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Abstract Monte Carlo (MC) is widely used for the simulation of discrete time
Markov chains. We consider the case of a 𝑑-dimensional continuous state space and
we restrict ourselves to chains where the 𝑑 components are advanced independently
from each other, with 𝑑 random numbers used at each step. We simulate 𝑁 copies of
the chain in parallel, and we replace pseudorandom numbers on 𝐼𝑑 := (0, 1)𝑑 with
stratified random points over 𝐼2𝑑: for each point, the first 𝑑 components are used to
select a state and the last 𝑑 components are used to advance the chain by one step. We
use a simple stratification technique: let 𝑝 be an integer, then for 𝑁 = 𝑝2𝑑 samples,
the unit hypercube is dissected into 𝑁 hypercubes of measure 1/𝑁 and there is one
sample in each of them. The strategy outperforms classical MC if a well-chosen
multivariate sort of the states is employed to order the chains at each step. We prove
that the variance of the stratified sampling estimator is bounded by O(𝑁−(1+1/(2𝑑) ) ),
while it is O(𝑁−1) for MC. In numerical experiments, we observe empirical rates
that satisfy the bounds. We also compare with the Array-RQMC method.

1 Introduction

Markov chains with a large state space can be used to model a variety of real life
systems in domains such as particles physics, telecommunications, queueing theory,
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mathematical finance, etc. In many situations, neither analytic solutions are available
nor deterministic numerical methods are practicable because the state space is too
large. So Monte Carlo (MC) simulation becomes the standard way to solve the model.

We consider a discrete time Markov chain, with state space X :=
∏𝑑

𝑖=1 X𝑖 , for
some integer 𝑑 > 0, where X𝑖 = (𝑎𝑖 , 𝑏𝑖), with −∞ ≤ 𝑎𝑖 < 𝑏𝑖 ≤ +∞, for 1 ≤ 𝑖 ≤ 𝑑.
We assume that 𝑑-dimensional random variates are used to advance the chain by one
step. So 𝑋0 is a 𝑑-dimensional random variable (it can be degenerate over a single
state) and the chain evolves according to the recurrence:

𝑋𝑛+1 = 𝜑𝑛+1 (𝑋𝑛,𝑈𝑛+1), 𝑛 ≥ 0. (1)

Here 𝑈1,𝑈2, . . . are i.i.d. uniform random variables over 𝐼𝑑 , where 𝐼 := (0, 1),
and 𝜑1, 𝜑2, . . . are measurable functions X × 𝐼𝑑 → X. Let 𝑃𝑛 denote the law
of 𝑋𝑛. We want to estimate

∫
X 𝑐(𝑥)𝑑𝑃𝑛 (𝑥), for some cost function 𝑐, by a mean

(∑ 𝑗 𝑐(𝑋𝑛
𝑗
))/𝑁 , where {𝑋𝑛

𝑗
: 1 ≤ 𝑗 ≤ 𝑁} are realizations of the chain at step 𝑛

(to be defined). The mean must be unbiased and the convergence of the method is
evaluated by Var((∑ 𝑗 𝑐(𝑋𝑛

𝑗
))/𝑁). The MC approach uses pseudorandom numbers as

realizations of uniform random variables over 𝐼𝑑 . The drawback is that convergence
can be slow, with respect to the number of samples, classically as O(𝑁−1).

Stratified sampling is a technique for increasing efficiency of MC methods: see,
e.g., [8, 14]. We use here the following strategy, called simple stratified sampling
(SSS): for a dimension 𝛿, the unit cube 𝐼 𝛿 is partitioned into 𝑁 = 𝑝 𝛿 intervals
𝐽𝜅 :=

∏𝛿
𝑖=1 [(𝑘𝑖 − 1)/𝑝, 𝑘𝑖/𝑝), for 𝜅 = (𝑘1, . . . , 𝑘 𝛿), where each integer 𝑘𝑖 lies

between 1 and 𝑝; in each 𝐽𝜅 , a point is selected at random. The SSS is analyzed
in [2, 3, 9] for integration of smooth functions: the authors show an improved
convergence rate for the variance (compared to classical MC). SSS for simulating
Markov chains has been proposed in [4]. When the state space is one-dimensional,
variance reduction was theoretically analyzed in [5], for a discrete space and in [6]
for a continuous state space.

This approach resembles the randomized quasi-Monte Carlo (Array-RQMC)
method initiated in [11, 12]. It has been observed that, in many cases, Array-RQMC
reduces the variance [1, 13, 15]. However, an improved convergence rate compared
with MC has been proved only for very specific cases, such as a one-dimensional state
space with a stratification approach, for which a rate of O(𝑁−3/2) was established
under certain conditions [11]. For both methods, the 𝑁 copies of the chain are sorted
at each step before being moved forward; this ensures theoretical and numerical
convergence. Array-RQMC has been observed empirically to perform very well
for several applications [1, 11, 12, 15], often with much better rates than O(𝑁−1)
for the variance, but we still have no formal proof for these better rates in more
than one dimension (a difficulty is to find a multidimensional sort which guarantees
convergence). The aim of the present paper is to offer progress in this direction.

