of
positives/negatives detections through the training set) and the feature extraction
methods can be efficiently trained to capture it.

One may object that training on additional images does not provide a fair com-
parison w.r.t. the original OBmethod. Nevertheless, we recall that (1) the supervised
classifiers do not benefit from these additional examples and (2) object detectors
which are the core of OB representations (and all detector-based approaches) have
also obviously been trained on additional images.

UIUC-Sports and 15-Scenes (transfer). We would also like to evaluate the discrimi-
native power of the various representations learned on theMIT+SUN dataset, but on
new scene images and categories that were not part of the MIT+SUN dataset. This
might be useful in case other researcherswould like to use our compact representation
on a different set of images. Using the representation output by the feature extractors
learned with MIT+SUN, we train and evaluate classifiers for scene categorization on
images from UIUC-Sports and 15-Scenes (not used during unsupervised training).
This corresponds to a transfer learning setting for the feature extractors.

5.3 SVMs on Features Learned with Each Strategy

In order to evaluate the quality of the features generatedby each strategy, a linear SVM
is trained on the features extracted by each combination method. We used LibLinear
[8] as SVM solver and chose the best C according to 5-fold cross-validation scheme.
We compare accuracies obtained by features provided by all considered combination
methods against the original OB performances [24]. Results obtained with SVM
classifiers on all MIT-related tasks are displayed in Table1 and those concerning
UIUC and 15-scenes in Table2.

The simplistic strategy object mean-pooling performs surprisingly well on all
datasets and tasks whereas object max-pooling obtained the worst results. It suggests
that taking themean response of an object detector across various scales and positions
is actually meaningful compared to consider presence/absence of objects as max-
pooling does.

On MIT and MIT+SUN, object or pose PCAs reach almost the same range of
performance slightly above the current state-of-the-art performances [29], except for
whole-PCA which performs poorly: one must consider the structure of OB to com-
bine features efficiently. In the experiments, keeping the 10 (resp. 15) first principal
components gave us the best results for pose-PCA (resp. object-PCA).

Besides, Table3 shows that both PCAs and PCA+CAE allow a huge reduction
of the dimension of the OB feature representation.

Results obtained for the UIUC-Sports and 15-Scenes transfer learning tasks are
displayed in Table2. Representations learned on MIT+SUN generalize quite well
and can be easily used for other datasets even if images from those datasets have not
been seen at all during unsupervised learning.
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Table 1 MIT Indoor

MIT MIT+SUN

(plain) (%) (semi-supervised) (%)

object-MAX + SVM 24.3 –

object-MEAN + SVM 41.0 –

whole-PCA + SVM 40.2 –

object-PCA + SVM 42.6 46.1

pose-PCA + SVM 40.1 46.0

pose-PCA + MLP 42.9 46.3

pose-PCA + CAE (MLP) 44.0 49.1

Object Bank + SVM 37.6 –

Object Bank + rbf-SVM 37.7 –

DPM + Gist + SP 43.1 –

Improvement w.r.t. Object Bank +6.4 +11.5

Results are reported on the official split [31] for all combination strategies described in Sect. 4. Only
the unsupervised feature learning strategies (PCA and CAE based) can benefit from the addition
of unlabeled scenes from SUN. Object Bank + SVM refers to the original system [24] and DPM +
Gist + SP [29] corresponds to the state-of-the-art method on MIT Indoor

Table 2 UIUC Sports and 15-Scenes

UIUC-Sports (%) 15-SCENES (%)

object-MAX + SVM 67.23 ± 1.29 71.08 ± 0.57

object-MEAN + SVM 81.88 ± 1.16 83.17 ± 0.53

object-PCA + SVM 83.90 ± 1.67 85.58 ± 0.48

pose-PCA + SVM 83.81 ± 2.22 85.69 ± 0.39

pose-PCA + MLP 84.29 ± 2.23 84.93 ± 0.39

pose-PCA + CAE (MLP) 85.13 ± 1.07 86.44 ± 0.21

Object Bank + SVM 78.90 80.98

Object Bank + rbf-SVM 78.56 ± 1.50 83.71 ± 0.64

Improvement w.r.t. OB +6.23 +5.46

Results are reported for 10 random splits and compared to the original OB results [24]—Object
Bank + SVM—on one single split

