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Abstract

We propose a new unbiased stochastic gradient estimator for a family of stochastic
models driven by uniform random numbers as inputs. Dropping the requirement
that the tails of the density of the input random variables decay smoothly, the es-
timator extends the applicability of the generalized likelihood ratio (GLR) method.
We demonstrate the new estimator for several general classes of input random vari-
ates, including independent inverse transform random variates and dependent input
random variables governed by an Archimedean copula. We show how the new esti-
mator works in settings such as density estimation, and we illustrate applications to
credit risk derivatives. Numerical experiments substantiate broad applicability and
flexibility in dealing with discontinuities in the sample performance.

Keywords: simulation, stochastic derivative estimation, discontinuous sample
performance, uniform random numbers, generalized likelihood ratio method

1. Introduction

Simulation is a powerful technique for optimizing and analyzing complex stochas-
tic systems [1]. Uniform random numbers are first generated by computer algorithms,
and then are used as basic building blocks for generating other random variables,
which in turn are fed into a simulation model to estimate output performance mea-
sures. In simulation, stochastic gradient estimation plays a central role in gradient-
based optimization and sensitivity analysis. The finite difference (FD) method is
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easily implementable, but its effective application often requires extra simulations
and a careful balance of a bias-variance trade-off, especially when the parameter
space is high-dimensional. Infinitesimal perturbation analysis (IPA) and the like-
lihood ratio (LR) method are two well-established unbiased derivative estimation
techniques [2, 3, 4, 5]. IPA typically leads to lower variance than LR [6, 7]. L’Ecuyer
[6] provides a general framework unifying IPA and LR, under which the resulting
estimator depends on the choice of what a sample point in a probability space rep-
resents. See [8] for a recent review.

In this paper, we study the stochastic gradient estimation problem for a stochastic
model of the following form:

φ(g(U ; θ)), (1)

where φ : Rn → R is a measurable function (not necessarily continuous), g(·; θ) =
(g1(·; θ), . . . , gn(·; θ)) is a vector of functions gi : (0, 1)

n → R with certain smooth-
ness properties to be made more precise in Section 3.2, and U = (U1, . . . , Un) is a
vector of i.i.d. U(0, 1) random variables (i.e., uniform over (0, 1)). For this prob-
lem, a straightforward pathwise derivative estimator, i.e., IPA, obtained by directly
interchanging derivative and expectation, may not apply because discontinuities in
the sample performance of the stochastic model could be introduced by φ(·). On the
other hand, the classic LR is also not applicable because of the existence of structural
parameters in g(U ; θ).

Stochastic gradient estimation research has traditionally focused on applications
in discrete event dynamic systems (DEDS), including queueing systems [9, 10, 11],
inventory management [12, 13], statistical quality control [14, 15], maintenance sys-
tems [16, 17], and financial engineering and risk management such as computing
financial derivatives [18, 19, 20, 21, 22, 23, 24], value-at-risk (VaR) and conditional
VaR (CVaR) [25, 26, 27, 28, 29]. Recently, stochastic gradient estimation techniques
have attracted attention in machine learning and artificial intelligence (AI); see [30]
and [31] for recent reviews.

IPA requires continuity in the sample performance and LR does not directly apply
to structural parameters (parameters directly appearing in the sample performance),
which significantly limit their applicability. Smoothed perturbation analysis (SPA)
deals with discontinuous sample performances by using a conditioning technique [32,
33], but a good choice of conditioning is problem-dependent. Push-out LR addresses
structural parameters by pushing the parameters out of the sample performance and
into the density [4], which can be achieved alternatively with the IPA-LR in [6], which
requires an explicit transformation. Recently, Peng et al. [34] proposed a generalized
likelihood ratio (GLR) method that can deal with a large scope of discontinuous
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sample performances with structural parameters in a unified framework. The method
extends the application domain of IPA and LR and does not require conditioning
and transformation techniques tailored to specific problem structures.

The GLR method has the virtue of handling many applications in a uniform man-
ner, and it has been used to deal with discontinuities in financial options, statistical
quality control, maintenance systems, and inventory systems [35, 34]. Distribution
sensitivities — meaning the derivatives of the distribution function with respect to
both the arguments and the parameters in the underlying stochastic model — lie
at the center of many applications such as quantile sensitivity estimation, confi-
dence interval construction for the quantile and quantile sensitivities, and statistical
inference [36, 37]. Peng et al. [38] derive GLR estimators for any order of distri-
bution sensitivities and apply them to maximum likelihood estimation for complex
stochastic models without requiring analytical likelihoods. Glynn et al. [39] apply
the GLR method to estimate sensitivity of a distortion risk measure, which is a
Lebesgue-Stieltjes integral of quantile sensitivities and includes VaR and CVaR as
special cases.

Although the existing GLR method has broad applicability, it requires knowing
the explicit analytical form of the input distribution density and requires both tails of
the density for each argument decay to zero smoothly at a sufficient rate, which may
not be satisfied in some applications. This smoothness requirement can sometimes be
circumvented through a change of variables [34], but such a transformation may lead
to a GLR estimator with undesirable statistical properties. In this work, we relax
this smoothness requirement and propose new unbiased GLR gradient estimators for
stochastic models whose inputs are uniform random numbers, which are the basic
building blocks in generating other random variables. Unlike in [34] which treats
a setting where the surface integration contribution for the GLR estimator is zero,
here we derive a new estimator, which includes the surface integration, called GLR
with uniform random numbers as inputs (GLR-U). Moreover, in settings where the
surface integration contribution is zero, we are able to relax certain integrability
conditions given in [34].

We provide specific forms of the GLR-U estimators for several types of stochastic
models and apply the GLR-U method to various problem settings, including dis-
tribution sensitivities and credit risk financial derivatives. The GLR-U estimator
with independent parameterized input random variables generated from the inverse
transform of uniform random numbers reduces to the classic LR estimator, which
indicates that GLR-U is a generalization of LR from a different perspective than that
of [34]. In the setting of [34], where independent input random variables are non-
parameterized and the tails of their distribution go smoothly to zero at a sufficient
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rate, the GLR-U estimator with input random variables generated from the inverse
transform of uniform random numbers coincides with the GLR estimator in [34].

We also show how GLR-U can provide sensitivity estimators for models defined
in terms of random vectors with given marginal distributions and whose dependence
structures are specified by Archimedean copulas [40]. The Gaussian copula has been
widely used due to its simplicity [41], and sensitivity analysis for portfolio credit risk
derivatives with joint defaults governed by a Gaussian copula has been studied in
[42] using LR and SPA. However, the Gaussian copula was widely criticized after
the 2008 financial crisis, because it underestimates the probability of joint defaults.
Archimedean copulas [40], not covered in [42], are relatively easy to simulate and can
better capture the asymmetric tail dependence structure of the joint default data [43].
For sensitivity analysis of Archimedean copulas, IPA may fail for a discontinuous
sample performance, whereas LR and GLR in [34] typically are not applicable.

