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SUMMARY

A group preventive replacement problem is formulated in continuous
time for a multicomponent system having identical elements. The Dyna~
mic Programming equation is obtained in the framework of the theory of
optimal control of jump processes. A discrete time version of the mo-
del is used for the numerical computation of optimal and suboptimal
strategies of group preventive replacement. A monotonicity property
of the Bellman functional (or cost-to-go function) is proved and ser~

ves to reduce the size of the computational problem.

RESUME

On considére un probléme de remplacements préventifs de groupe dans
le cas d'un systéme & composantes identiques. On obtient 1'équation de
la programmation dynamique en temps continu dans le cadre de la théorie
de la commande optimale des processus de saut. Une version en temps
discret du mod2le est utilis€e pour obtenir numériquement des politiques
optimales et sous-optimales de remplacement. On démontre la monotonicité
de la fonction de Bellman (fonction de cofit espéré actualisé) et cette

propriété nous permet de réduire la taille du probl2me.
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1. INTRODUCTION

The aim of this paper is to formulate and solve a group preventive
replacement (GPR) problem, considered in the framework of optimal sto-
chastic control theory.

A presentation of group preventive maintenance can be found in 1.
The GFR problem that we are considering occurs when a system consists
of several elements of the same type which work under the same general
conditions. All the elements have the same lifetime distribution. On-
ly two actlons are available for a single element: either replacé~it‘
when it fails (emergency replacement) or replace the element before it
fails (preventive replacement). The possibility to combine preventive
replacements with emergency replacements in a multicomponent system
can generate a substantial maintenance cost reduction if there is a
large fixed cost associated with any intervention on the system, what-

ever be the number of elements replaced.

In Ref. 1 the GPR strategy is defined by a heuristic service rule
which is clearly non optimal. In Ref. 2 a formulation of the GPR pro-
blem as a stochastic control problem has been proposed and a Dynamic

Programming equation has been heuristically derived.

In section 2 of the present paper, the Dynamic Programming equa-
tion of Ref. 2 is more rigorously obtained by using some general re-

sults of the control theory of jump processes,

In section 3 a discrete time formulation of the problem is proposed
and the approach for the numerical solution of this large scale problem

is described.

In section 4 several numerical illustrations are fully developped
to show the effect of the relative magnitudes of the fixed and the va-
riable parts of the maintenance cost on the optimal GPR strategy. The
optimal strategies are then compared with suboptimal strategies which

are simpler to implement.



Finally the appendix contains the proof of the main theorem assuring
that the Bellman function in the Dynamic Programming equation is non de-
creasing with the age of any element. This theorem and his corollaries
permit the reduction of the number of candidates for the minimum in the

DP algorithm,
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2, THE GROUP PREVENTIVE REPLACEMENT PROBLEM

We consider a system comprised of m identical elements working in-
dependently under the same conditions. At time L= 0 every element 1is
rew, at time T » 0, the whole system is replaced by a new cne. During
the time interval [@,f], if one element fails it has to be replaced im-
midiately by a new one. This is called an emergency replacement (ER).
Simultaneously with an ER the repairman can replace any number of work-
ing elements he wants. This is called the preventive replacement (PR)

of a working element.

The cost of an intervention contains two parts: a fixed cost B is
incurred whatever be the number of elements replaced; a variable cost
varies linearly with the number of elements which are replaced. Thus

the cost of an intervention where v elements are replaced will be gi-

ven by:

B + vb, for v =21.

Knowing this cost structure and the failure rate function £(r) for
one element, where r is the age of the element, the problem is to find

the optimal strategy for preventive replacement (optimal PR strategy).
We assume that ERs or PRs are performed instantaneously.

In order to establish rigorously the optimality conditions charac—
terizing the optimal strategy it will be convenient fo formulate the
problem in the framework of the theory of optimal control for jump

processes. Recently, several authors 3,4,3,6

have obtained very gene-
ral optimality conditions for the control of jump processes. The re-
sults obtained by Rishel are appropriate for the solution of the pre-
sent préblem. In section 2.1 the Rishel's formalism is briefly recall-
ed. In section 2.2 the controlled jump process associated with the GPR
problem is identified and in section 2.3 the Dynamic programming equa-

tion leading to the optimal PR strategy is established.
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2.1 Formulation of the general control problem for a jump process

Let us define a jump process x = (x(t); O < t < T) with value in a
set X which with probability one has only a finite number of jumps.
¥ te€ [p,f], let n(t) be the number of jumps during [@,ﬁ]. Define the
jump times Ts Tor eves Tps oo by letting T, = 0 and Ty be the timé

of the n~th jump if n(T) = n or T, " T if a(T) <« n. Llet

b
x = x(rn). )

Let X.n denote the random sequence:

A
Xn = (xo’Tl’Kl’TZ""’Tn’xn)' (2)

Rishelb has shown that the jump process is determined if one has

given the conditional jump rate function:

A
Q(tlxn) = 1im PI} STha < F dt~' X;J R (3)
dt-0 dt Pft = Tl i Aﬁ] _ n
and the conditional state jump probabilities:
m(AlX , « )éP[x €AlX, T ], AcCX %)
n’ ‘n+l n+l n’ n+ld’

Let U be a given set. Consider a family of controlled jump rates A
and state jump probabilities:

q (t\Xn, u), u €U (5)

n (A|Xn, Toal® u), AcCX, u ¢ U, (6)

A control is a functional u(t,Xh) on the past of the process, with
value in U. A cost w(T,Xn) is paid at the terminal time T if n(T) = n.
The control problem is to pick the control u(t,xh) in the admissible

class so that



S.