Specifically, we prove aO(𝑁−(1+1/(2𝑑) ) ) variance bound for a SSS method applied
to Markov chains with a 𝑑-dimensional state space, under certain conditions. The
conditions are restrictive, but they are satisfied in interesting situations (e.g. the
Gaussian random walk). The SSS method examined here differs slightly from Array-
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RQMC combined with stratification as defined in [11]. We point out the difference
at the end of Sect. 2.

The remainder is organized as follows. In Sect. 2, we recall the MC method for
simulating such Markov chains and we present the approach using simple stratified
(SS) samples. In Sect. 3, we compare the bounds for the variance of the estimator
obtained by the MC method and the SSS strategy. We provide numerical illustrations
in Sect. 4: we compute the empirical variances of the estimators and compare them
with the theoretical bounds previously established. We also compare with the Array-
RQMC method. Conclusions are drawn in Sect. 5.

2 Markov Chain Simulation

Consider a chain with the recurrence given by (1). We suppose that the 𝑑 components
of the chain are advanced independently from each other:

𝜑𝑛+1 (𝑥, 𝑢) = (𝜑𝑛+1,1 (𝑥1, 𝑢1), . . . , 𝜑𝑛+1,𝑑 (𝑥𝑑 , 𝑢𝑑)). (2)

This is a strong limitative assumption. There are interesting situations in which
this assumption is satisfied. This is the case of the random walk construction of a
standard 𝑑-dimensional Brownian motion at discrete times. It is used for solving
physical problems that involve a combination of convection, reaction and diffusion.
Besides, a restricted convergence result may be obtained under a less limitative
hypothesis (see Remark 1). A random walk is also utilized within the Black-Scholes
model in financial engineering: an example is given in Sect. 4.

We present the usual MC method and the SSS version to simulate the chain.
Denote by B+ (X) the set of nonnegative Borel measurable functions defined on X.
For every 𝑠 ∈ B+ (X) we have∫

X
𝑠(𝑥)𝑑𝑃𝑛+1 (𝑥) =

∫
X×𝐼𝑑

𝑠 ◦ 𝜑𝑛+1 (𝑥, 𝑢)𝑑𝑃𝑛 (𝑥)𝑑𝑢. (3)

The following notations are used. If 𝑚, 𝑛 are integers, then [𝑚, 𝑛] := {𝑚, 𝑚 +
1, . . . , 𝑛} (if 𝑚 ≤ 𝑛) and (𝑚, 𝑛] := {𝑚 + 1, 𝑚 + 2, . . . , 𝑛} (if 𝑚 < 𝑛). Let 𝑈 be a
random variable, then 𝑈 ∼ 𝔘(E) means that 𝑈 is uniformly distributed over the set
E. For 𝑧 ∈ X, we denote 𝑠𝑧 the indicator function of

∏𝑑
𝑖=1 (𝑎𝑖 , 𝑧𝑖).

2.1 Classical Monte Carlo

We present how to simulate in parallel instead of the standard MC sequential algo-
rithm to highlight the difference with the variance reduction techniques described
later. We choose an integer 𝑁 , the number of independent samples. We suppose that,
at step 𝑛, {𝑋𝑛

𝑗
: 𝑗 ∈ [1, 𝑁]} are random variables (the states) such that, for a family
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C ⊂ B+ (X) of cost functions,

∀𝑠 ∈ C 1
𝑁

∑︁
𝑗

𝑠(𝑋𝑛
𝑗 ) ≈

∫
X
𝑠(𝑥)𝑑𝑃𝑛 (𝑥).

Here, the approximation is assumed to be unbiased and consistent as follows.

E

[
1
𝑁

∑︁
𝑗

𝑠(𝑋𝑛
𝑗 )

]
=

∫
X
𝑠(𝑥)𝑑𝑃𝑛 (𝑥) and Var

(
1
𝑁

∑︁
𝑗

𝑠(𝑋𝑛
𝑗 )

)
= O

(
1
𝑁

)
.

The analysis is first done for cost functions of the form 𝑠𝑧 (Eqs. (8) and (9)); a result
for regular cost functions is given next (Corollary 1).

We want to find new states at step 𝑛 + 1. Following (3), for every 𝑠 ∈ C:∫
X
𝑠(𝑥)𝑑𝑃𝑛+1 (𝑥) ≈

1
𝑁

∑︁
𝑗

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑋𝑛

𝑗 , 𝑢)𝑑𝑢. (4)

For 𝑗 ∈ [1, 𝑁], let 1 𝑗 denote the indicator function of 𝐹𝑗 := [( 𝑗 − 1)/𝑁, 𝑗/𝑁). We
associate to any 𝑠 ∈ B+ (X) the following function of 𝑑 + 1 variables:

𝐴𝑛
𝑠 (𝑢) :=

∑︁
𝑗

1 𝑗 (𝑢0)𝑠 ◦ 𝜑𝑛+1 (𝑋𝑛
𝑗 , 𝑢), 𝑢 = (𝑢0, 𝑢) ∈ 𝐼 × 𝐼𝑑 .