Conditional Monte Carlo (CMC) methods can reduce the variance and smooth
the performance function in simulation by conditioning on certain events or random
variables and then integrating out the remaining randomness [1]. We will show
in the numerical experiments that CMC can be applied to GLR-U for reducing
the variance. Another effective variance reduction technique is randomized quasi-
Monte Carlo (RQMC), which replaces the vectors of uniform random numbers that
drive independent simulation runs by dependent vectors of uniform random numbers
that cover the space more evenly [44]. When estimating an expectation, RQMC
can provide an unbiased estimator whose variance converges at a faster rate than
with Monte Carlo when the estimator inside the expectation is sufficiently smooth
as a function of the underlying uniform random numbers. The GLR-U method
developed in this work is compatible with RQMC, and we show in the numerical
experiments that the variance of the GLR-U estimator can be reduced significantly
by appropriately combining with CMC and RQMC.

The rest of the paper is organized as follows. Section 2 sets the framework.
The new GLR-U estimator is presented in Section 3 with the specific forms of the
estimators for three types of models. Applications are given in Section 4. Numerical
experiments can be found in Section 5. The last section concludes. The technical
proofs and additional numerical results can be found in the appendices.

2. Problem Formulation

Consider the stochastic model (1) with uniform random numbers as inputs. For
simplicity, we take the dimension of U to be the same as that of g. This constraint
can be relaxed to allow the dimension m of U to be no less than the dimension n
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of g. When m > n, we can choose n components out of m components of vector U
to reduce to the stochastic model (1), an example of which is presented later in the
numerical experiments. The constraint n ≤ m is required for technical reasons, as
described in more detail in Section 2.4 of [34]. When θ is a scalar, we consider the
problem of estimating the following derivative:

∂E[φ(g(U ; θ))]
∂θ

. (2)

When θ is a vector, each component of the gradient can be computed separately.
In Peng et al. [34], the stochastic model considered for the derivative estima-

tion problem is φ(g(X; θ)), where the density of X = (X1, . . . , Xn) is assumed to
be known and both tails decay smoothly at a sufficient rate for each component
of the distribution of X when the other components are fixed. This assumption is
not satisfied by discontinuous densities, such as the uniform and exponential dis-
tributions, and a primary objective of this work is to address this limitation. It is
tempting to transform stochastic model (1) into φ(g(F1(Y1), . . . , Fn(Yn); θ)), where
Yi has continuous cumulative distribution function (cdf) Fi(·), i = 1, . . . , n, with tails
going smoothly to zero, so that the problem can be put into the same form as the
original stochastic model in [34]. However, because of the cdfs of Yi’s appearing in
the sample performance, we show in Appendix A that this simple transformation
does not work as expected. Before deriving our GLR-U derivative estimator, we
first introduce four important examples for generating random variables to illustrate
potential applications of the stochastic model (1) and will return to these examples
later.

Example 1. Independent Parameterized Inputs Generated via the Inverse
Transform Method Suppose X = (X1, . . . , Xn) is a vector of independent random
variables, where each Xi has cdf Fi(·; θ), i = 1, . . . , n, and is generated by (standard)
inversion:

Xi = F−1
i (Ui; θ), i = 1, . . . , n,

with i.i.d. Ui ∼ U(0, 1). A stochastic model with i.i.d. U(0, 1) random numbers as
input can be written as φ(g(U ; θ)) = φ(F−1

1 (U1; θ), . . . , F
−1
n (Un; θ)), where g(u; θ) =

(F−1
1 (u1; θ), . . . , F

−1
n (un; θ)).

Example 2. Independent Non-parameterized Inputs Generated via the In-
verse TransformMethod SupposeX = (X1, . . . , Xn) is a vector of non-parameterized
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independent random variables, and is generated by inversion. A stochastic model
with i.i.d. U(0, 1) random numbers as input is given by

φ(g(U ; θ)) = φ(h(F−1
1 (U1), . . . , F

−1
n (Un); θ)),

where h(x; θ) := (h1(x; θ), . . . , hn(x; θ)) and gi(u; θ) := hi(F
−1
1 (u1), . . . , F

−1
n (un); θ),

i = 1, . . . , n.

Example 3. Archimedean Copulas Copulas are a general way of representing the
dependence in a multivariate distribution. A copula is a multivariate cdf whose one-
dimensional marginals are all independent U(0, 1). It can be defined by a function
C(·; θ) : [0, 1]n → [0, 1] that satisfies certain conditions required for C to be a valid
cdf; (e.g., it cannot decrease, C(u; θ) = 0 whenever one coordinate of u is 0, and
C(1; θ) = 1); see [40]. For any given copula and arbitrary marginal distributions
with continuous cdf’s F1(·), F2(·), ..., Fn(·) with densities fi(·), i = 1, . . . , n, one can
define a multivariate distribution having exactly these marginals with joint cdf FX
given by FX(x) = C(F1(x1), F2(x2), ..., Fn(xn); θ) for all x := (x1, . . . , xn). Nelson
[40] shows that any multivariate distribution can be represented in this way. If C(·; θ)
is absolutely continuous, the density of the joint distribution is

fX(x; θ) = c (F1(x1), . . . , Fn(xn); θ)
n∏
i=1

fi(xi),

where c(v; θ) = ∂nC(v;θ)
∂v1···∂vn , v = (v1, . . . , vn), and the derivative is interpreted as a

Radon-Nikodym derivative when C(·; θ) is not nth-order differentiable.
To generateX = (X1, . . . , Xn) from the joint cdf FX(·), generate V = (V1, . . . , Vn)

from the copula and return Xi = F−1
i (Vi) for each i. Generating V from the copula

is not always obvious, but there are classes of copulas for which this can be easily
done, one of them being the Archimedean copulas. This important family of copulas
can model strong forms of tail dependence using a single parameter, which makes
them convenient to use. An Archimedean copula Ca is defined by

Ca(v; θ) = ψθ

(
ψ

[−1]
θ (v1) + . . .+ ψ

[−1]
θ (vn)

)
,

where the generator function ψθ : [0,∞) → [0, 1] is a strictly decreasing convex func-
tion such that limx→∞ ψθ(x) = 0, θ ∈ [0,∞) is a parameter governing the strength

of dependence, and ψ
[−1]
θ is a pseudo-inverse defined by ψ

[−1]
θ (x) = 1{0 ≤ x ≤

ψθ(0)}ψ−1
θ (x), with the convention that ψ−1

θ (0) = inf{x : ψθ(x) = 0}. Note that the
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roles of notations ψθ and ψ
[−1]
θ are reversed from their definitions in [40]. Archimedean

copulas are absolutely continuous, and their densities have the form:

ca(v; θ) = 1

{
0 ≤

n∑
i=1

ψ−1
θ (vi) ≤ ψ−1

θ (0)

}
∂nψθ(x)

∂xn

∣∣∣∣
x=

∑n
i=1 ψ

−1
θ (vi)

n∏
i=1

∂ψ−1
θ (vi)

∂vi
,

assuming that the generator function ψθ(·) is smooth. In general we do not have an
analytical expression for ca(·; θ), which can be discontinuous in θ, so discontinuities
may exist for the density fX with the copula defined by ca(·; θ); thus, LR and GLR
in Peng et al. [34] typically do not apply to sensitivity analysis with Archimedean
copulas.