Table 3 Dimensionality reduction

Object-Bank Pooling whole-PCA object-PCA pose-PCA pose-PCA+CAE

44,604 177 1,300 2,655 1,770 1,000

Dimension of representations obtained on MIT Indoor. The pose-PCA+CAE produces a compact
and powerful combination
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5.4 Deep Learning with Fine Tuning

Previous work [20] on Deep Learning generally showed that the features learned
through unsupervised learning could be improved upon by fine-tuning them through
a supervised training stage. In this stage (which follows the unsupervised pre-training
stage), the features and the classifier on top of them are together considered to be a
supervised neural network, a Multi-Layer Perception (MLP) whose hidden layer is
the output of the trained features.Hencewe apply this strategy to the posePCA+CAE
architecture, keeping the PCA transformation fixed but fine-tuning the CAE and the
MLP altogether. These results are given at the bottom of Tables1 and 2. The MLP
are trained with early stopping on a validation set (taken from the original training
set) for 50 epochs.

This yields 44.0% test accuracy on plain MIT and 49.1% on MIT+SUN: this
allows to obtain state-of-the-art performance, with or without semi-supervised train-
ing of the CAEs, even if these additional examples are highly beneficial. As a check,
we also evaluate the effect of the unsupervised pre-training stage by completely
skipping it and only training a regular supervised MLP of 1,000 hidden units on top
of the PCA output, yielding a worse test accuracy of 42.9% on MIT and 46.3%
on MIT+SUN. This improvement with fine-tuning on labeled data is a great advan-
tage for CAE compared to PCA. Fine-tuning is also beneficial on UIUC-Sports and
15-Scenes. On both datasets, this leads to an improvement of +6 and +5% w.r.t the
original system.

Finally, we trained a non-linear SVM (with rbf kernel) to verify whether this gap
in performances was simply due to the replacement of a linear classifier (SVM) by
a non-linear one (MLP) or to the detectors’ outputs combination. The poor results
of the rbf-SVM (see Tables1 and 2) suggests that the careful combination strategies
are essential to reach good performance (Table4).

Table 4 Context semantics

Context Semantics learned by the CAE

Sailboat, rock, tree, coral, blind

Roller coaster, building, rail, keyboard, bridge

Sailboat, autobus, bus stop, truck, ship

Curtain, bookshelf, door, closet, rack

Soil, seashore, rock, mountain, duck

Attire, horse, bride, groom, bouquet

Bookshelf, curtain, faucet, screen, cabinet

Desktop computer, printer, wireless, computer screen

Names of the detectors corresponding to the highest weights of 8 hidden units of the CAE. These
hidden units will fire when those objects will be detected altogether



220 G. Mesnil et al.

5.5 Use of External Semantic Information for Re-ranking

WordNet’s [27] semantic structure provides an easyway tomeasureword similarities.
We assume that closely related objects detectors (according to WordNet) should fire
together and could be grouped in order to build semanticallymeaningful features. E.g.
by grouping the output of ship, sea and sun into a single feature, the combination’s
output might be useful for classifying the “sailing” scene category.

In our experiments, we used the lesk distance inWordNet to extract the neighbors
of each detector’s name. Some examples are depicted in Table5. Afterwards, given
the score s(x) ∈ R

177 obtained with the mean-pooling strategy from the original OB
representation x ∈ R

44,604, we performed the following Re-Ranking operation:

s
′
i (x) =

177∑

j=1

s j (x)γR(i, j) for i = 1, . . . , 177 (4)

where γ ∈ [0, 1] is a decay hyper-parameter tuned on a validation set. R(i, j)
corresponds to the rank of the object j among the neighbors of object i according to
the lesk metric (R(i, i) = 0). Results are presented in Table6. The relatively small
improvement brought by WordNet illustrates the fact that the poor intrinsic quality
of the object detectors prevents any use of external semantic resource to improve
their combination.

