
A Fast Jump Ahead Algorithm for Linear
Recurrences in a Polynomial Space ?

Hiroshi Haramoto1, Makoto Matsumoto1, and Pierre L’Ecuyer2

1 Dept. of Math., Hiroshima University, Hiroshima 739-8526 JAPAN,
m-mat@math.sci.hiroshima-u.ac.jp,

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/eindex.html
2 Département d’Informatique et de Recherche Opérationnelle,

Université de Montréal, Montréal, Canada
lecuyer@iro.umontreal.ca,

http://www.iro.umontreal.ca/∼lecuyer

Abstract. Linear recurring sequences with very large periods are widely
used as the basic building block of pseudorandom number generators. In
many simulation applications, multiple streams of random numbers are
needed, and these multiple streams are normally provided by jumping
ahead in the sequence to obtain starting points that are far apart. For
maximal-period generators having a large state space, this jumping ahead
can be costly in both time and memory usage. We propose a new jump
ahead method for this kind of situation. It requires much less memory
than the fastest algorithms proposed earlier, while being approximately
as fast (or faster) for generators with a large state space such as the
Mersenne twister.

1 Introduction

Pseudorandom number generators (PRNGs) are widely used in many scientific
areas, such as simulation, statistics, and cryptography. Generating multiple dis-
joint streams of pseudorandom number sequences is important for the smooth
implementation of variance-reduction techniques on a single processor (see [1–
3] for illustrative examples), as well as in conjunction with parallel computing.
Generators with multiple streams and substreams have been already adopted,
or are in the process of being adopted, in leading edge simulation software tools
such as Arena, Automod, MATLAB, SAS, Simul8, SSJ, Witness, and ns2, for
example. The substreams are normally obtained by splitting the sequence of a
large-period generator into long disjoint subsequences whose starting points are
equidistant in the original sequence, say J steps apart. To obtain the initial state
(or starting point) of a new substream, we must jump ahead by J steps in the
original sequence from the initial state of the most recently created substream.
? This work was supported in part by JSPS Grant-In-Aid #16204002, #18654021,

#19204002, JSPS Core-to-Core Program No.18005, NSERC-Canada, and a Canada
Research Chair to the third author.

2

In many cases, this must be done thousands of times (or more) in a simula-
tion, so we need an efficient algorithm for this jump ahead. Unfortunately, for
huge-period generators such as the Mersenne twister and the WELL [4, 5], for
example, efficient jump ahead is difficult. For this reason, most current imple-
mentations use a base generator whose state space is not so large (e.g., 200 bits
or so), and this limits the period length.

When the PRNG is based on a linear recurrence, a simple way to jump ahead
is to express the recurrence in matrix form, precompute and store the J-th power
of the relevant matrix, and jump ahead via a simple matrix-vector multiplication.
But for large-period generators, this method requires an excessive amount of
memory and is much too slow. Haramoto et al. [6] introduced a reasonably fast
jumping-ahead algorithm based on a sliding-window method. One drawback of
this method, however, is that it requires the storage of a large precomputed
table, at least in its fastest version.

The new method proposed in this paper is based on a representation of the
linear recurrence in a space of formal series, where jumping ahead corresponds
to multiplying the series by a polynomial. It requires much less memory than the
previous one, and is competitive in terms of speed. Under a certain condition on
the output function, the speed is actually O(klog3 2) ≈ O(k1.59) for a k-bit state
space, compared with O(k2) for the previous method. For the Mersenne twister
with period length 219937 − 1, this condition is satisfied and the new method
turns out to be faster, according to our experiments.

The remainder is organized as follows. In Section 2, we define the setting in
which these jumping-ahead methods are applied, and we briefly summarize the
previously proposed techniques. The new method is explained in Section 3. Its
application to the Mersenne twister is discussed in Section 5. Section 6 reports
timing experiments.