Marshall and Olkin [45] propose the following simple algorithm to generate V
from an Archimedean copula with generator function ψθ(·):

(i) Generate a random variable Yθ from the distribution with Laplace transform
ψθ(·) (with at least one uniform random number as input).

(ii) For i = 1, . . . , n, let Vi = ψθ (−(logUi)/Yθ) with i.i.d. Ui ∼ U(0, 1).

For a given Yθ, this gives a stochastic model with uniform random numbers Ui as
inputs:

φ(g(U ; θ)) = ϕ
(
F−1
1 (ψθ (−(logU1)/Yθ)) , . . . , F

−1
n (ψθ (−(logUn)/Yθ))

)
,

where φ(v1, . . . , vn) = ϕ(F−1
1 (v1), . . . , F

−1
1 (vn)) and

g(u; θ) = (ψθ (−(log u1)/Yθ) , . . . , ψθ (−(log un)/Yθ)).

Since the inputs of the stochastic model (1) are uniform random numbers, the
simulation of the stochastic model (1) and the GLR-U estimator based on the new
model can be easily adapted to RQMC, which replaces the random seeds in Monte
Carlo simulation with randomized low-discrepancy sequences for reducing the vari-
ance of GLR-U estimator [46, 47].

3. A Generalized Likelihood Ratio Method

In this section, we derive the GLR-U estimator for the derivative (2) of the
expectation of stochastic model (1). We first provide an overview for the derivation
of the new method. Then the general theory for GLR is derived, and it is applied to
the three examples in the previous section.
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3.1. Overview
To illustrate the main idea behind the derivation of GLR-U, we first consider a

simple one-dimensional problem in the framework of Peng et al. [34], i.e., φ(g(X; θ)),
where X is a random variable with density f(·; θ) supported on Ω. When φ : R 7→ R
and g : Ω × R 7→ R are smooth (infinitely differentiable) functions, the IPA-LR
framework in [6] applies, i.e., assuming that the derivative and expectation can be
interchanged, we have

∂E[φ(g(X; θ))]

∂θ
=

∂

∂θ

∫
Ω

φ(g(x; θ))f(x; θ)dx

=

∫
Ω

φ(g(x; θ))
∂ log f(x; θ)

∂θ︸ ︷︷ ︸
LR part

f(x; θ)dx+

∫
Ω

∂φ(y)

∂y

∣∣∣∣
y=g(x;θ)

∂g(x; θ)

∂θ︸ ︷︷ ︸
IPA part

f(x; θ)dx, (3)

where the indicated LR and IPA parts serve as unbiased estimators. However, in the
case where φ is not smooth, the second term may not be well defined, e.g., when φ is
discontinuous. To address this more general setting, we approximate φ by a smooth
function φϵ such that φϵ → φ as ϵ → 0 in a suitable manner, and by applying
integration by parts (Theorem 37.2 in [48]), we can express the second term in the
right-hand side of (3) as∫

Ω

∂φϵ(y)

∂y

∣∣∣∣
y=g(x;θ)

∂g(x; θ)

∂θ
f(x; θ)dx =

∫
Ω

∂φϵ(g(x; θ))

∂x

(
∂g(x; θ)

∂x

)−1
∂g(x; θ)

∂θ
f(x; θ)dx

=

∫
∂Ω

φϵ(g(x; θ))

(
∂g(x; θ)

∂x

)−1
∂g(x; θ)

∂θ
f(x; θ)v̂ds

−
∫
Ω

φϵ(g(x; θ))
∂

∂x

{(
∂g(x; θ)

∂x

)−1
∂g(x; θ)

∂θ
f(x; θ)

}
dx

=

∫
∂Ω

φϵ(g(x; θ))r(x; θ)f(x; θ)v̂ds−
∫
Ω

φϵ(g(x; θ))d(x; θ)f(x; θ)dx, (4)

where ∂Ω is the boundary of Ω which is assumed to be (0, 1) here and v̂ is the unit
normal vector pointing outward, ds is the surface measure,

r(x; θ) =

(
∂g(x; θ)

∂x

)−1
∂g(x; θ)

∂θ
,

and

d(x; θ) =
1

f(x; θ)

∂

∂x

{(
∂g(x; θ)

∂x

)−1
∂g(x; θ)

∂θ
f(x; θ)

}
.

8



The derivation above can be extended straightforwardly to the case when g and x
are multi-dimensional. In the remainder of the paper, Ω is the open unit hypercube
in n dimensions. A generic measurable function φ(·) not necessarily continuous
is first replaced by a smooth approximation before the derivation, and then after
the derivation the limit is taken to recover unbiasedness under certain integrability
conditions. Since the derivatives of φ(·) only appear in the intermediate steps but not
in the final expression of (4), we only need the existence of a function that smooths
φ(·), which can be established under a mild regularity condition. The condition and
the proof can be found in Section 3.2 and Appendix A, respectively.

The first term of (3) and the second term of (4) can be estimated by simulation,
but the first term of (4) is a surface integration that could be difficult to compute in
general. The surface integration contribution in [34] is shown to be zero under certain
conditions including the tails of the input densities decaying to zero smoothly and
at a sufficient rate. In this work, we consider uniform random variables as inputs,
so the support is an open cube Ω = (0, 1)n, which has a simple boundary. Thus, the
normal vector v̂ to the surface is constant, and the surface measure ds is amenable for
computation on each face of the cube, i.e., the surface integration contribution can
be estimated by simulation. In addition, the input density f(x; θ) = 1 for x ∈ (0, 1)n

and ∂ log f(x; θ)/∂θ = 0, so that the first term vanishes in (3), leaving just the
second term. Due to possible discontinuities in φ, this term is retransformed by
integration by parts, which will be seen in Section 3.3, in the most basic case leads
to an estimator that is not standard IPA but standard LR.

3.2. General Theory

When θ is a scalar, denote the Jacobian of g by

Jg(u; θ) :=


∂g1(u;θ)
∂u1

∂g1(u;θ)
∂u2

· · · ∂g1(u;θ)
∂un

∂g2(u;θ)
∂u1

∂g2(u;θ)
∂u2

· · · ∂g2(u;θ)
∂un

...
...

. . .
...