E Eb(T,Xn(t)X] N

is minimized.

Rishel has obtained 216 very general necessary and sufficient con~-
ditions for optimality of such a controlled jump process. In order to
apply these results to the GPR problem we have to define the controlled
jump process assoclated with the data of the GPR problem,

2,2 The controlled jump process associated with the GPR problem

The set X will be defined as:

X =M xR, _ (8)

&
and we shall write x(t) = (y(t), z(t)) where y(t) € M gives the iden~
tification number of the last element which has failed at or before t,

while z(t) gives the age of each element just after the last interven-

tion of the repairman.

Figure 1: Example of a sample path for the (y, z) process.
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Figure 1 illustrates a possible sample path for the jump process
(y,2z) when m = 2,

At time T, 8 jump occurs because the element 1 fails. The age of
the element 1, which is replaced, jumps to the value zi = 0. The age

of the element 2 which is not replaced jumps to the value zi =Ty

At time Ty another jump occurs. Then a group replacement takes

place and both elements jump to 0.

At time 1. the element 2 fails. Only this element is replaced thus

3
one has:
zl = zl + T, =T, =TT, - T
3 2 3 2 3 2
z§ =0,

At time T the whole system is replaced by a new one.

The set U of possible actions describes the choices of emergency
and preventive replacements that the repairman can do during an inter-
vention. We shall describe an element u of U as a vector (uj)jen.whe—
re each component uj is a subset* of M which must contain j as an ele-

ment.

jeuw eP . O (9)

When element j falls, all elements contained in uj are replaced,
Thus u is already defined as a policy telling the repairman which work-
ing elcment he has to replace preventively knowing that an emergency
replacement is necessary for the element j. This policy will be adapt-
ed to the time t and the information )(.n through the control u(t,xn).

Now we shall derive the jump rate function. It is clear that, given
the information xn, the action u(t,xn) has no effect on the jump rate at t.

* P(M) will denote the class of subsets of M,
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A
1f X = x(wn), let us write
A
y = it ), Qo
- j -A- * %

Thus, following the assumption of independence and given the failure

rate function £(r) for one element, the jump rate at time t is given by:

= 3 -
q (£]X) jEM t(z; +t - 1) (12)

Once a jump has occured, the state jump probabilities depend on u.

Given zZs 7T and u, let us define the vector ¥ (j,u) € R’ by:

n+l

Ei (J,u) =0 4f 1 ¢ U,
1 i (13)
£ gw =z o+ o g-T  if 4 ¢ ug
Then we have:
P [x,, = (3 EGW) | X, T o) u] =
&(zi Thal T Tn) '
m Ve (14)
i
121 Z(Zn + Ta+l ~ Tn)

For all subsets A of M x R* not containing an element (j, £(j,u))
the probability (6) is equal to zero. Thus at any time t, only m state

jumps are possible, given an action u and an age vector z, at Th < t.

The control problem will be completely defined if the cost func~
tional w(T,Xn) is characterized. Assume that n(T) = n, then:

=]

o(T,X ) 2 B+b 2 ) e Pk (15)

J =
k=1 jeu = (% =0
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At each jump k the fixed cost B is incurred and the variable cost b
is multiplied by the number of elements replaced ( : 1 (z - O)) p is
jeM

the discount rate,

Now the data (12), (14) and (15) define a problem of optimal con-

trol of a jump process,

Notice that, according to Eqs (12) and (14), we can write:

attlr_, z) = a(t]x) (16)
and

P [y = (s 8G0) 7y, 200 74, 4

=P xn+l

= (3, £G,w)) | X, T, 4] . 17)
n n+l

z).

Thus the control can be restricted to be a functional u(t, Toa® Zn

2.3 Application of Rishel's necessary conditions

Using the dynamic programming optimality conditions of Ref. [5]
we can say that an optimal control u* (t, Ty zn) is such that there

exists a function V(t, T zn) absolutely continuous in t such that:

v(T, T zn) =0 (18)
9
- == V(t,T_,z_ ) = Min z z(z +t-T)
ot n’"n ueu [jll n {
t (B+b|uj') + V(t,t,g(j,u)) - V(t,Tn,Zn)}] (19)

where the optimal PR strategy u*(t,Tn,zn) solves the right-hand-side

minimization., The dynamic programming equation (19) yields also a
sufficient condition for optimality.

When looking for a solution of (18) - (19) we can take advantage
of the fact that the age at icime t of the element j is given by:
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rjﬁztj“bt-*rn,jGM (20)

Thus, defining the vector r = (rj)jeM' we shall restrict the func-

tion V to the cless of functions satisfying:

V(t,Tn,zn) = W(t,r) (21)
Whenever T 2 satisfy (20) and where W(t, r) is a given func~-
tion.
Clearly the following relation will thus hold:
JeM 7]

With this restricted class of function the sufficient conditions

(18) ~ (19) become:

W(T,r) = 0 i (23)
oW W(t,r)
-2 (t,r) = 3 =i
at jeu arj
m
« I &(r,)) Min {(B+blu,]) ePF
i=1 3 u, €U 3
373
+ W(t,m.uj)) - W(t,r)} (24)

Where Y(T»Uj) is the vector defined by:

Yi(r.u )= 0 if icu
i m 3 ]
Y(r’uj) = ('Y' (r,uj))iﬁMG )'R+ with (25)

Yi(r,uj) =r, Iif 1¢uj .

i

Going from (18), (19) to (23), (24) is going from optimality con-
ditions which involve a single differential equation in t to a partial
differential equation.
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It 18 not clear which system will be easier to solve numerically.