Then, ∫
𝐼𝑑+1

𝐴𝑛
𝑠 (𝑢)𝑑𝑢 =

1
𝑁

∑︁
𝑗

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑋𝑛

𝑗 , 𝑢)𝑑𝑢. (5)

A numerical quadrature is done for the transition from 𝑛 to 𝑛 + 1. Let {𝑈𝑛+1
𝑗

:
𝑗 ∈ [1, 𝑁]} be independent random variables with 𝑈𝑛+1

𝑗
∼ 𝔘(𝐼𝑑). We replace the

left-hand side of (5) with the following MC estimate:

𝑋𝑛+1
𝑠 :=

1
𝑁

∑︁
𝑗

𝐴𝑛
𝑠

(
𝑗 − 1
𝑁

,𝑈𝑛+1
𝑗

)
=

1
𝑁

∑︁
𝑗

𝑠 ◦ 𝜑𝑛+1 (𝑋𝑛
𝑗 ,𝑈

𝑛+1
𝑗 ).

We generate
𝑋𝑛+1
𝑗 = 𝜑𝑛+1 (𝑋𝑛

𝑗 ,𝑈
𝑛+1
𝑗 ),

so that
𝑋𝑛+1
𝑠 =

1
𝑁

∑︁
𝑗

𝑠(𝑋𝑛+1
𝑗 )

is chosen as an approximation of
∫
X 𝑠(𝑥)𝑑𝑃𝑛+1 (𝑥).
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2.2 Simple Stratified Sampling

We choose 𝑁 = 𝑝2𝑑 , for some integer 𝑝 > 0. This is a first limitation of the
method: its practical use is restricted to small 𝑑’s, because of the exponential growth
of the sample size. We suppose that we have generated a set of random variables
{𝑌𝑛

𝜇 : 𝜇 = (𝑚1, . . . , 𝑚𝑑) ∈ [1, 𝑝]𝑑−1 × [1, 𝑝𝑑+1]} such that

∀𝑠 ∈ C 1
𝑁

∑︁
𝜇

𝑠(𝑌𝑛
𝜇 ) ≈

∫
X
𝑠(𝑥)𝑑𝑃𝑛 (𝑥).

Here, the 𝑌𝑛
𝜇 replace the 𝑋𝑛

𝑗
of MC; the indexing will be justified in the proof of

Lemma 1. The approximation is assumed to be unbiased and consistent as for MC.
For every 𝑠 ∈ C,∫

X
𝑠(𝑥)𝑑𝑃𝑛+1 (𝑥) ≈

1
𝑁

∑︁
𝜇

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 , 𝑢)𝑑𝑢.

In order to find the new states at step 𝑛 + 1, a numerical quadrature is done. For
𝜇 ∈ [1, 𝑝]𝑑−1 × [1, 𝑝𝑑+1], let 1𝜇 denote the indicator function of

𝐿𝜇 :=
𝑑−1∏
𝑖=1

[
𝑚𝑖 − 1
𝑝

,
𝑚𝑖

𝑝

)
×

[
𝑚𝑑 − 1
𝑝𝑑+1 ,

𝑚𝑑

𝑝𝑑+1

)
.

To any 𝑠 ∈ B+ (X), we associate the function of 2𝑑 variables:

𝐵𝑛
𝑠 (𝑣) :=

∑︁
𝜇

1𝜇 (¤𝑣)𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛
𝜇 , ¥𝑣), 𝑣 = (¤𝑣, ¥𝑣) ∈ 𝐼𝑑 × 𝐼𝑑 .

Then, ∫
𝐼2𝑑
𝐵𝑛
𝑠 (𝑣)𝑑𝑣 =

1
𝑁

∑︁
𝜇

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 , ¥𝑣)𝑑¥𝑣. (6)

The transition from 𝑛 to 𝑛 + 1 has two steps: renumbering the chains and numerical
quadrature.

(S1) The chains are relabeled so that if 𝜇 = (𝑚1, . . . , 𝑚𝑑), 𝜇′ = (𝑚′
1, . . . , 𝑚

′
𝑑
),

𝑚1 = 𝑚′
1, . . . , 𝑚𝑖−1 = 𝑚′

𝑖−1, 𝑚𝑖 < 𝑚
′
𝑖 ⇒ 𝑌𝑛

𝜇,𝑖 ≤ 𝑌𝑛
𝜇′ ,𝑖 . (7)

This lexicographic ordering (called multivariate batch sort in [13]) was first
introduced in a QMC context and motivated in [10]: it guaranteed theoretical
and numerical convergence. Figure 1 depicts the indices 𝜇 = (𝑚1, 𝑚2) on the
locations of the states𝑌𝑛

𝜇 . The states are first grouped in two batches (horizontally)
according to the first coordinate, then each batch is sorted according to the second
coordinate.
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(1,1)

(1,2)

(1,3)

(1,5) 

(1,8)  
(1,7)  

(1,6) 

(1,4) 

(2,4) 

(2,1)

(2,2)

(2,5) 

(2,3) 

(2,6) 

(2,7) 

(2,8) 

Fig. 1 Lexicographic ordering of 22×2 states in R2

This is a second limitation of the SSS method: its use requires 𝑑 orderings of 𝑁
numbers at each step.