∂gn(u;θ)
∂u1

∂gn(u;θ)
∂u2

· · · ∂gn(u;θ)
∂un

 , and

∂θg(u; θ) :=

(
∂g1(u; θ)

∂θ
, . . . ,

∂gn(u; θ)

∂θ

)T
,

with the superscript T indicating vector transposition. In addition, we define two
weight functions in the GLR estimator:

ri(u; θ) :=

(
J−1
g (u; θ) ∂θg(u; θ)

)T
ei, i = 1, . . . , n, (5)
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d(u; θ) :=
n∑
i=1

eTi J
−1
g (u; θ) (∂uiJg(u; θ))J

−1
g (u; θ)∂θg(u; θ)− trace(J−1

g (u; θ) ∂θJg(u; θ)),

(6)

where ei is the ith unit column vector and ∂zJg is the matrix obtained by differen-
tiating Jg with respect to z element-wise. When θ is a vector, we need to compute
(5) and (6) for each coordinate. Notice that the computation of the Jacobian ma-
trix Jg(·; θ), its inverse, and its derivatives with respect to ui, which necessitates
significant computational burden for computing (5) and (6), needs to be done only
once for all coordinates of θ. Therefore, the computational complexity of the GLR-U
estimator for a d-dimensional θ is less than d times the computational complexity of
the GLR-U estimator for a 1-dimensional θ.

Let x− and x+ be the limits taken from the left-hand side and right-hand side of
x, respectively, and for a function h(·), denote h(x−) := limx→x− h(x) and h(x

+) :=
limx→x+ h(x). We introduce the following conditions for our analysis. The unbiased-
ness of the proposed GLR-U estimator can be established under two different subsets
of these conditions.

(A.1) There exist a family of smooth functions (i.e., infinitely differentiable) φϵ(·)
indexed by ϵ and p > 1 such that

lim
ϵ→0

sup
θ∈Θ

∫
(0,1)n

|φϵ(g(u; θ))− φ(g(u; θ))|p du = 0,

and if n > 1, for any i = 1, . . . , n,

lim
ϵ→0

sup
θ∈Θ,ui∈(0,1)\[ε,1−ε]

∫
(0,1)n−1

|φϵ(g(u; θ))− φ(g(u; θ))|p du−i = 0,

where u−i := (u1, . . . , ui−1, ui+1, . . . , un), Θ is a compact neighborhood of the
value of interest for parameter θ, while if n = 1,

lim
ϵ→0

sup
θ∈Θ,u∈(0,1)\[ε,1−ε]

|φϵ(g(u; θ))− φ(g(u; θ))| = 0.

(A.2) The following integrability condition holds:∫
(0,1)n−1

sup
θ∈Θ,ui∈(0,1)

∣∣φ(g(u; θ)) ri(u; θ)∣∣ du−i <∞, i = 1, . . . , n.
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(A.3) The Jacobian Jg(u; θ) is invertible for almost every u ∈ (0, 1)n, and the per-
formance function g(u; θ) is twice continuously differentiable with respect to
(u, θ) ∈ [0, 1]n ×Θ.

(A.4) The following integrability condition holds:∫
(0,1)n

sup
θ∈Θ

∣∣φ(g(u; θ)) d(u; θ)∣∣ du <∞.

(A.5) The function g(·; θ) is invertible for all θ ∈ Θ, and

lim
ui→1−

sup
θ∈Θ,u−i∈(0,1)n−1

|ri(u; θ)| = lim
ui→0+

sup
θ∈Θ,u−i∈(0,1)n−1

|ri(u; θ)| = 0, i = 1, . . . , n.

Remark 1. Condition (A.1) can be checked in certain settings when φϵ(·) can be
explicitly constructed, e.g., φϵ(x) = 0 if x ≤ −ϵ, φϵ(x) = 1 if x ≥ ϵ, φϵ(x) =
(x + ϵ)/(2ϵ) if −ϵ < x < ϵ, and φ(x) = 1{x ≤ 0}; see a more general case in
Proposition 1. The invertibility of the Jacobian matrix in condition (A.3) justifies the
local invertibility of function g(·; θ), whereas global invertibility of g(·; θ) in condition
(A.5) is stronger, although much weaker than requiring an explicit inverse function
for g(·; θ) in deriving the push-out LR estimator [4]. In general, it is difficult to find
an explicit inverse function for a nonlinear function g(·; θ), but the existence of the
inversion could be guaranteed by the inverse function theorem.

Unbiasedness of the new GLR-U estimator developed in this work is established
under two sets of conditions in the following theorem.

Theorem 1. Under conditions (A.1) – (A.4) or (A.3) – (A.5), for all θ ∈ Θ,

∂E[φ(g(U ; θ))]
∂θ

= E[G(U ; θ)], where (7)

G(U ; θ) :=
n∑
i=1

[
φ(g(U i; θ))ri(U i; θ)− φ(g(U i; θ))ri(U i; θ)

]
+ φ(g(U ; θ))d(U ; θ),

with U i := (U1, . . . , 1−︸︷︷︸
ith element

, . . . , Un), U i := (U1, . . . , 0+︸︷︷︸
ith element

, . . . , Un), and ri(·) and

d(·) defined by (5) and (6), respectively.
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Remark 2. The proof of the theorem can be found in Appendix A. Even if g(U i; θ) =
∞ or g(U i; θ) = ∞, the GLR-U estimator could be well defined; see e.g., Sections 3.3
and 3.4. In the case where the surface integration part becomes zero, we can prove
the result without assuming (A.1), and we also avoid the integrability condition in
[34] on certain intermediate quantities (the smoothed function), which is difficult
to verify in practice. To achieve this goal, the proof is obtained by first truncating
the support of the input uniform random numbers, i.e., (0, 1)n, to a compact set
[ε, 1 − ε]n for ε > 0 and then appropriately expanding it to the whole space, i.e.,
letting ε → 0. This is merely a technical step used in the proof rather than a
treatment required in actual implementation. We caution that the conditions in the
theorem may still be difficult to check when φ is too complicated to allow an explicit
smoothed function or g comprises complex nonlinear functions. The conditions in
Theorem 1 are sufficient for justifying unbiasedness of GLR-U, but they are not
necessary conditions. Puchhammer and L’Ecuyer [49] compare the GLR-U with
their push-out LR in the density estimation problem. They show examples in which
the conditions in this work are not satisfied, whereas their conditions for justifying
unbiasedness of push-out LR are satisfied in the density estimation problem, even
though the GLR-U and their push-out LR give the same estimator. In Sections
3.3 and 3.4, we will prove that LR is a special case of GLR-U for a stochastic
model with independent and continuous input random variables, and the GLR in
[34] coincides with GLR-U in certain circumstance. Peng et al. [34] prove that
push-out LR is a special case of GLR. Therefore, the more restrictive conditions
for justifying unbiasedness of GLR-U are adopted to accommodate the generality of
stochastic model (1), and can be simplified significantly for certain special forms of
the stochastic model (1) such as in the density estimation problem [50].

We now examine the special case where g(u; θ) = (g1(u1; θ), . . . , gn(un; θ)), which
covers Examples 1, 2, and 3 in Section 2. For n independent uniform random
numbers, we can take gi(ui; θ) = F−1

i (ui; θ) for i = 1, . . . , n, while for dependent
variables governed by an Archimedean copula, conditional on Yθ = y, we have
gi(ui; θ) = ψθ(− log ui/y) for i = 1, . . . , n. In this special case, the Jacobian be-
comes

Jg(u; θ) =


∂g1(u1;θ)
∂u1

0 · · · 0

0 ∂g2(u2;θ)
∂u2

· · · 0
...