As the (y,r) process is Markovian, the optimality conditions (23),
(24) will have a discrete time counterpart related to the theory of the

control of Markov chains, This is the approach followed in the next

section.

A direct attempt for the numerical solution cf (18), (19) or (23),

(24) will be the object of a forthcoming paper.
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3. A DISCRETE TIME FORMULATION

We consider now the case where the system is observed at discrete
sampled times., Assuwe that the time interval [b,i] is divided into n

subintervals of length At. Thus, the sampled times of observation are:

t, =0, t; = 4, «.uy t_ = 0lt, ..., T = nAt.

We assume that the ERs and PRs are possible only at sampled ti-

mes., Denote by t; the time t0 immediately after the replacements (if

any),

At a sampled time tos the state of the system is a vector x, who~
se component xj is d 1if element j is in failure state, and gives'the
age of element j expressed in number of time periods of length At
otherwise. At time t;, the state of the system is a vector r whose

component r, 1s given by:

3

( 0 if element j has been replaced at £,

r., =
d 1 xi otherwise.

1f an element { is in state r, at time t;, then the conditional

h|
probability that it will fail during the next time period of length At

given that it has not failed during (tO - r At, tc] is given by:

k|
[ A
1- expi=/, b(rjét + g)dg‘]

&Q(rj)

8(riAt) At + o(at) (26)

Hm o(st) _

where o(At) 1s such that
¢ o(At) 1s suc a At oo I

0.

From now on, we assume that the failure rate is non decreasing,

aud so isg AQ(rj) as a function of rj.



Givon the state vector r at t;, the conditional probability that the
subset GCM will contain all the elements whiich will fait during (to, ta+£]

and only these ones 1s given by:

P(Glr) = 0 M(r) 0 (1- AQ(rj)). @2n
i€G §EM~G

We shall look for the solution of the GPR problem formulated on
this discrete sampled time set and use this solution as an approximaticn

to the exact solution of the continuous time GPR problem.

In a discrete time setting, there Is no thecretical difficulty te
assume that a preventive replacement can be made even if no failure
have occured (in a continuous time setting this would have led to an im-
pulse control problem). It will be shown later on that, with the chosen
cost structure, preventive replacements are never made in the absence of

failures.

3.1 The dynamic programming equation.

Let us assume a discount factor SG[Q,IJ rer time period At and de~
fine the cost to go function Jk(x) as the total minimal expected cost

given that we are at time

t =T - kAt (28)

g

and that the system is observed to be in state x.

By a standard dynamic programming approach (cf [i], &ﬂ), we ob-

tain the following equations defining the functions J , k = 0,...,m:

Z J =0 (29)

(o] ¢}

i

and for k = 1,.,.,m:

J (x) = Min {n +blRI+ Z (2 x,e)} (30
k {R|HCRcM} R¥d %] Zk:u:M--R i )
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where*:
4 -
H = {jlxj = d}

is the set of falled elements at time to = T - kAt and:

=B I P(GInJ, ,(Z de, + I (r, +1e,). (31)

Thus, the control action at a sampled time t, is the subset R of

elements replaced. This set must contain, as a subset, the set H of

falled elements.

3.2 Reducing the size of the problem.

Part b) of the main theorem proved in Appendix shows that if no
element have falled during the last time period (to-l’ t&], that is
if H = ¢, then it is optimal to do no preventive replacement at to'

Equation (30) can then be reduced to:

Zk(x) if H=y
Jk(X) =
Min {B+b|R|+7k( 2 x oe) if H# 4. (32)
{R|HCRoM) 1 €M-R

The equations (29), (31) and (32) are clearly the discrete time coun-
terpart of (23)-(24).

At time T, the age of each element can take n+l possible values
(assuming that x = 0 at time to) and so there are (n+1)m possible sta-

tes of the system.

We can define an order on INU{d} by setting d>k Vk€ N. As the
elements are identical, it is possible to reduce the number of possi-
ble states of the system by considering that the components of x are

always ranked by decreasing order of magnitude:

S Xy e 2 X (33)

* ’R, denotes the cardinality of the set R, e denotes the i-unit

vector and 4 1is the ind.zator function:

= J1 1f condition is true
<condition> 0 otherwise.



This is equivalent to say that the name of an element is no longer
recorded. The number of possible states is now the number of combina-

tions with repetitions of m elements among n+l, which is given by:

m _ .m  _ (n+m). 3%
Kol = Chum m! n! °® (34)

In practice, there may be an age which can be attained by an ele-~
ment only with a very small probability. In that case, to reduce fur-
ther the number of possible states, we may approximate AQ(x) by a fumc-

tion of the form:

AQ (x) ¥x = a

p(x) = (35)

AQ(a) Vx > a

where a < n. Hence, an element of age greater than a is equivalent to

an element of age a.

This reduces the number of possible states of the system to:

m _ m _ (m+a)l
Kas1 ® Caum m! a! (36)

Equation (27) then becomes:

P(Glr) = 1 p(r). I (-p(r,)). (37)

1€G JEM=G 3

In another way, it is possible to limit the life of any element to
a+l periods by taking

p(a) = 1, (38)
It means that any element of age a+l isureplaced immediately.

In eq. (32), for a given H, we have 2 m-|H| possible candidates
for R.  This number can be very large if there are many elements.
However, since we assume that AQ(x) is not decreasing in x, it seems
intuitively clear that the elements preventively replaced, if any,
will always be the oldest elements. This intuition is effectively

correct, as stated in corollary 2 (see Appendix).
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Hence, choosing R reduces to choosing a number v, 0=n< m—lﬁl and
replacing the 1 oldest elements. The number of candidates for R is

thus reduced to m+l-|H]|.