(S2) For 𝜅 = (𝑘1, . . . , 𝑘2𝑑) ∈ [1, 𝑝]2𝑑 , let

𝐽𝜅 :=
2𝑑∏
𝑖=1

[
𝑘𝑖 − 1
𝑝

,
𝑘𝑖

𝑝

)
.

Let {𝑉𝑛+1
𝜅 : 𝜅 ∈ [1, 𝑝]2𝑑} be independent random variables with 𝑉𝑛+1

𝜅 ∼ 𝔘(𝐽𝜅 ).
The first 𝑑-dimensional projection ¤𝑉𝑛+1

𝜅 of 𝑉𝑛+1
𝜅 is used for selecting the state

at step 𝑛 and the second 𝑑-dimensional projection ¥𝑉𝑛+1
𝜅 is used for advancing

the chain by one step. That is, we replace the left-hand side of (6) with the SSS
estimate:

𝑌𝑛+1
𝑠 :=

1
𝑁

∑︁
𝜅

𝐵𝑛
𝑠 (𝑉𝑛+1

𝜅 ) = 1
𝑁

∑︁
𝜅

𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 ( ¤𝑉𝑛+1
𝜅 ) ,

¥𝑉𝑛+1
𝜅 ),

where, for 𝑢 ∈ 𝐼𝑑 , the index 𝜇(𝑢) ∈ [1, 𝑝]𝑑−1 × [1, 𝑝𝑑+1] is such that 𝑢 ∈ 𝐿𝜇 (𝑢) .
We define

𝑌𝑛+1
𝜅 = 𝜑𝑛+1

(
𝑌𝑛

𝜇 ( ¤𝑉𝑛+1
𝜅 ) ,

¥𝑉𝑛+1
𝜅

)
,

so that
𝑌𝑛+1
𝑠 =

1
𝑁

∑︁
𝜅

𝑠(𝑌𝑛+1
𝜅 )

is chosen as an approximation of
∫
X 𝑠(𝑥)𝑑𝑃𝑛+1 (𝑥).

It is noticeable that the correspondence 𝜅 ∈ [1, 𝑝]2𝑑 → 𝜇( ¤𝑉𝑛+1
𝜅 ) ∈ [1, 𝑝]𝑑−1 ×

[1, 𝑝𝑑+1] between the stratified samples 𝑉𝑛+1
𝜅 and the states 𝑌𝑛

𝜇 is not necessarily
bijective: the same state may be chosen more than once or some states may be left
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out. This diverges from the stratified sampling construction in the Array-RQMC
algorithm [11, 13], subsequently called A-Strat.

3 Theoretical convergence

For classical MC, let {𝑋0
𝑗

: 𝑗 ∈ [1, 𝑁]} be i.i.d. random variables with probability
distribution 𝑃0. Then, the following holds for any 𝑛 ≥ 0.

1. For any 𝑠 ∈ B+ (X),

E

[
1
𝑁

∑︁
𝑗

𝑠(𝑋𝑛
𝑗 )

]
=

∫
X
𝑠(𝑥)𝑑𝑃𝑛 (𝑥). (8)

2. For any 𝑧 ∈ X,

Var

(
1
𝑁

∑︁
𝑗

𝑠𝑧 (𝑋𝑛
𝑗 )

)
≤ 1

4𝑁
. (9)

For SSS, we next show that, at every step, (1) for any 𝑠 ∈ B+ (X), the estimator
of

∫
X 𝑠(𝑥)𝑑𝑃𝑛 (𝑥) is unbiased, and (2) for any 𝑧 ∈ X, the variance of the estimator

of
∫
X 𝑠𝑧 (𝑥)𝑑𝑃𝑛 (𝑥) is bounded by O(𝑁−(1+1/(2𝑑) ) ).

We suppose that 𝑃0 has density 𝑓0 and we assume the following for any 𝑖 ∈ [1, 𝑑].

A1. For any 𝑥 ∈ X𝑖 , the mapping 𝑢 ∈ 𝐼 → 𝜑𝑛+1,𝑖 (𝑥, 𝑢) ∈ X𝑖 is strictly increasing,
bijective; one defines a function 𝑦 ∈ X𝑖 → 𝜓𝑛+1,𝑖 (𝑥, 𝑦) ∈ 𝐼 which is strictly
increasing, bijective, such that 𝑦 = 𝜑𝑛+1,𝑖 (𝑥, 𝑢) ⇔ 𝑢 = 𝜓𝑛+1,𝑖 (𝑥, 𝑦).