...
. . .

...

0 0 · · · ∂gn(un;θ)
∂un

 .

12



Then we have

ri(u; θ) =
∂gi(ui; θ)

∂θ

/
∂gi(ui; θ)

∂ui
, i = 1, . . . , n, and d(u; θ) =

n∑
i=1

di(ui; θ),

where di(ui; θ) :=
∂gi(ui; θ)

∂θ

∂2gi(ui; θ)

∂u2i

/(
∂gi(ui; θ)

∂ui

)2

− ∂2gi(ui; θ)

∂θ∂ui

/
∂gi(ui; θ)

∂ui
.

Moreover, condition (A.1) in Theorem 1 can be replaced by a set of a simpler as-
sumptions when the performance function φ(x) is a product of n indicators: φ(x) =∏n

i=1 1{xi ≤ 0}, in which case a smoothed function φϵ(·) can be constructed explic-
itly. The performance function in the distribution sensitivities discussed in Section
4.1 is an indicator function. The payoffs of many financial derivatives such that in
Section 5.2 contain the product of indicator functions. The proof of the following
proposition can be found in Appendix A.

Proposition 1. Consider the stochastic model

φ(g(U ; θ)) =
n∏
i=1

1{gi(Ui; θ) ≤ 0}.

Then condition (A.1) holds if for i = 1, . . . , n and there exists 0 < ε < 1/2 such that

inf
θ∈Θ,ui∈[ε,1−ε]

∣∣∣∣∂gi(ui; θ)∂ui

∣∣∣∣ > 0 and inf
θ∈Θ,ui∈(0,1)\[ε,1−ε]

∣∣gi(ui; θ)∣∣ > 0. (8)

It is straightforward to extend the conclusion of Proposition 1 to the case φ(g(U ; θ)) =∏n
i=1 1{gi(Ui; θ) ≤ 0}h(g(U ; θ)), where h(·) is smooth and h(g(U ; θ)) satisfies certain

moment conditions. Specifically, by applying Hölder’s inequality,∫
(0,1)n

∣∣∣∣( n∏
i=1

1{gi(ui; θ) ≤ 0} − χϵ(g(u; θ))

)
h(g(u; θ))

∣∣∣∣p du
≤
[ ∫

(0,1)n

∣∣∣∣( n∏
i=1

1{gi(ui; θ) ≤ 0} − χϵ(g(u; θ))

)∣∣∣∣pp′ du]1/p′[ ∫
(0,1)n

∣∣h(g(u; θ))∣∣pq′ du]1/q′ ,
where 1/p′ + 1/q′ = 1 and χϵ is the smoothed function of the product of indicator,
making the first integral go to zero as ϵ → 0. The other integrals in condition
(A.1) can be treated similarly by applying Hölder’s inequality. Letting φϵ(g(u; θ)) =

13



χϵ(g(u; θ))h(g(u; θ)), we check condition (A.1) for stochastic model φ(g(U ; θ)). If
the functions gi can be decomposed as products of the form gi(ui; θ) = ξi(θ)ηi(ui)
for i = 1, . . . , n, then conditions (A.2), (A.4), (A.5), and (6) can be simplified.
For example, an exponential random variable with mean θ can be generated by
− log(Ui)/θ where Ui ∼ U(0, 1). When this decomposition holds, we can write

ri(u; θ) =
d log ξi(θ)

dθ

/
d log ηi(ui)

dui
, i = 1, . . . , n,

and

d(u; θ) =
n∑
i=1

di(ui; θ), with di(ui; θ) =
d log ξi(θ)

dθ

[
ηi(ui)η

′′
i (ui)

(η′i(ui))
2 − 1

]
.

(A.2’) Boundedness condition on functions of input random numbers:

inf
ui∈(0,1)

∣∣∣∣d log ηi(ui)dui

∣∣∣∣ > 0, i = 1, . . . , n.

(A.4’) Integrability condition on functions of input random numbers:

E

[∣∣ηi(Ui)η′′i (Ui)∣∣
(η′i(Ui))

2

]
<∞, i = 1, . . . , n.

(A.5’) Boundary condition on functions of input random numbers: functions ηi(ui),
i = 1, . . . , n, are monotone, and

lim
ui→1−

∣∣∣∣d log ηi(ui)dui

∣∣∣∣ = lim
ui→0+

∣∣∣∣d log ηi(ui)dui

∣∣∣∣ = ∞, i = 1, . . . , n.

Corollary 1. Suppose that gi(ui; θ) = ξi(θ)ηi(ui), i = 1, . . . , n, and φ(·) is bounded
and

max
i=1,...,n

sup
θ∈Θ

∣∣∣∣∂ log ξi(θ)∂θ

∣∣∣∣ <∞.

Then conditions (A.2), (A.4), and (A.5) can be replaced by (A.2’), (A.4’) and (A.5’),
respectively, and condition (8) in Proposition 1 also simplifies to

inf
θ∈Θ

∣∣ξi(θ)| > 0, inf
ui∈[ε,1−ε]

∣∣∣∣η′i(ui)∣∣∣∣ > 0, inf
ui∈(0,1)\[ε,1−ε]

∣∣ηi(ui)∣∣ > 0, i = 1, . . . , n.
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Unbiasedness of the GLR-U estimators in many examples of this paper can be jus-
tified by verifying these simplified conditions. The product form of the stochastic
model is satisfied in most cases when the conditioning and push-out techniques can
be done explicitly. Other assumptions in Corollary 1 ensure that the stochastic model
gi(Ui; θ) has a density. This requirement would not significantly limit applications,
because the generality of φ enables the freedom to properly define the stochastic
model g. Note that discrete random variables can also be generated by continuous
random variables through certain functional transformations.

3.3. The Independent Parameterized Case

Let us return to the independent case of Example 1 and suppose that each Xi is
continuous with density fi(·; θ). Our goal is to estimate

∂E[φ(F−1
1 (U1; θ), . . . , F

−1
n (Un; θ))]

∂θ
,

for which the Jacobian is

Jg(u; θ) =


1

f1(X1(u1;θ);θ)
0 · · · 0

0 1
f2(X2(u2;θ);θ)

· · · 0
...

...
. . .

...
0 0 · · · 1

fn(Xn(un;θ);θ)

 ,

and

∂θg(u; θ) =

(
∂X1(u1; θ)

∂θ
, . . . ,

∂Xn(un; θ)

∂θ

)T
,

where

Xi(ui; θ) := F−1
i (ui; θ) and

∂Xi(ui; θ)

∂θ
:= −∂Fi(xi; θ)

∂θ

/
fi(xi; θ)

∣∣∣∣
xi=Xi(ui;θ)

.