Notice that at a sampled time to’ 021, no element can be of age 0.
The set of all possible states of the system at that time is thus:

X= {x€ {1,2,...,a,d}" | x 2%, 2 co.2 x ) (39)

At t;, o 2 0, the set of all possible states of the system is:

X.o = {x¢€ {0,1,...,a}m | X2 Xy 2 L.z X }. (40)

3.3 Reformulation of the recurrence relations.

In the light of the preceeding remarks, the dynamic programming

algorithm can be reformulated as follows:
1., Set, Vx€X:

Jo(x) =0 (41)

2. Fork=1,...,n:

YréX , set:
o

B =8 I p(clr)Jk_1<ord<J>€:G dey + jEM—G (r;+De,)) (42)
VxEXUXO set:
Zk(x) if x ¢ Xo
Jk(x) = m-p
B + pgégm 19b+zk(ord(ife+1_p Xy ei))) otherwise (43)
where:

A
p = max {ilxi = d} (44)
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represents the number of failed elements and ord(s) is the vector s vhose

components have been rearranged by decreasing order.

let Ok(x) be the value of 6 for which the minimum is attained in
(43). It represents the optimal number of elements to replace when we

are in state x at time T - kit.

Another reduction of the computation time is possible by using the
corollary 1 (see Appendix) which states that 1f x and X are in X,‘g > x

and Ok(x) = m, then Gk(x) = m.

Notice that in the preceding statement, the hypothesis that
Gk(x) = m cannot be relaxed. 1In general, even if X = x, it is possible

that ek(¥) < ek(x). We will see an example of this in section 4.1.

3.4 1Infinite time horizon.

Consider finally the case where At is fixed and T = =, Lat J(x)
be the expected discounted cost over an infinite horizon when
x € XU XO is the state of the system. Assume B < 1, From the pro-
position 1 on p. 227 of 8, we have, VxGMJXo:

B+bm
1-8 <

J(x) = lim Jk(x) =
k-0

o, (45)

According to Proposition 2 on p. 229 of 8. there exists a station-
ary optimal strategy {u*(x)}x(:X telling which elements to replace when
the system is observed to be in state x. Moreover, from Eq. (45) and
Main Theorem (see Appendix), J(x) is a non decreasing fucntion of each

component xj. From this, it can be proved (see 13) that u must com-

ply with the three corollaries of the Appendix.

8

According to Proposition 4 on page 237 of ~, the function Jy ob=

tained by the following algorithm is such that:

max [ Ju(x) - J(x)| < «.
xéX
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Algorithz:

1.

2.

3.

Set k=0 and define JO as in Eq. (41).

Repeat n times:
k: = k+1 and

calculate {Zk(r)}rexa, {Jk(x)}xexuxo
and {ek(x)}x€x as in section 3.3.

s = max -
Set vyt TF rex, (3 () = 3y _1())

_ max
Y2 =15 rex (R = e (D).

1f Yo = ¥y > & return to step 2.

Y, + Y
1 "2
I (x) + —5—= Vrex

Set J,(r)

8*(x) Gk(x) Yx€X

Stop.
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4, NUMERICAL ILLUSTRATIONS.

In this section various examples are worked out. The analysis has

been restricted to the infinite time horizon case.

4.1 Example 1.

Consider m = & elements, B = 0.95, a fixed cost B = 8.0 and a wumit
cost of b = 6.0 for each replaced element. The probability p(t) that
an element of age t will fail during the next periocd is given in ta-
ble 1,

Table 1: t p(t)
Definition of the

probability of 0 .05
failure. 1 .10
2 .20

3 <40

= 4 .90

We thus have a = 4. After 50 iterations (cpu time = 131 sec. on
a cyber 173), we obtain the solution depicted in table 2, where the
maximum error on the expected cost-to-go is less than ¢ = .0l. TFor
each possible observed state of the system, table 2 indicates the best
action to do. It is already known that when there is no failure, we
do no PR. So, these states without failed elements don't have to ap-
pear in the table. The expected discounted cost-to-go starting with
a new system is J,(0) = 274.49,

Notice that in state (33111%) we replace only the failed ele-
ment but that in state (31111%*) we replace 2 elements! Hence, s = r

does not implies that §,(s) 2 0,(x).

This counterintuitive result can be explained as follows: when

the system Is in state (311i1*), replacing 2 elements leads to a



Table 2: Solution for the numerical example.