A2. For any 𝑥 ∈ X𝑖 , the mapping 𝑦 → 𝜓𝑛+1,𝑖 (𝑥, 𝑦) is continuously differentiable.
A3. For any 𝑦 ∈ X𝑖 , the mapping 𝑥 → 𝜓𝑛+1,𝑖 (𝑥, 𝑦) is continuously differentiable;

there exists a constant 𝑀𝑛+1,𝑖 such that
∫
X𝑖

| 𝜕𝜓𝑛+1,𝑖
𝜕𝑥

(𝑥, 𝑦) |𝑑𝑥 ≤ 𝑀𝑛+1,𝑖; in addition
lim𝑥→𝑏𝑖𝜓𝑛+1,𝑖 (𝑥, 𝑦) = 0.

We define:

Π𝑛+1 :=
𝑑∏
𝑖=1

𝑀𝑛+1,𝑖 and Σ𝑛+1 :=
𝑑∑︁
𝑖=1

𝑀𝑛+1,𝑖 .

For initialization, we would like to start with a better convergence rate than MC.
We assume that we can define a set {𝑌0

𝜇 : 𝜇 = (𝑚1, . . . , 𝑚𝑑) ∈ [1, 𝑝]𝑑−1× [1, 𝑝𝑑+1]}
of independent random variables with the following properties (which are used in
proofs by induction in Proposition 1).

P1. For any 𝑠 ∈ B+ (X),

E

[
1
𝑁

∑︁
𝜇

𝑠(𝑌0
𝜇)

]
=

∫
X
𝑠(𝑥)𝑑𝑃0 (𝑥). (10)
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P2. There exists some 𝛽0 > 0 such that, for every 𝑧 ∈ X,

Var

(
1
𝑁

∑︁
𝜇

𝑠𝑧 (𝑌0
𝜇)

)
≤ 𝛽0

𝑁1+1/2𝑑 . (11)

If the density 𝑓0 of 𝑃0 is such that 𝑓0 (𝑥) =
∏𝑑

𝑖=1 𝑓0,𝑖 (𝑥𝑖), this may be obtained
by the inversion method. Let 𝐹0,𝑖 be the cumulative distribution function (cdf)
associated with 𝑓0,𝑖 . For 𝜆 = (ℓ1, . . . , ℓ𝑑) ∈ [1, 𝑝2]𝑑 , denote

𝐾𝜆 :=
𝑑∏
𝑖=1

[
ℓ𝑖 − 1
𝑝2 ,

ℓ𝑖

𝑝2

)
.

Let {𝑉𝜆 : 𝜆 ∈ [1, 𝑝2]𝑑} be independent random variables with 𝑉𝜆 ∼ 𝔘(𝐾𝜆). We
take

𝑌0
𝜆 :=

(
𝐹−1

0,1 (𝑉𝜆,1), . . . , 𝐹
−1
0,𝑑 (𝑉𝜆,𝑑)

)
.

Then (10) is satisfied (after re-indexing) and there exists 𝛽0 ≤ 𝑑/4 such that for any
𝑧 ∈ X,

Var

(
1
𝑁

∑︁
𝜆

𝑠𝑧 (𝑌0
𝜆 )

)
≤ 𝛽0

𝑁1+1/𝑑 .

After, the analysis has two stages: (1) a variance bound for step 𝑛 to 𝑛 + 1,
conditional on the states at step 𝑛, and (2) a bound of the unconditional variance
(over several steps). We first focus on one step and we assume that {𝑦𝑛𝜇 : 𝜇 ∈
[1, 𝑝]𝑑−1 × [1, 𝑝𝑑+1]} are given vectors with a numbering satisfying (7). Let

Ŷ𝑛+1
𝑠 :=

1
𝑁

∑︁
𝜅

∑︁
𝜇

1𝜇 ( ¤𝑉𝑛+1
𝜅 )𝑠 ◦ 𝜑𝑛+1 (𝑦𝑛𝜇, ¥𝑉𝑛+1

𝜅 ).

Lemma 1 For the SSS method, we have:

1. For any 𝑠 ∈ B+ (X),

E[Ŷ𝑛+1
𝑠 ] = 1

𝑁

∑︁
𝜇

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑦𝑛𝜇, 𝑢)𝑑𝑢.

2. For any 𝑧 ∈ X,

Var(Ŷ𝑛+1
𝑠𝑧

) ≤ 𝑑 (Σ𝑛+1 + 2)
4𝑁1+1/2𝑑 .