2 Setting and Summary of Existing Methods

Many practical generators used for simulation are based on linear recurrences,
because important properties such as the period and the high-dimensional distri-
bution can then be analyzed easily by linear algebra techniques. For notational
simplicity, our description in this paper is in the setting of a linear recurrence in
a field of characteristic 2, i.e., we assume that the base field is the two-element
field F2. However, the proposed method is valid for any finite field.

We consider a PRNG with state space S := Fk
2 , for some integer k > 0, and

(state) transition function f : S → S, linear over F2. Thus, f can be identified
with its representation matrix F , a binary matrix of size k×k, and a state s ∈ S
is then a k-dimensional column vector. For a given initial state s0, the state
evolves according to the recurrence

sm+1 := f(sm) = Fsm, m = 0, 1, 2, (1)

An output function o : S → O is specified, where O is the set of output symbols,
and o(s) is the output when we are in state s. Thus, the generator produces a

3

sequence of elements o(s0), o(s1), . . ., of O. For example, in the stream cipher, o
is called the filter, and high nonlinearity is required. In principle, jumping ahead
should depend only on f , and not on o. However, the algorithm introduced in
this paper assumes that o has a specific (linear) form and that one can easily
reconstruct the state from a sequence of k successive output values.

Our purpose is to provide an efficient procedure Jump that computes fJ(s)
for arbitrary states s, for a given huge integer J . Typically, J is fixed and taken
large enough to make sure that a stream will never use more than J numbers in
a simulation.

A naive implementation of Jump is to precompute the matrix power A := F J

(in F2) and store it (this requires k2 bits of memory). Then, fJ(s) is just the
matrix-vector multiplication As. However, modern generators with huge state
spaces, such as the Mersenne Twister [4] and the WELL [7], for which k = 19937
or more, merely storing A requires too much memory, and the matrix-vector
multiplication is very time-consuming.

The alternative proposed in [6] works as follows. Let ϕF (t) be the minimal
polynomial of F . (The method also works if we use the characteristic polynomial
det(tI −F) instead of ϕF (t).) First, we precompute and store the coefficients of

g(t) := tJ mod ϕF (t) =
k−1∑

i=0

ait
i. (2)

This requires only k bits of memory. Then, Jump can be implemented using
Horner’s method:

F Js0 = g(F)s0 = F (· · ·F (F (F (ak−1s0) + ak−2s0) + ak−3s0) + · · ·) + a0s0. (3)

An important remark is that the matrix-vector multiplication Fs corresponds to
advancing the generator’s state by one step as in (1). This operation is usually
very fast: good generators are designed so that it requires only a few machine
instructions. Thus, when computing the right side of (3), the addition of vec-
tors dominates the computing effort. In this procedure, assuming that g(t) is
precomputed, k applications of F and approximately k/2 vector additions are
required for implementing Jump. Since these are k-bit vectors, this means an
O(k2) computing time.

The speed can be improved by a standard method called the sliding window
algorithm, which precomputes a table that contains h(F)s0 for all polynomials
h(t) of degree less than or equal to some constant q, and uses this table to
compute (3) (q+1) digits at a time. This requires 2qk bits of memory for the table
(this can be significant when k is huge), but the number of (time-consuming)
vector additions is decreased to roughly

2q + dk/(q + 1)e. (4)

The integer q can be selected to optimize the speed, while paying attention to
the memory consumption of 2qk bits; see [6] for the details. The new method
proposed in the next section does not require such a large table.

4

3 Jumping by Fast Polynomial Multiplication

A linear recurrence over F2 can be represented in different spaces and it is not
difficult (at least in principle) to switch from one representation to the other
[8, 9]. The basic PRNG implementation usually represents the state as a k-bit
vector and computes the matrix-vector product in (1) by just a few elementary
operations. In other representations, used for example to verify maximal period
conditions and to analyze the multidimensional uniformity of the output values,
the state is represented as a polynomial or as a formal series [10, 9]. Here, we
will use a formal series representation of the state, switch to that representation
to perform the jumping ahead, and then recover the state in the original repre-
sentation. A key practical requirement is the availability of an efficient method
to perform this last step.