19,

Observed ages Number of Total cost Description Expected
of the elements elements for the of the system discounted
(* indicates failure) to replace intervention after the cost to go
preventively intervention o
6*(x)—|ﬂ‘ B+b9*(x) r J*(r)
- m o o ow ow 44.00 o 0 0.0 0 0 -274.49
] * % e w = 38.00 t 0 0 0 0 O 276.85
2 % » ow w W 38.00 2 0 ¢ 0 ¢ O 279.47
3 % * % w @ 1 44.00 6 0 0 0 0 O 274.49
4 * = % = = 1 44.00 0 6 0 0 o0 © 274.49
1 1 * & = = 32.00 1 1 0 0 0 O 278.99
2 1 * x x o= 32.00 2 1. 0 0 0 O 281.56
31 * w x » 1 38.00 1 0 0 06 0 O 276.85
4 1 * *x x 1 38.00 1 0 0 0 0 O 276.85
2 2 * ® x = 32.00 2 2 0 0 0 O 283.59
3 2 * *= & = 1 38.00 2 0 0 0 0 O 279.47
4 2 = * = = 1 38.00 2 6 0 0 ¢ O 279.47
3 3 w = & 32.00 3 30 0 0 O 286.35
4 3 * * = = 2 44.00 0o 0 0 0 0 O 274.49
4 4 *» v * w 2 44.00 0O 0 0 0 0 O 274.48
1 1 1 *= % = 26.00 1 11 0 0 O 280.92
2 1 1 % % = 26.00 2 1.1 0 0 O 283.42
3 1 1w v 1 32.00 1 1 6 0 0 O 278.99
4 1 1 * w = 1 32.00 1 1 0 0 0 o 278.99
2 2 1 = % = 26.00 2 2 1 0 0 O 285.50
3 2 1 % = = 1 32.00 2 1 0 0 0 O 281.56
4 2 1 w * 1 32.00 21 0 0 0 O 281.56
3 3 1 % *» 26.00 3 31 0 0 O 288.52
4 3 1 % » = 2 38.00 1 0 0 0 o0 ¥ 276.85
& 4 1 * = = 2 38.00 i1 6 0 0 0 O 276.85
2 2 2 w » = 26.00 2 2 2 0 0 O 287.08
3 2 2 * w= = 26.00 3 2 2 ¢ 0 O 288.96
4 2 2 = *= = 1 32.00 2 2 0 0 0 O 283.59
3 3 2 ¥ * = 26.00 3 3 2 0 0 O 290.03
4 3 2 *w * = 2 38.00 2 0 0 0 0 O 279.47
4 4 2 % % w 2 38.00 2 0 0 0 0 © 279.47
3 3 3 w » w 26.00 3 3 3 0 0 0 290.58
4 3 3 w % 26.00 4 3 3 0 0 O 291.89
4 & 3 x = = 26.00 4 4 3 0 0 O 292.11
4 4 4w = = 26.00 4 4 4 0 0 O 292.14
1 1 1 1 = = 20.00 1 1 1.1 0 o 282.62
2 1 1 1 * = 20.00 2 1 1 1 0 O 285.03
31 1 1 =~ = 1 26.00 1 1 1.0 o0 O 280.92
4 1 1 1 = = 1 26.00 1 1 1 0 0 O 280.92
2 2 1 1 * = 20.00 2 2 1 1 0 0 287.09
3 2 1 1 * = 20.00 3 2110 0 289.26
4 2 1 1 = = 1 26.00 2 1 1 0 0 o - 283.42
23 1 1 = - 20.00 3 31 t 0 O 290.43
N S 2 32.00 I 1.0 0 0 O 278.99
4 4 1 1 w = 2 32.00 1 1 0 0 0 O 278.98
2 2 21 = = 20.00 2 2 2 1 0 0 288.79
3 2 2 1 = = 20.00 3 2 210 0 290.85
4 2 2 1 w » 1 26.00 2 21 0 0 O 285.80
3 3 2 1 » = 20.00 3 321 0 0 292.18
4 3 2 1 *» = 2 32.00 2 1 0 0 0 O 281.566
4 4 2 1 * = 2 32.00 2 1 0 6 0 O 281.56
3 3 3 1 w » 20.00 3 3310 0 292.83
4 3 3 1 * =» 20.00 4 3 3 1 0 O 294.21
4 4 3 1+ 20.00 4 4 3 1 0 O 294.44
4 4 4 1 . » 20.00 4 4 4 1.0 0 294.48.
2 2 2 2 o 20.00 2 2 2 2 0 0O 290.06
i32%2 %8 3 3 29.90 3 2 2 2 0 0 291.93
3 3 2 2 w» w 1 26.00 2 2 2 0 0 0 287.08
3 .o 20.00 3 3 2 2 0 o '293.20
; i % g o 1 26.00 3 2 2 0 0 0 2808.96
20.00 4 4 2 2 o0 0 29%.39



Table 2 (continued):

Solution for the numerical example,

20,

Expected

Observed ages of Number of Total cost Description
the elements elements for the of the system discounted
(* indicates failure) to replace intervention after the cost to go

preventively intervention
0, (x)-]u] B+b0, (%) Ja(1)
3 3 3 2 * » 20.00 3 33 2 0 0 293.95
: 3 3 2 » = 20.00 4 3 3 2 0 0 295.38
s : : ; 20.00 4 4 3 2 0 0 295.72
* 20.00 4 4 4 2 0 0 295.79
14! 3 g 3 : : 20.00 3 33 3 0 0 29¢4.41
432 g > 20.00 4 3 3 3 0 o 295.489
P33 20.00 4 4 3 3 0 0 295.74
A 20.900 4 4 4 3 0 O 295.80
M A 20.00 4 4 4 4 0 O 295.81
501 11 1 . 14.00 1 1 1 1 1 o0 284.11
E2 T S T 14.00 2 1 1 1 1 0 286.39
1101 3 1 1 20.00 1 11 1 0 o 282.62
SN U S S 1 20.00 1 1 1 1 0 o 282.62
N T T 14.00 2 2111 0 289.36
P2 111 . 14.00 3 2 1 1.1 0 290.63
s 2111 1 20.00 2 1 11 0 o0 285.03
731 . 14.00 3 31 1 1 0 292.04
1 2 26.00 1 1.1 0 0 280.