Proof 1. Straightforward.
2. The transition from 𝑛 to 𝑛+1 is described by a numerical quadrature of a function
𝐵𝑛
𝑠 ; if 𝑠 = 𝑠𝑧 , then 𝐵𝑛

𝑠 = 𝐵𝑛
𝑠𝑧

is the indicator function of the following set:

E𝑛
𝑧 :=

⋃
𝜇

𝐿𝜇 ×
𝑑∏
𝑖=1

[
0, 𝜓𝑛+1,𝑖 (𝑦𝑛𝜇,𝑖 , 𝑧𝑖)

)
.
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The variable 𝐵𝑛
𝑠𝑧
(𝑉𝑛+1

𝜅 ) is a Bernoulli random variable, with expectation 𝑒𝑛+1
𝑧,𝜅 =

𝑁𝜆2𝑑 (E𝑛
𝑧 ∩ 𝐽𝜅 ). Hence, Var(𝐵𝑛

𝑠𝑧
(𝑉𝑛+1

𝜅 )) ≤ 1/4 and Var(𝐵𝑛
𝑠𝑧
(𝑉𝑛+1

𝜅 )) = 0 if 𝐽𝜅 ⊂
E𝑛
𝑧 or if 𝐽𝜅 ∩ E𝑛

𝑧 = ∅. The only 𝜅′𝑠 that contribute to the variance of Ŷ𝑛+1
𝑠𝑧

are
those for which 𝐽𝜅 intersects the boundary of E𝑛

𝑧 . Therefore,

Var(Ŷ𝑛+1
𝑠𝑧

) ≤ 1
4𝑁2

��{𝜅 ∈ [1, 𝑝]2𝑑 : 𝐽𝜅 ⊄ E𝑛
𝑧 and 𝐽𝜅 ∩ E𝑛

𝑧 ≠ ∅}
�� ,

where |N | denotes the cardinality of a (finite) set N . We have:

• if 𝐽𝜅 ⊄ E𝑛
𝑧 , then

∃𝑖 ∈ [1, 𝑑] 𝑘𝑑+𝑖 > 𝑝 min
𝑚𝑑∈ ( (𝑘𝑑−1) 𝑝𝑑 ,𝑘𝑑 𝑝

𝑑 ]
𝜓𝑛+1,𝑖 (𝑦𝑛(𝑘1 ,...,𝑘𝑑−1 ,𝑚𝑑 ) ,𝑖 , 𝑧𝑖),

• if 𝐽𝜅 ∩ E𝑛
𝑧 ≠ ∅, then

∀𝑖 ∈ [1, 𝑑] 𝑘𝑑+𝑖 < 𝑝 max
𝑚𝑑∈ ( (𝑘𝑑−1) 𝑝𝑑 ,𝑘𝑑 𝑝

𝑑 ]
𝜓𝑛+1,𝑖 (𝑦𝑛(𝑘1 ,...,𝑘𝑑−1 ,𝑚𝑑 ) ,𝑖 , 𝑧𝑖) + 1.

Hence,

Var(Ŷ𝑛+1
𝑠𝑧

) ≤ 𝑝𝑑

4𝑁2

(∑︁
¤𝜅

𝑑∑︁
𝑖=1

(
max

𝑚𝑑∈ ( (𝑘𝑑−1) 𝑝𝑑 ,𝑘𝑑 𝑝
𝑑 ]
𝜓𝑛+1,𝑖 (𝑦𝑛(𝑘1 ,...,𝑘𝑑−1 ,𝑚𝑑 ) ,𝑖 , 𝑧𝑖)

− min
𝑚𝑑∈ ( (𝑘𝑑−1) 𝑝𝑑 ,𝑘𝑑 𝑝

𝑑 ]
𝜓𝑛+1,𝑖 (𝑦𝑛(𝑘1 ,...,𝑘𝑑−1 ,𝑚𝑑 ) ,𝑖 , 𝑧𝑖)

)
+ 2𝑑𝑝𝑑−1

)
.

Up to now, the proof is a generalization of the one-dimensional case done in [6].
Henceforth, we use the lexicographic ordering of the states. As a consequence of
(7), there exists a covering of

∏𝑑
𝑖=1 [𝑎𝑖 , 𝑏𝑖] with

𝑎1 = 𝑤𝑛
0,1 ≤ 𝑤𝑛

1,1 ≤ · · · ≤ 𝑤𝑛
𝑝,1 = 𝑏1,

𝑎2 = 𝑤𝑛
𝑚1 ,0,2 ≤ 𝑤𝑛

𝑚1 ,1,2 ≤ · · · ≤ 𝑤𝑛
𝑚1 , 𝑝,2 = 𝑏2 for 𝑚1 ∈ [1, 𝑝],

. . .

𝑎𝑑 = 𝑤𝑛
𝑚1 ,...,𝑚𝑑−1 ,0,𝑑 ≤ 𝑤𝑚1 ,...,𝑚𝑑−1 ,1,𝑑 ≤ · · · ≤ 𝑤𝑚1 ,...,𝑚𝑑−1 , 𝑝,𝑑 = 𝑏𝑑