Then the weight functions in the GLR-U estimator are:

ri(u; θ) = −∂Fi(xi; θ)
∂θ

∣∣∣∣
xi=Xi(ui;θ)

and di(ui; θ) =
∂ log fi(xi; θ)

∂θ

∣∣∣∣
xi=Xi(ui;θ)

,

so

lim
ui→1−

ri(u; θ) = lim
ui→0+

ri(u; θ) = 0.
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Therefore,

∂E[φ(F−1
1 (U1; θ), . . . , F

−1
n (Un; θ))]

∂θ
= E

[
φ(F−1

1 (U1; θ), . . . , F
−1
n (Un; θ)) d(U ; θ)

]
= E

[
φ(X)

n∑
i=1

∂ log fi(Xi; θ)

∂θ

]
.

The expression inside the last expectation coincides with the classic LR derivative
estimator in the case where the LR method is applicable, i.e., when there are no
structural parameters in the sample performance [2]. From this perspective, the
GLR method generalizes the LR method by allowing the appearance of structural
parameters.

3.4. The Independent Non-parameterized Case

We then return to the independent case of Example 2, and consider estimating
derivative

∂E
[
φ(h(β(U); θ))

]
∂θ

with β(u) = (F−1
1 (u1), . . . , F

−1
n (un)).

Assume that the Jacobian Jh(·; θ) of h(·; θ) is invertible almost everywhere, and
densities fi(xi), i = 1, . . . , n, are differentiable and supported on the entire space,
i.e, R. The Jacobian can be expressed by Jg(u; θ) = Jh(x; θ)Λ(x)

∣∣
x=β(u)

, where

Jh(x; θ) :=


∂h1(x;θ)
∂x1

∂h1(x;θ)
∂x2

· · · ∂h1(x;θ)
∂xn

∂h2(x;θ)
∂x1

∂h2(x;θ)
∂x2

· · · ∂h2(x;θ)
∂xn

...
...

. . .
...

∂hn(x;θ)
∂x1

∂hn(x;θ)
∂x2

· · · ∂hn(x;θ)
∂xn

 ,Λ(x) :=


1

f1(x1)
0 · · · 0

0 1
f2(x2)

· · · 0
...

...
. . .

...
0 0 · · · 1

fn(xn)

 .

Suppose limxi→±∞
(
J−1
h (x; θ)∂θh(x; θ)

)T
Λ−1(x)ei = 0, which implies the tail of fi(·)

decays to zero at a sufficient rate, and then limui→0 ri(u; θ) = limui→1 ri(u; θ) = 0,
i = 1, . . . , n. Notice that

∂uiJg(u; θ) = Λi(x)
(
∂xiJh(x; θ)

)
Λ(x)

∣∣
x=β(u)

+ Jh(x; θ)∂xiΛ(x)
∣∣
x=β(u)

Jβ(u),

16



where Λi(x) is a diagonal matrix with 1/fi(xi) in all the diagonal entries. Plugging
the expressions of Jg(u; θ) and ∂uiJg(u; θ) above into (6), we have

d(u; θ) =
n∑
i=1

eTi Λ
−1(x)J−1

h (x; θ)Λi(x)(∂xiJh(x; θ))Λ(x)Λ
−1(x)J−1

h (x; θ)∂θh(x; θ)

∣∣∣∣
x=β(u)

+
n∑
i=1

eTi Λ
−1(x)J−1

h (x; θ)Jh(x; θ)
(
∂xiΛ(x)

)
Jβ(u)Λ

−1(x)J−1
h (x; θ)∂θh(x; θ)

∣∣∣∣
x=β(u)

− trace
(
Λ−1(x)J−1

h (x; θ)
(
∂θJh(x; θ)

)
Λ(x)

)∣∣∣∣
x=β(u)

=
n∑
i=1

eTi J
−1
h (x; θ)(∂xiJh(x; θ))J

−1
h (x; θ)∂θh(x; θ)

∣∣∣∣
x=β(u)

−
(
J−1
h (x; θ)∂θh(x; θ)

)T
ζ(x)

∣∣∣∣
x=β(u)

− trace
(
J−1
h (x; θ)∂θJh(x; θ)

)∣∣∣∣
x=β(u)

,

where ζ(x) =
(∂ log f1(x1)

∂x1
, . . . , ∂ log fn(xn)

∂xn

)T
. Furthermore, d̂(X; θ) = d(F1(X1), . . . , Fn(Xn); θ)

coincides with the GLR estimator for stochastic model φ(h(X; θ)) in [34].

3.5. Archimedean Copulas

We consider estimating

∂

∂θ
E
[
φ

(
ψθ
(
− logU1

Yθ

)
, . . . , ψθ

(
− logUn

Yθ

))]
,

where the expectation is with respect to both Yθ and the independent Ui, i = 1, . . . , n.
By conditioning, we can use a mixture of LR and GLR:

∂

∂θ
E
[
φ

(
ψθ
(
− logU1

Yθ

)
, . . . , ψθ

(
− logUn

Yθ

))]
= E

[
φ

(
ψθ
(
− logU1

Yθ

)
, . . . , ψθ

(
− logUn

Yθ

))∂ log fY (y; θ)
∂θ

∣∣∣∣
y=Yθ

]
+ E

[
∂E
[
φ
(
ψθ
(
− logU1

y

)
, . . . , ψθ

(
− logUn

y

))]
∂θ

∣∣∣∣
y=Yθ

]
,

(9)

where fY (·; θ) is the density function of Yθ.
We now show how to use GLR-U to handle the second term on the right-

hand side of (9) with Yθ fixed and generated from other uniform random num-
bers. The Archimedean copula model falls into the special case where g(u; θ) =
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(g1(u1; θ), . . . , gn(un; θ)), discussed after Theorem 1. The Jacobian in this case is

Jg(u; θ, y) =


− 1
u1y
ψ′
θ

(
− log u1

y

)
0 · · · 0

0 − 1
u2y
ψ′
θ

(
− log u2

Yθ

)
· · · 0

...
...

. . .
...

0 0 · · · − 1
uny

ψ′
θ

(
− log un

y

)
 ,

and

∂θg(u; θ, y) =

(
∂ψθ(x1)

∂θ

∣∣∣∣
x1=− log u1

y

, . . . ,
∂ψθ(xn)

∂θ

∣∣∣∣
xn=− log un

y

)T
.

The weight functions in the GLR-U estimator are

ri(u; θ, y) = − uiy

ψ′
θ(xi)

∂ψθ(xi)

∂θ

∣∣∣∣
xi=− log ui

y

,

di(ui; θ, y) =

(
− 1

ψ′
θ(xi)

∂ψ′
θ(xi)

∂θ
+

ψ′′
θ (xi)

(ψ′
θ(xi))

2

∂ψθ(xi)

∂θ
+
∂ψθ(xi)

∂θ

y

ψ′
θ(xi)

)∣∣∣∣
xi=− log ui

y

.

Example 4. The Clayton Copula The generator function for the Clayton copula
is

ψθ(x) = (1 + x)−
1
θ , θ ∈ (0,∞).

Then

∂ψθ(x)

∂θ
=

1

θ2
log(1 + x)(1 + x)−

1
θ ,

∂ψ′
θ(x)

∂θ
=

1

θ2
(1 + x)−

1
θ
−1

[
1− 1

θ
log(1 + x)

]
,

and

ψ
′

θ(x) = −1

θ
(1 + x)−

1
θ
−1, ψ

′′

θ (x) =
1

θ

(
1

θ
+ 1

)
(1 + x)−

1
θ
−2.