Table 5 WordNet semantics Names of the detectors and their top-ranked neighbors according to
the lesk distance computed from WordNet

Rank Bus Lion Laptop

1. Car Tree Baggage

2. Ship Dog Desktop computer

3. Truck Bird Computer

4. Aircraft Horse Bed

5. Train Computer Door

Table 6 Re-Ranking Results are reported on the official split [31]

object-MEAN+SVM MIT (plain)

w/o Re-Ranking 41.03%

with Re-Ranking 41.52%

Object-mean+SVMrefers to themean-pooling strategywith andw/o theRe-Ranking transformation
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6 Discussion

In this work, we add one or more levels of trained representations on top of the
layer of object and part detectors (OB features) that have constituted the basis of
very promising trend of approach for scene classification [24]. These higher-level
representations are mostly trained in an unsupervised way, following the trend of
so-called Deep Learning [3, 14, 18], but can be fine-tuned using the supervised
detection objective.

These learned representations capture statistical dependencies in the co-occurrence
of detections the object detectors from [24]. In fact, one can see in Table4 plausible
contexts of joint appearance of several objects learned by the CAE. These detectors,
which can be quite imperfect when seen as actual detectors, contain a lot of infor-
mation when combined altogether. However, the uncertainty of detectors makes it
hard to combine using external semantic sources such as WordNet. As reported in
Table6, we observe a slight improvement (+0.5%) using our Re-Ranking strategy
and lesk words’ similarities. The extraction of those context semantics with unsu-
pervised feature-learning algorithms has empirically shown better performances but
these semantics are inherent to the detectors outputs and can not be easily combined
with any known predefined semantic system such as the one defined in WordNet.

In particular, we find that Contractive Auto-Encoder [33, 34] can substantially
improve performance on top of pose PCAs as a way to extract non-linear depen-
dencies between these lower-level OB detectors (especially when fine-tuned). They
also improve greatly upon the use of the detectors as inputs to an SVM or a logistic
regression (which were, with structured regularization, the original methods used by
OB).

This trained post-processing allows us to reach the state-of-the-art onMIT Indoor
andUIUC (85.13%against 85.30%obtained byLScSPM[12])while being competi-
tive on 15-scenes (86.44% also versus 89.70%LScSPM). On these last two datasets,
we reach the best performance for methods only relying on object/part detectors.
Compared to other kinds ofmethods,we are limited by the accuracy of those detectors
(only trained on HOG features), whereas competitive methods can make use of other
descriptors such as SIFT [12], known to achieve excellent performance in image
recognition.

Besides its good accuracies, it is worth noting that the feature representation
obtained by the pose PCA+CAE is also very compact, allowing a 97% reduction
compared to the original data (see Table3). Handling a dense input of dimension
44,604 is not a common thing. By providing this compact representation, we think
that researchers will be able to use the rich information provided by OB in the same
way they use low-level image descriptors such as SIFT.

As future work, we are planning other ways of combining OB features e.g. con-
sidering the output of all detectors at a given scale and position and combine them
afterwards in a hierarchical manner. This would be a kind of dual view of the OB
features. Other plausible departures could take into account the topology (e.g. spatial
structure) of the pattern of detections, rather than treat the response at each location
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and scale as an attribute and the set of attributes as unordered. This could be done
in the same spirit as in Convolutional Networks [22], aggregating the responses for
various objects detectors/locations/scales in a way that takes explicitly into account
the object category, location and scale of each response, similarly to the way filter
outputs at neighboring locations are pooled in each layer of aConvolutionalNetwork.
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