for (𝑚1, . . . , 𝑚𝑑−1) ∈ [1, 𝑝]𝑑−1

such that, if, for ¤𝜅 := (𝑘1, . . . , 𝑘𝑑) ∈ [1, 𝑝]𝑑 we define

𝑅𝑛
¤𝜅 := [𝑤𝑛

𝑘1−1,1, 𝑤
𝑛
𝑘1 ,1] × [𝑤𝑛

𝑘1 ,𝑘2−1,2, 𝑤
𝑛
𝑘1 ,𝑘2 ,2] × · · · × [𝑤𝑛

𝑘1 ,...,𝑘𝑑−1 ,𝑘𝑑−1, 𝑤
𝑛
𝑘1 ,...,𝑘𝑑

],

then we have 𝑦𝑛(𝑘1 ,...,𝑘𝑑−1 ,𝑚𝑑 ) ∈ 𝑅𝑛
¤𝜅 for any 𝑚𝑑 ∈ ((𝑘𝑑 − 1)𝑝𝑑 , 𝑘𝑑 𝑝𝑑]. Hence,

there exist points 𝑦̌𝑛,𝑖¤𝜅 , 𝑦̂
𝑛,𝑖
¤𝜅 ∈ 𝑅𝑛

¤𝜅 so that
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Var(Ŷ𝑛+1
𝑠𝑧

) ≤ 𝑝𝑑

4𝑁2

(∑︁
¤𝜅

𝑑∑︁
𝑖=1

|𝜓𝑛+1,𝑖 ( 𝑦̂𝑛,𝑖¤𝜅,𝑖 , 𝑧𝑖) − 𝜓𝑛+1,𝑖 ( 𝑦̌𝑛,𝑖¤𝜅,𝑖 , 𝑧𝑖) | + 2𝑑𝑝𝑑−1

)
≤ 𝑝𝑑

4𝑁2

(
𝑑𝑝𝑑−1

𝑑∑︁
𝑖=1

𝑀𝑛+1,𝑖 + 2𝑑𝑝𝑑−1

)
,

where the last inequality is obtained by using a modified version of Lemma 4 in
[10]. The conclusion follows. □

The proof of the next result uses techniques employed in [11].

Proposition 1 For the SSS method, the following holds.

1. For any 𝑠 ∈ B+ (X),

E

[
1
𝑁

∑︁
𝜇

𝑠(𝑌𝑛
𝜇 )

]
=

∫
X
𝑠(𝑥)𝑑𝑃𝑛 (𝑥).

2. For any 𝑧 ∈ X,

Var

(
1
𝑁

∑︁
𝜇

𝑠𝑧 (𝑌𝑛
𝜇 )

)
≤ 𝛽𝑛

𝑁1+1/2𝑑 , (12)

where 𝛽𝑛+1 = Π2
𝑛+1𝛽𝑛 + 𝑑 (Σ𝑛+1 + 2)/4.

Proof 1. We prove the result by induction. It holds for 𝑛 = 0 from (10). For 𝑛 ≥ 0,

𝐷𝑛+1
𝑠 :=

∫
X
𝑠(𝑥)𝑑𝑃𝑛+1 (𝑥) −

1
𝑁

∑︁
𝜇

𝑠(𝑌𝑛+1
𝜇 ) = 𝐷𝑛

𝑠,1 + 𝐷
𝑛
𝑠,2,

where

𝐷𝑛
𝑠,1 :=

∫
X

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑥, 𝑢)𝑑𝑢𝑑𝑃𝑛 (𝑥) −

1
𝑁

∑︁
𝜇

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 , 𝑢)𝑑𝑢,

𝐷𝑛
𝑠,2 :=

1
𝑁

∑︁
𝜇

∫
𝐼𝑑
𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 , 𝑢)𝑑𝑢 −
1
𝑁

∑︁
𝜅

∑︁
𝜇

1𝜇 ( ¤𝑉𝑛+1
𝜅 )𝑠 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 ,
¥𝑉𝑛+1
𝜅 ).

By the induction hypothesis, E[𝐷𝑛
𝑠,1] = 0; by Lemma 1, E[𝐷𝑛

𝑠,2] = 0. The result
follows.

2. We proceed by induction on 𝑛. The case 𝑛 = 0 is given by (11). Let 𝑛 ≥ 0 be
arbitrary. Since {𝑌𝑛

𝜇 : 𝜇 ∈ [1, 𝑝]𝑑−1 × [1, 𝑝𝑑+1]} and {𝑉𝑛+1
𝜅 : 𝜅 ∈ [1, 𝑝]2𝑑} are

independent, we have E[𝐷𝑛
𝑠𝑧 ,1𝐷

𝑛
𝑠𝑧 ,2] = 0. Consequently

Var

(
1
𝑁

∑︁
𝜇

𝑠𝑧 (𝑌𝑛+1
𝜇 )

)
= E[(𝐷𝑛+1

𝑠𝑧
)2] = E[(𝐷𝑛

𝑠𝑧 ,1)
2] + E[(𝐷𝑛

𝑠𝑧 ,2)
2] . (13)

For the first summand, we write
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X×𝐼𝑑

𝑠𝑧 ◦ 𝜑𝑛+1 (𝑥, 𝑢)𝑑𝑢𝑑𝑃𝑛 (𝑥) =
∫
X

𝑑∏
𝑖=1

𝜓𝑛+1,𝑖 (𝑥𝑖 , 𝑧𝑖)𝑑𝑃𝑛 (𝑥)

= (−1)𝑑
∫
X2

𝑑∏
𝑖=1

𝜕𝜓𝑛+1,𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝑧𝑖)𝑠𝑥 (𝑦)𝑑𝑃𝑛 (𝑦)𝑑𝑥

and ∫
𝐼𝑑
𝑠𝑧 ◦ 𝜑𝑛+1 (𝑌𝑛

𝜇 , 𝑢)𝑑𝑢 = (−1)𝑑
∫
X

𝑑∏
𝑖=1

𝜕𝜓𝑛+1,𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝑧𝑖)𝑠𝑥 (𝑌𝑛

𝜇 )𝑑𝑥.