For our purpose, we assume that the output function o returns a single bit;
that is, we have o : S → F2. For the Mersenne twister, for example, the output
at each step is a block of 32 bits and we can just pick up the most significant
bit. We also assume that the mapping S → Fk

2 which maps the generator’s state
to the next k bits of output is one-to-one, so we can recover the state from k
successive bits of output. This assumption is not restrictive: for example, if the
period of this single-bit output is 2k − 1, which is usually the case in practice,
then the assumption is satisfied by comparing the cardinality of the state space
and the set of the k successive bits.

More specifically, let

G(s, t) =
∞∑

i=1

o(si−1)t−i,

which is the generating function of the output sequence when the initial state is
s0 = s. Note that G(s1, t) = tG(s0, t) (mod F2[t]), so that

G(sJ , t) = tJG(s0, t) (mod F2[t]) = g(t)G(s0, t) (mod F2[t]),

because ϕF (t) ∈ F2[t]. To recover the state sJ , we only need the coefficients of
t−1, . . . , t−k in G(sJ , t) = g(t)G(s0, t), i.e., the truncation of G(sJ , t) to its first
k terms. This means that we can replace G(s0, t) by its truncation to its first
2k terms, or equivalently by the truncation of t2kG(s0, t) to its first 2k terms,
which gives the polynomial

h(s0, t) =
2k−1∑

i=0

o(si)t2k−1−i.

We can then compute the polynomial product g(t)h(s0, t), and observe that
the coefficients of t2k−1, . . . , tk in this polynomial are exactly the output bits
o(sJ), . . . , o(sJ+k−1), from which we can recover the state sJ .

With the classical (standard) method, we need O(k2) bit operations just to
multiply the polynomials g(t) and h(s0, t), so we are doing no better than with

5

the method of [6]. Polynomial multiplication can be done with only O(k log k)
bit operations using fast Fourier transforms, but the hidden constants are larger
and the corresponding algorithm turns out to be slower when implemented, for
the values of k that we are interested in. A third approach, implemented in
the NTL library [11], is Karatsuba’s algorithm (see, e.g., [12]), which requires
O(klog2 3) ≈ O(k1.59) bit operations. This algorithm is faster than the classical
method even for moderate values of k, and this is the one we adopt for this step
of our method.

The last ingredient we need is a fast method to compute the inverse image
of the mapping

o(k) : s 7→ (o(s), o(Fs), o(F 2s), . . . , o(F k−1s)),

to be able to recover the state sJ from the coefficients of g(t)h(s0, t). For impor-
tant classes of PRNGs such as the twisted GFSR and Mersenne twister, there is
a simple algorithm to compute this inverse image in O(k) time. Then, our entire
procedure works in O(klog2 3) ≈ O(k1.59) time.

The procedure is summarized in Algorithm 1. It assumes that g(t) has been
precomputed in advance.

Algorithm 1 Jump ahead by polynomial multiplication
Input the state s = s0;
Compute the polynomial h(s0, t) by advancing the generator for 2k steps;
Compute the product g(t)h(s0, t) and extract the coefficients o(sJ), . . . , o(sJ+k−1);
Compute the state sJ from the bits o(sJ), . . . , o(sJ+k−1);
Return sJ .

4 Illustrative Example by LFSR

The Linear Feedback Shift Register (LFSR) is a most classical and widely spread
generator. Here, we use the term LFSR in the following limited sense (see [13]),
although sometimes LFSR refers to a wider class of generators.

The state space is the row vector space S := Fk
2 , and the state transition

function is defined by

(x0, . . . , xk−1) 7→ (x1, x2, . . . , xk−1,

k−1∑

i=0

aixi),

where a0, . . . , ak−1 are constants in F2. If we choose o : (x0, . . . , xk−1) 7→ x0,
then it directly follows that o(k) : S → Fk

2 is the identity function. Thus, we can
skip the computation of its inverse.