By the inverse Laplace transformation, we find that Yθ ∼ Γ(1/θ, 1), the gamma

distribution with density fY (y; θ) = y
1
θ
−1e−y

Γ(1/θ)
, where Γ(s) :=

∫∞
0
ts−1e−tdt, and the

LR term is

∂ log fY (y; θ)

∂θ
= −d log Γ(1/θ)

dθ
− 1

θ2
log y.
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The weight functions in the GLR-U estimator are

ri(u; θ, y) = −1

θ
uiy

(
1− log ui

y

)
log

(
1− log ui

y

)
,

di(ui; θ, y) =
1

θ
[1 + (1− (xi + 1)y) log(1 + xi)]

∣∣∣∣
xi=− log ui

y

.

In addition, we have limui→0+ ri(u; θ, y) = limui→1− ri(u; θ, y) = 0.

GLR-U for Ali-Mikhail-Haq copulas can be found in Appendix A. For both the
Clayton and Ali-Mikhail-Haq copulas, conditions (A.3) and (A.5) in Theorem 1 are
satisfied. If φ(·) is bounded, condition (A.4) in Theorem 1 can also be verified
straightforwardly for any y = Yθ.

4. Applications

We apply the GLR-U method to distribution sensitivity estimation, and estimate
sensitivities for stopping time problems and credit risk derivatives, with specific forms
for the function φ(·).

4.1. Distribution Sensitivities

Discontinuous sensitivity estimation can be applied to calibrate complex stochas-
tic models by GLR methods. For g(·; θ) : (0, 1)n → R, we estimate the two following
first-order distribution sensitivities:

∂F (z; θ)

∂θ
=
∂E[1{g(U ; θ)− z ≤ 0}]

∂θ
= E

[
∂E[1{g(Ui, U−i; θ)− z ≤ 0}|U−i]

∂θ

]
,

f(z; θ) =
∂E[1{g(U ; θ)− z ≤ 0}]

∂z
= E

[
∂E[1{g(Ui, U−i; θ)− z ≤ 0}|U−i]

∂z

]
,

where f(·; θ) is the density function of Z(θ) = g(U ; θ) and U−i := (U1, . . . , Ui−1, Ui+1, . . . , Un),
i = 1, . . . , n. By applying GLR-U, we obtain

E
[
∂E[1{g(Ui, U−i; θ)− z ≤ 0}|U−i]

∂θ

]
= E[G1,i(U ; z, θ)],

where

G1,i(U ; z, θ) :=1{g(U i; θ)− z ≤ 0}ri(U i; θ)− 1{g(U i; θ)− z ≤ 0}ri(U i; θ)

+ 1{g(U ; θ)− z ≤ 0}d(U ; θ),
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ri(u; θ) =

(
∂g(u; θ)

∂ui

)−1
∂g(u; θ)

∂θ
,

and

d(u; θ) =

(
∂g(u; θ)

∂ui

)−1
[(

∂g(u; θ)

∂ui

)−1
∂g(u; θ)

∂θ

∂2g(u; θ)

∂u2i
− ∂2g(u; θ)

∂ui∂θ

]
.

We also obtain

E
[
∂E[1{g(Ui, U−i; θ)− z ≤ 0}|U−i]

∂z

]
= E[G2,i(U ; z, θ)],

where

G2,i(U ; z, θ) :=1{g(U i; θ)− z ≤ 0}r̃i(U i; θ)− 1{g(U i; θ)− z ≤ 0}r̃i(U i; θ)

+ 1{g(U ; θ)− z ≤ 0}d̃(U ; θ),

with

r̃i(u; θ) = −
(
∂g(u; θ)

∂ui

)−1

and d̃(u; θ) = −
(
∂g(u; θ)

∂ui

)−2
∂2g(u; θ)

∂u2i
.

Sufficient conditions for justifying unbiasedness of the estimators G1,i and G2,i and
an optimal linear combination Gk,1, . . . , Gk,n, k = 1.2 can be found in Appendix A.

4.2. Credit Risk Derivatives

We consider two important types of credit risk derivatives: basket default swaps
(BDSs) and collateralized debt obligations (CDOs) [42]. In a BDS contract, the buyer
pays fixed premia p1, ..., pk to the protection seller at dates 0 < T1 < . . . < Tk < T ,
and if the ith default time τ(i) occurs before T , i.e., τ(i) < T , these premium payments
stop, and the seller undertakes the loss of the ith default and makes a payment to
the buyer. Let Li be the loss of the ith default. The discounted value of the ith
default swap is the difference between the discounted payments made by the seller
and those made by the buyer:

Vbds(τ) = Vvalue(τ)− Vprot(τ),

where Vprot(τ) is the discounted premium paid by the buyer:

Vprot(τ) =

{ ∑ℓ
j=1 pj exp(−rTj) + pℓ+1 exp(−rτ(i))

τ(i)−Tℓ
Tℓ+1−Tℓ

, if Tℓ ≤ τ(i) ≤ Tℓ+1,∑k
j=1 pi exp(−rTj), if τ(i) > T,
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and Vvalue(X) the discounted payment made by the seller:

Vvalue(X) = L(i) exp(−rτ(i))1{τ(i) < T}.

In a CDO, the losses caused by the defaults of the assets in the portfolio are
packaged together and then tranched. The tranches are ordered so that losses are
absorbed sequentially following the order of the tranches. For example, a tranche of
a CDO absorbs the loss above a threshold L− and below a threshold L+, i.e.,

Vcdo(τ) = (L − L−) · 1{L > L−} − (L − L+) · 1{L > L+},

where

L =
n∑
i=1

Li · 1{τi < T}.

Suppose that the default times (τ1, . . . , τn) have a joint distribution with marginal
cdf’s Fi(·), i = 1, . . . , n, and a dependence structure modeled by an Archimedean
copula. Then we can generate τi’s by generating V = (V1, . . . , Vn) from the copula,
and putting τi = F−1

i (Vi), i = 1, . . . , n.
The sample performances Vvalue(τ), Vprot(τ), and Vcdo(τ) may be discontinuous

with respect to the structural parameter θ in the copula model due to the presence
of indicator functions and order indices. As a result, neither IPA nor LR can be
applied directly for this model. On the other hand, Vvalue(τ), Vprot(τ), and Vcdo(τ)
are all of the form φ(g(U ; θ)) that fits our framework, due to the generality of the
measurable function φ(·). Unlike in [24] where a separate CMC technique needs to
be derived for each type of cash flow, the GLR method in this work can estimate the
derivative of the expectation for all three types of cash flows.