4 4 1 1 1 = 2 S I
2 2 2 1 1 = 26.00 1 1 1 0 0 o 280.92
3 22117 14.00 2 2 211 0 290.03
32211 ¢ : 14.00 3 2 211 0 292.21
s 3 4113 20.00 2 2 11 0 0 287.09
132 . 14.00 3 3 2 1 1 0 293.76
L 3211 20.00 3 2 11 0 o 289.26
44211 . 2 26.00 2 11 0 0 0 1283.42
403 3 1 1 = 14.00 3 3 31 1 0 294.65
2 311 14.00 4 3 3 1 1 0 296.14
P 1311 14.00 4 4 3 1 1 0 296.43
2 2 2 5 1 » 14.00 4 4 4 1 1 0 296.49
s 3 23112 14.00 2 2 2 21 0 291.38
: 5 3 3 b | 14.00 3 2 2 2 1 0 293.38
s 3 5 %212 20.00 2 2 21 0 0 - 288.79
i 2 5 21 - 14.00 3 3 2 210 294.88
A1 5 5 ] = 14.00 4 3 2 2 1 0 296.79
33 531, 14.00 4 4 2 2 1 0 297.27
v o3 22 b 14.00 3 3 3 2 1 0 295.88
: 3 321 ¢ 14.00 4 3 3 2 1 0 297.48
R 14.00 4 4 3 2 1 0 298.01
;3 3 3 21 14.00 4 4 4 2 1 0 298.15
1 3 331 14.00 3 3 3 3 1 0 296.44
40103 3 1 = 14.00 4 3 3 3 1 0 297.67
DR 14,00 4 4 3 3 1 0 298.06
. 44 31 14.00 4 4 4 3 1 9 296.16
: 2 32 2 L2 14,00 4 4 4 4 1 0 298.18
32 2 2%, 14.00 2 2 2 2 2 0 292.42
1 2222 ¢ . 14.00 3 22 2 20 294.20
3 5222 22.00 2 2 2 2 0 0 290.06
i 3 2 %22 x4.oo 3 3 2 2 2 0 295.54
« 13 5 30 x‘.oo 4 3 2 2 2 0 297.41
33 5 52 %1 1‘.00 4 4 2 2 2 0 298.00
4 3 3 2 2 = 1490 333 2 20 296.49
4 4 3 2 2 " 14.00 4 3 3 2 2 0 298.09
i 43220 14.00 4 4 3 2 2 9 298.78
33 3 5 2.4 1‘.00 4 4 4 2 2 0 298.99
: 3 3 3 % 1‘.00 3 33 3 2 0o 297.12
i 153 32 1‘.00 4 3 3 3 2 o0 298.43
s 43 3% ;‘.oo 4 4 3 3 2 0 298.98
4« 4 4 1 5 14'30 4 4 4 3 2 0 299.19
33 3 3 34 14.00 4 4 4 4 2 0 299.26
i 303 3 3% s 3 333 3 0 297.56
T 3333 14.0 ¢ 3 3 3 3 ¢ 298.62
4 4 4 3 3 = %‘-80 4 4 3 3 3 o 299.08
TP 14.00 ¢ 4 4 3 3 0 299,22
4 4 4 4 4 = .00 4 4 4 2 3 o 299.27
14.0¢ ¢ 4 ¢ 4 2 o0 299.29
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state where all elements are not old, whereas when the system is in
state (33111%), the same replacement decision would leave one element
at age 3 and tnus a rather high probability of failure. To lower
sipnificantly the probability of failure in that latter state, we
must replace all the elements. But this is too expensive, hence the
best decision is to replace none of the elements of age 3 and wait

for the next sampled time,

4.2 Comparison with suboptimal solutions.

One simple suboptimal strategy is the following:
a) Do no PRs when all elements are operative.

b) When there is at least one failure, replace only the failed

elements,
This strategy will be called NOPR (No Preventive Replacements).

Another suboptimal strategy consists in the following:
a) Do no PRs When all elements are operative.

h) When there is at least one failure, replace all failed elements
and all those elements whose ages are greater or equal to a cer—
tain threshold a,, which is independent of the observed state

of the system,

The number a, is chosen in the set {1,2,...,a+l}. Such a strategy

will be called a FAT strategy (Fixed Age Threshold).

Adopting the NOPR strategy corresponds to taking a, = a+l. Hence,
there exists a number a, ¢ {1,...,a+1l} such that, starting with a new
system and using the corresponding FAT strategy willl yield an expected

discounted cost-to-go not greater than the one obtained when using the

NOPR strategy.
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The following example Is an illustration of what can be the per-
centage of increase of the expected cost when using NOPR or FAT instead

of the optimal strategy.

4.3 Example 2.

Consider a system of m = 6 elements, each having a GCamma (4.1) 1i-

fetime distribution. Thus, VYt € N:

F(t+l) - F(t)
1 - F(t)

2Q(t) =

Where:

1 t 3 -z
F('t)-—3—,"f02 e dz
The failure rate AQ(t) can be approximated reasonably (taking a = 7)

ML) t <7
p(t) =
AQ(7) t > 7.

We then obtain:

Table 3:

Definition of the
probabilities of
failure,

p(t)

.019
.126
245
«330
. 389
.429
.459
482

N oM LN HEO e

v

For 3 = 0.90, b = 1.0 and for different values of B, the expected
discounted cost~to-go starting with a new system (J,(0)) has been com-
puted using 1) the algorithm .f section 3, which gives the optimal stra-

tegy, 2) NOPR, 3) FAT with di;ferent values of a,. Table 4 gives the
results of this computation.
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Notice that:

1) The cost reduction in doing PRs increases as the ratio B/t of

the fixed cost over the unit cost increases,

[§%)
-t

The optimal value of a, for the strategy decreases as B/b in-

creases,

3) The cost-to-go when using the optimal FAT strategy is in ge-
neral not very much higher than when using the optimal stra-

tegy (1.3% increase in the worst case).