6

Proposition 1. The computational complexity of PM-Jump for LFSR is the
same with that for the polynomial multiplications of degree 2k. As a result,
jumping ahead can be done in O(k1.59) time if we use Karatsuba’s polynomial
multiplication, and in O(k log k) time if we use a fast Fourier transform.
Note that it is irrelevant to use (xi, . . . , xi+k−1) as the i-th output k-bit inte-
ger of the pseudorandom number generator, since the consecutive outputs are
overlapped. However, such an LFSR is used in stream cipher (pseudorandom bit
generator), with suitably chosen nonlinear output function o : S → F2, see for
example [14].

5 Application to the Mersenne Twister

The Mersenne Twister (MT) generator can be described as follows [4]. Let w
be the word size of the machine (e.g., w = 32). The row vector space W := Fw

2

is identified with the set of words. For fixed integers n > m, MT generates a
sequence x0,x1, . . . of elements of W by the following recurrence:

xj+n := xj+m ⊕ (xw−r
j |xr

j+1)A, j = 0, 1, . . . ,

where (xw−r
j |xr

j+1) denotes the concatenation of the upper (w − r) bit (xw−r
j)

of xj and the lower r bit (xr
j+1) of xj+1, and the w × w matrix A is defined

indirectly as follows: For any w-dimensional row vector x,

xA =
{

shiftright(x) if the LSB of x = 0,
shiftright(x)⊕ a if the LSB of x = 1,

where LSB means the least significant bit (i.e., the rightmost bit), and a is a
suitably chosen constant. This generator has the state transition function

f(xw−r
0 ,x1, . . . ,xn−1) = (xw−r

1 ,x2, . . . ,xn),

where xn is determined by the above recursion with j = 0, and the state space
is S = Fnw−r

2 .
The most popular instance, named MT19937, uses the parameters n = 624,

w = 32, r = 31. Its sequence has a maximal period equal to the Mersenne prime
219937 − 1. Because of its high speed and good distribution property, MT19937
is widely used as a standard PRNG. However, is had been lacking an efficient
jumping-ahead method, and this was a motivation for the work of [6].

Proposition 2. For the MT generator, if we choose the output function

o : (xw−r
0 ,x1, . . . ,xn−1) 7→ the LSB of x1,

then the inverse image by o(k) is computable with time complexity O(k). As a
result, jumping ahead can be done in O(k1.59) time if we use Karatsuba’s poly-
nomial multiplication, and in O(k log k) time if we use a fast Fourier transform.

Proof. A tricky algorithm that does that is described in [4, Section 4.3, Propo-
sition 4.2].

The twisted GFSR generator [15] is based on the same construction as MT,
but with r = 0. Thus, the proposition also applies to it.

7

6 Timings

We made an experiment to compare the speeds of three jumping-ahead methods:
the one that directly implements Horner’s method (3) (Horner), the method of
[6] with a sliding window with parameter q (SW), and our new method based on
polynomial multiplication with Karatsuba’s algorithm (PM). For the latter, we
used the NTL implementation [11]. We applied these methods to MT generators
with the Mersenne exponents k = 19937, 21701, 23209, 44497, 86243, 110503,
132049.

For each value of k, we repeated the following 1000 times, on two different
computers: We generated a random polynomial g(t) uniformly over the polyno-
mials of degree less than k in F2[t] and a random state s uniformly in S = Fk

2 ,
then we computed fJ(s) by each of the three algorithms, and we measured the
required CPU time. We then summed those CPU times over the 1000 replica-
tions. The results are given in Table 1 for the Intel Core Duo 32-bit processor
and in Table 2 for the AMD Athlon 64 3800+ 64-bit processor. The total CPU
times are in seconds. For the SW method, we selected the parameter q that gave
the highest speed; this parameter is listed, together with the required amount
of memory in Kbytes.

We see that for the 32-bit computer, PM is faster than SW when k ≥ 44497,
whereas for the 64-bit machine, PM is faster for k ≥ 19937. The results agree
with the computational complexity approximations, which are O(k2) for SW and
O(k1.59) for PM.