5. Numerical Experiments

In this section, we present numerical examples to demonstrate broad applicabil-
ity and flexibility of the proposed GLR-U method to estimate sensitivities in various
situations. The examples include an indicator function applied to a linear combina-
tion of two exponential random variables and a CDO model. The stochastic models
in all examples have uniform random numbers as inputs, so that the GLR method
in [34] does not apply. Therefore, for simplicity, we refer to GLR-U as GLR in this
section. All experiments are implemented in Matlab on a laptop with an Intel i7-
1065G7 CPU. The code for the numerical experiments in this paper can be found at
https://github.com/pengyijie-pku/Generalized-Likelihood-Ratio.
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(a) Distribution sensitivity curve.
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Figure 1: Density curve estimated by GLR in the example of Section 5.1.

5.1. Distribution Sensitivities for a Linear Model

We estimate distribution sensitivities where φ(·) is an indicator function for a
linear combination of two independent exponential random variables with means
1/λ1 and 1/λ2, i.e.,

φ(g(U ; θ)) = 1{g(U ; θ) ≤ z},

where

g(U ; θ) = − θ

λ1
log(U1)−

1

λ2
log(U2).

This sample performance falls into the special case stated in Corollary 1, and the
conditions in Proposition 1 and the integrability condition on the weight function
discussed in Section 4.1 can be checked straightforwardly. The specific forms of the
estimators G1,1(·), G1,2(·), G2,1(·), G2,2(·) for distribution sensitivities can be found in
Appendix B.

For our numerical experiments, we take λ1 = 1, λ2 = 1, and θ = 1, and we
estimate the density of g(U ; θ) at z, as a function of z from z = 0.01 to 10 with a
step size of 0.01. We perform 106 independent simulation runs with GLR. The curves
of the estimated density sensitivity and estimated variances as a function of z are
given in Figure 1. We also estimate the sensitivity of E[φ(g(U ; θ))] with respect to θ
at z, as a function of z from z = 0.01 to 10 with a step size of 0.01. The numerical
observations are similar, and the details can be found in Appendix B.
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Figure 1(a) shows the estimated density sensitivity curve, and Figure 1(b) presents
the sample variance curves of three distribution sensitivity estimators: G2,1(·) (GLR-
1), G2,2(·) (GLR-2), and a combined GLR estimator that minimizes the variance of
the linear combination of GLR-1 and GLR-2 with weights given by (GLR-Opt) in
Appendix A. Due to space limitation, the variance comparison between GLR and
the finite difference method with common random numbers (FDC) is relegated to
Appendix B. The peak value of the variance curve of FDC(0.01) is about 200 times
larger than that of GLR-Opt, and the variance of FDC(0.01) is about 10 times of
that of FDC(0.1), which indicates that FDC suffers from a bias-variance tradeoff
issue. The computational time of GLR is about 1.5 times of that of FDC.

The variance of GLR estimators can be reduced by applying CMC to these sen-
sitivity estimators. CGLR is the conditional GLR method (GLR-Opt) with uniform
random numbers as inputs, the specific form of which can be found in Appendix B.
Then we apply RQMC to CGLR for estimating the density of g(U ; θ), which basi-
cally replaces the input uniform random numbers with a RQMC point set to estimate
the expectation. CGLR-Q is the CGLR method with the Sobol sequence scrambled
by an algorithm of [51] in Matlab. We set 213 for the size of the RQMC point set
for CGLR-Q and the replications of input uniform random numbers for GLR and
CGLR, and the variance of the estimators is estimated by 102 independent simula-
tions. Figure 2(a) shows that the variance of CGLR is smaller than the variance of
GLR over the entire range, and the peak value in the variance curve of GLR is about
4 times that of the variance curve of CGLR; Figure 2(b) shows that the variance of
CGLR dominates the variance of CGLR-Q over the entire range, and the peak value
in the variance curve of CGLR is around 40 times that of the variance of CGLR-Q.
Similar comparison for estimating the derivative of E[g(U ; θ)] with respect to θ can
be found in Appendix B.

5.2. Sensitivities of Collateralized Debt Obligations

We estimate the sensitivity with respect to the parameter θ that governs the
dependence in the Clayton copula model for the expectation of the loss absorbed
by the tranche that covers the first 30% of the total losses for 10 assets if there
are defaults, i.e., L− = 0 and L+ = 0.3 × (

∑10
i=1 Li). We set r = 0.1 and T = 1.

The marginal distributions of the defaults are assumed to be exponential, so τi =
− 1
λi
log(Xi), i = 1, . . . , 10. The parameters λi and loss Li, i = 1, . . . , n, are randomly

generated from the uniform distribution over (0, 1) in the experiments.
We compare the GLR estimator with FDC(δ), where δ is the perturbation size.

Due to the simplicity of the weight function of GLR, the computational time of
GLR barely increases relative to that required to run the simulation model itself,
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Figure 2: Variance comparison between GLR, CGLR, and CGLR-Q estimators with an average
of 213 samples for estimating the density of g(U ; θ) in the example of Section 5.1.

so the sensitivity estimate by GLR is almost a free byproduct that can be obtained
simultaneously during the simulation. Table 1 shows the sensitivity estimates with
sample sizes m = 104, m = 105, and m = 106 under the Clayton copula, for θ = 0.5.
The variances of FDC(0.01) are about 10− 50 times those of GLR. For sample size
m = 106, the estimate with FDC(0.1) lies outside of the 90% confidence interval
of the GLR estimate, whereas the estimate with GLR lies in the 90% confidence
interval of the FDC(0.01) estimate with the sample size m = 107, which is −0.179 ±
0.002. This indicates that FDC suffers from the bias-variance tradeoff, while GLR
is accurate under a relatively small sample size. The computational time of GLR is
about 5 times that of FDC. Numerical results for sensitivities of CDOs under the
Ali-Mikhail-Haq copula and sensitivities of BDS under both the Clayton and Ali-
Mikhail-Haq copulas can be found in Appendix B. The observations are similar to

m = 104 m = 105 m = 106

GLR −0.187 ± 0.01 −0.185 ± 0.004 −0.181 ± 0.002

FDC(0.1) −0.171 ± 0.007 −0.177 ± 0.003 −0.176 ± 0.002

FDC(0.01) −0.155 ± 0.07 −0.186 ± 0.02 −0.189 ± 0.006

Table 1: Sensitivity estimates of CDO with 10 assets governed by the Clayton copula with θ = 0.5
based on 102 experiments (mean ± standard error).
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those presented here.

6. Conclusions

In this paper, a GLR-U method is proposed for a family of stochastic models
with uniform random numbers as inputs. The framework studied in this work covers
a large range of discontinuities, and it includes many applications such as density
estimation and credit risk financial derivatives. Since uniform random numbers are
the basic building blocks for generating other random variables, our new method
significantly relaxes the limitations on the input random variables in [34] and [38].
The technical conditions for justifying unbiasedness of GLR-U are relatively easy
to satisfy in practice compared with previous conditions in [34] and [38], and we
show how to verify them on illustrative examples. The variance of the GLR-U
estimator can be reduced substantially (by a factor of more than 100 in one of our
examples) by appropriately combining with CMC and RQMC. How to establish a
general framework to apply CMC and RQMC to GLR for practical problems with
different types of discontinuities in the sample performance is a good topic for future
research.
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