Table 4: Comparison of the expected total discounted cost to
go for a new system for three kinds of strategies.

Optimal
strategy NOPR FAT
Z of Z of
B J*(O) J4(0) increase A% J*(O) increase
1.0 16.693 16.693 0.00% 8 16.693 0.00%
2.0 22.907 22,921 0.067% 8 22.921 0.067
7 23.025
8 29,149 1.31Z
7 29,17
3.0 28.772 29,149 1.317% 6 29.18
5 29,20
4 29.27
8 35.38
4.0 33.830 35.38 4,587 4 34,7
3 34,21 1,127
2 34.90
8 41.61
5.0 38.296 41.61 8.657 3 38.84
2 38.627 0.86%
1 39.41
8 72.75
10.0 57.189 72.75 27.21% 2 57.253 0.11%
1 57.322
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This numerical illustration suggests that, in a real life large
scale problem, a FAT suboptimal PR strategy could be a good substitute
to the optimal closed loop strategy. This could, however, be true on-
ly for systems observed over an infinite time horizon. When the time
horizon is finite the age threshold should at least depend on time.

For t > 7, p(t) has been approximated by p(7) = .482. Let us
see what happens now, for the case B = 3, 1if p(7) is raised to 0.6 or
0.8.

Table 5: Variations of J, (0) when p(7) goes from .482 to .6

or .8.
Optimal FAT
Strategy
% of Z of
p(7) J*(O) increase B J*(O) increase
8 29.149
482 1 28,772 7 29.17
6 29.18
8 29.25 < 0.387%
.6 28,779 < .03% 7 29.18 < 0.067
6 29,18 | < 0.03%
8 29,36 < 0.75%
.8 28,784 < 057 7 29.20 | < 0.142
6 29.18 | < 0.032

We can see, in table 5, that the optimal value of a, changes with
p(7). However, the value of J,(0) does not change very much. Thus,

the approximation of AQ(t) by p(t) seems reasonable.
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5. CONCLUSION

Multicomponent systems are commonplace in practice whereas the theo-
ry of optimal maintvenance is mainly directed towards single component
systems. (Cf. the recent survey of Ref. 9). The results obtained in
previous sections show that an optimal GPR strategy can be devised through
the use of modern stochastic control thecory in the case where all compo-

nents have the same lifetime distribution.

The problem considered in this paper is related to the problem con-
sidered by Vergin in Ref. 10. However, the methodology we have used
permitted us to solve a much larger problem than the one considered in

10
Ref. .

Two extentions of this work can be considered:

(i) the actions available for maintenance of one element could refer
to a larger variety of repair and overhaul activities. This would
necessitate a more detailed description of the state of wear of
an element than the one given by the age of the element. A first
attempt to generalize the model in this direction can be found in

Ref. 2.

(i1) The elements could have distinct lifetime characteristics. This
is the case for many systems like trucks (Ref. ll), aircraft en-
gines, etc.... There is no difficulty in obtaining the Dynamic
Programming equation for the characterization of optimal GPR
strategies in the case where the components are not identical
(ref. 12). However, the size of the state set could rapidly be-
come much too large to allow for a direct adaptation of the nume-
rical procedure presented in this paper to obtain an optimal so-
lution. Numerical examples suggest that a "reasonable™ or near
optimal solution can be found in the class of FAT type policies
defined in section 4, To restrict the search for a best policy
to such a class of simpler policies can be the best way to obtain

a practical solution to a very large problem.



26,

A realistic maintenance problem will in general involve a multi-
component system with non identical elements and with a complex descrip-

tion of the state of wear of each element as well as of the set of avail-
able maintenance activities. Such problems offer stimulating challenges

to stochastic control theorists.
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APPENDIX

The main consequences of the following theorem are that Zk(r) as
defined in eq. (31) is non decreasing with respect to each component r

and that we do not have to consider the possitility of doing replace-

ments when there is no failure.

MAIN THEOREM.

For any k € IN:
a) 1If x,r € N and x> r then:
0 =2z (x) -2 (x) <B(B + blaD). (A.1)

and

o
iA

3, (rx,0) - 3 (t(r,(GQYUW) = B + bla| (A.2)

Y6EM  and  YVEQNG, where

A
{i eM | X > ri} . (A.3)

fo
il

and

A d if i € G
T(r’G)i - ri + 1

otherwise, (A.4)

b) V¥x € Nm, the Min. in eq. (30) is attained for R= ¢ .,

PROOF:

The proof is by induction on k, For k = 0, (A.1l), (A.2) and b) are

clearly true.

We will show that a) and b) being true for k-1 implies that they

are also true for k. For this, the following equation is needed:
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Zk(x) - Zk(r) =

B2 2 ([ (xx6)-3_ (x(r,(en®uW)] 1 p(r) N_ (1-p(x)))
GCM YeGNQ 1€(GNQIUV 1€G
n_ {p(x)) = p(x)])} (A.5)
1eQnAnV

The reader can refer to figure 2 as an illustration of the set relations

involved in (A.5) which we now prove.