Table 1. Comparison of CPU time (in seconds) for 1000 jumps ahead for MT gener-
ators of various sizes, with the Horner, SW, and PM methods. This experiment was
done on an Intel Core Duo (2.0 GHz) with 1 Gbytes of Memory

k Horner SW PM

CPU (sec) q memory (KB) CPU (sec) CPU (sec)

19937 17.730 7 312 5.129 6.692
21701 20.830 8 679 5.853 7.438
23209 23.691 8 726 6.537 7.930
44497 83.990 8 1391 20.444 19.765
86243 309.268 8 2696 71.731 52.288

110503 445.387 9 6908 113.588 71.098
132049 648.121 9 8254 158.290 89.833

7 Conclusion

The proposed jump ahead algorithm based on polynomial multiplication is ad-
vantageous over the sliding window method when the dimension k of state space

8

Table 2. The same experiment as in Table 1, but on a 64-bit Athlon 64 3800+ processor
with 1 Gbyte of memory

k Horner SW PM

CPU (sec) q memory (KB) CPU (sec) CPU (sec)

19937 8.573 7 312.000 2.727 2.219
21701 10.070 7 339.500 3.135 2.442
23209 11.435 7 363.000 3.519 2.578
44497 40.371 6 347.750 11.651 5.968
86243 148.330 6 674.000 44.842 14.509

110503 242.219 5 431.750 73.232 19.694
132049 344.972 5 515.875 106.179 24.743

is large enough, since the new PM method has time complexity O(k1.59), com-
pared with O(k2) for the sliding window method. Our empirical experiments
confirm this and show that this large enough k corresponds roughly to the value
of k used in the most popular implementation of MT. Much more importantly,
the new PM method has space complexity of O(k), which is much smaller than
that of the sliding window method, namely O(k2q). The main limitation is that
the new method requires the availability of an efficient algorithm to compute
the inverse of o(k).

References

1. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. Third edn. McGraw-
Hill, New York, NY (2000)

2. L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In: Proceedings of the 2005
Winter Simulation Conference, IEEE Press (2005) 611–620

3. L’Ecuyer, P.: Pseudorandom number generators. In Platen, E., Jaeckel, P., eds.:
Simulation Methods in Financial Engineering. Encyclopedia of Quantitative Fi-
nance. Wiley (2008) Forthcoming.

4. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8(1) (1998) 3–30

5. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators
based on linear recurrences modulo 2. ACM Transactions on Mathematical Soft-
ware 32(1) (2006) 1–16

6. Haramoto, H., Matsumoto, M., Nishimura, T., Panneton, F., L’Ecuyer, P.: Effi-
cient jump ahead for F2-linear random number generators. INFORMS Journal on
Computing (2008) to appear.

7. Panneton, F., L’Ecuyer, P.: Infinite-dimensional highly-uniform point sets defined
via linear recurrences in F2w . In Niederreiter, H., Talay, D., eds.: Monte Carlo and
Quasi-Monte Carlo Methods 2004, Berlin, Springer-Verlag (2006) 419–429

8. L’Ecuyer, P.: Uniform random number generation. Annals of Operations Research
53 (1994) 77–120

9. L’Ecuyer, P., Panneton, F.: F2-linear random number generators. In Alexopoulos,
C., Goldsman, D., eds.: Advancing the Frontiers of Simulation: A Festschrift in
Honor of George S. Fishman. Spinger-Verlag, New York (2007) To appear.

9

10. Couture, R., L’Ecuyer, P.: Lattice computations for random numbers. Mathematics
of Computation 69(230) (2000) 757–765

11. Shoup, V.: NTL: A Library for doing Number Theory. Courant Institute, New
York University, New York, NY. (2005) Available at http://shoup.net/ntl/.

12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge, U.K. (2003)

13. Golomb, S.W.: Shift-Register Sequences. Holden-Day, San Francisco (1967)
14. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer-Verlag (1986)
15. Matsumoto, M., Kurita, Y.: Twisted GFSR generators II. ACM Transactions on

Modeling and Computer Simulation 4(3) (1994) 254–266