FIGURE 2: Partition of M,

|
\j i QNGNV el «Q
_____ i
GNQ GNQ «Q
T T
G G

From now on, we write p(ri) instead of AQ(ri) to simplify the nota-
tion. Equation (31) then becomes:

Z (x) =

2 3 (t6) mop(x) m_ (1-p(x))- (A.6)
GCM 1€G 1€G

But since r, = x, Vi€Q and p(x) = p(r;) Vi€Q, we have:

0 oplx) = T (p(rp)+p(x)-p(x;)) T p(r,)
i€G i€GNQ iEGﬂQ
=fz m pxp @ pxp-p)] () A
VeenQ 1€V 1€QneNV 166N
=z [m _ pxpom p(x,)-p(r,)
VEENQ 166UV T 1eqnen ( 1 1

so that:
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Z(x) =B I 3 3 _,(tx,6). n _ plr)
* <M VeanQ Ui te(enuv - -
(A.8)
.ﬂ_ (l—p(xi)) I _ [p(xi)-p(ri)x].
1€G 1eQnenNv
On the other end:
2. (xr) =B z J w(r,G")) I p(r,) I 1-p(r,) (A.9)
k G'cM k-1l ) tec' 1 geq ( )
and:
n_ (I-p(r)) = T_ ((Q-p(x,)) + (p(x,) = p(r,))
1€G! ( 1 1€G' t * )
= I @epGxy)) T (- (xy)) +(p(x))-p(x,)))
1€6'NQ i€G'nQ
= 3 I (1-p(x,)) I_ - (p(x)-p(ry)) I_ L(1-p(x;))
WCG'NQ 16w i€G'NQNW 1€6'NQ
= I_ n_ _ (=p(x;)) 0O_  _ (p(x;)-p(x,))
WCG'NJ 1€(G'NQIUW ieG'nQni
(A.10)
so that
z (r) =8 & 2 J_1(c(x,6")) T p(xy)
k G'cM WeG'NQ Ek'l ieG’ 1
nm_ (1-p(x,)) Ii_ _ (px)-P(x, )], (A.11)
1€(E"NDHUW Y7 imng A

Let us define a bijection between the sets {(G,V) | GCM, VCGNQ}) and
{(6',W") | G'eM, WeB'NQ} by:

G' = (GNQUV
(A.12)

W =3Gnq .
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It is lengthy but straightforward to verify that the relations (A.12)
truly define a bijection and imply: k

(G'JQ) =W

G

V= G6"NQ

G = (G'NQ) UW
QNGNY = G'NQNW.

We can then rewrite equation (A.11):

(e)=B = I J, . (t(x, (CNQYUV))
Zy coM Ve o

0 oplr) T Q-p(x)) T _ (p(x)=p(xr))]. (A.13)
i€(GNQUV i€G ieQneNv =

Equation (A.5) follows from (A.8) and (A.13).

Now, from (27):

2 2z nm ey 0 @A-p(x)) T _ (p(x)=-p(ry))
GCEM VEGNQ 1€(GNQILV 1€G ieonGnv
= 3 P(Glx) =1. (A.18)
GEM

1f (A.2) is true for k-1, the equations (A.5) and (A.14) imply that
(A.1) holds for k.

To prove b), let x ¢ N". From (A.1), we have:

Z (x) < B +Db|R| + (2 x e VRcM (A.15)
* A e o =

and so:
Zx) smin (B +b|R| +Z (2 x e) }=sJ(x. (A.16)

RCM 1eM-R
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But since K= @ , R= § is a candidate for the minimum in the definition
of Jk(x). Moreover, from (A.16), it is the best candidate.

Only (A.2) remains to be verified. Let Rr and Rx be sets for which
the minimums are attained in the definitions of Jk(T(r,(Gna)UV)) and
Jk(f(x,G)) respectively. It is clear that: '

(GQUV C GES R . (A.18)
and

G € R UQ

so that RrUQ is a candidate for the minimum in the definition of

Jk{r(x,G)). We thus have, using (A.1l):

A

3, (t(x,6)) =B +bjrRUQ] + 2 ( =z (x,+1)e
kel r A 1eM-(R UQ) )

1A

B + b'R | + b|Ql + ( 3 (r, +l)e )
t “ jewr T+ 1

=3B +blQ| + J (v(x, (GNQOUW))
which is the right-hand side inequality in (A.2).
If (GNQ)UV = ¢ , then, from b) and (A.1l) respectively, Rr = ¢ and

I (TR, (GNDIUV)) = 2, (r41) = 2, (x+1) .

But
=3 (x+1) = J (1(x,6)) if G=0
Z, (x+1) B+ blel * Zk( 2 (xi+1)ei)
“k < ’ LEM-R_
= J (t(x,®) if G#9¢

so that the left inequality of (A.2) nholds for that case,



If (GNQ)UV # ¢ , then neither R_nor R is empty. Hence, from (A.18)
and the definition of Rr:

"

J (r(r, (Qdu)) = B + bIR | + 2 (2 (r;+)e,)

i€e€M-R
Y

[A

B+blR | +2 (2 (x,+)e,)
X Zk iGM—Rx i i

1A

B +b|R | + b (x 1)e,)
X zk(iGM—RxI 1

9y (t(x,6))

and the theorem 1is proved.

COROLLARY 1:

At a sampled time tc’ if it is optimal to replace all the elements
when we are in state x, then in any state x > x, it is also optimal to

replace all the elements.

PROOF:

let H = {il?ﬁ = d}., We assume H # §, since the case H = ¢ is tri-

vial., We have:

Jk(;) min  {B + b|R| + Zk( b ;; ei)}

{R|HCR} i€M-R

v

min (B +b|R| +2 (2 x, e])}
{R|HCR} A femwr T 1

Jk(x) =B + bm + Zk(O)

139

which proves the result.
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COROLLARY 2:

At a sampled time t , 1f an optimal set of elements to replace pre-
ventively contains ¢ elements, then it is optimal to replace preventively

the ¢ oldest elements among those being still operative.

PROOF:

This is a direct consequence of the definition of Jk and the non de-

creasingness of Zk'
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