This gives

𝐷𝑛
𝑠𝑧 ,1 = (−1)𝑑

∫
X

(
𝑑∏
𝑖=1

𝜕𝜓𝑛+1,𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝑧𝑖)

) (∫
X
𝑠𝑥 (𝑦)𝑑𝑃𝑛 (𝑦) −

1
𝑁

∑︁
𝜇

𝑠𝑥 (𝑌𝑛
𝜇 )

)
𝑑𝑥

= (−1)𝑑
∫
X

(
𝑑∏
𝑖=1

𝜕𝜓𝑛+1,𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝑧𝑖)

)
𝐷𝑛

𝑠𝑥
𝑑𝑥.

We then have

E[(𝐷𝑛
𝑠𝑧 ,1)

2] =
∫
X2

(
𝑑∏
𝑖=1

𝜕𝜓𝑛+1,𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝑧𝑖)

𝑑∏
𝑖=1

𝜕𝜓𝑛+1,𝑖

𝜕𝑥𝑖
(𝑥′𝑖 , 𝑧𝑖)

)
E

[
𝐷𝑛

𝑠𝑥
𝐷𝑛

𝑠𝑥′

]
𝑑𝑥𝑑𝑥′

≤
(

𝑑∏
𝑖=1

𝑀𝑛+1,𝑖

)2

sup
𝑥∈X

Var

(
1
𝑁

∑︁
𝜇

𝑠𝑥 (𝑌𝑛
𝜇 )

)
.

For the second summand in (13), we have from Lemma 1:

E[(𝐷𝑛
𝑠𝑧 ,2)

2] ≤ 𝑑 (Σ𝑛+1 + 2)
4𝑁1+1/2𝑑 .

With (13), the result is established by induction. □

This result is a third limitation of the SSS method: there is only a small improve-
ment to the MC variance bound for large 𝑑’s.

The variance of the MC or SSS estimator is bounded for a function of the form 𝑠𝑧 ,
with 𝑧 ∈ X. We obtain a bound for a regular cost function 𝑐 by the same reasoning
as in Proposition 6 of [11]. Let C be the class of functions 𝑐 ∈ B+ (X) which are
𝑑-times continuously differentiable and such that

1. 𝑉 (𝑑) (𝑐) :=
∫
X

���� 𝜕𝑑𝑐

𝜕𝑥1 · · · 𝜕𝑥𝑑
(𝑥)

���� 𝑑𝑥 < +∞,

2. there exists a permutation 𝜋 of [1, 𝑑] such that for any 𝑖 ∈ [1, 𝑑] and 𝑥𝜋 ( 𝑗 ) ∈
(𝑎𝜋 ( 𝑗 ) , 𝑏𝜋 ( 𝑗 ) ), 1 ≤ 𝑗 ≤ 𝑑, 𝑗 ≠ 𝑖,
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lim
𝑥𝜋 (𝑖)→𝑏𝜋 (𝑖)

𝜕𝑑−𝑖𝑐

𝜕𝑥𝜋 (𝑖+1) · · · 𝜕𝑥𝜋 (𝑑)
(𝑥) = 0.

Corollary 1 If 𝑐 ∈ C, then

Var

(
1
𝑁

∑︁
𝜇

𝑐(𝑌𝑛
𝜇 )

)
≤ (𝑉 (𝑑) (𝑐))2 𝛽𝑛

𝑁1+1/2𝑑 .

Proof We have

𝐷𝑛
𝑐 :=

∫
X
𝑐(𝑥)𝑑𝑃𝑛 (𝑥) −

1
𝑁

∑︁
𝜇

𝑐(𝑌𝑛
𝜇 ) = (−1)𝑑

∫
X

𝜕𝑑𝑐

𝜕𝑥1 · · · 𝜕𝑥𝑑
(𝑧)𝐷𝑛

𝑠𝑧
𝑑𝑧.

Consequently,

E[(𝐷𝑛
𝑐)2]

≤
∫
X2

���� 𝜕𝑑𝑐

𝜕𝑥1 · · · 𝜕𝑥𝑑
(𝑧)

���� · ���� 𝜕𝑑𝑐

𝜕𝑥1 · · · 𝜕𝑥𝑑
(𝑧′)

���� √︃E[(𝐷𝑛
𝑠𝑧 )2]

√︃
E[(𝐷𝑛

𝑠𝑧′ )2)]𝑑𝑧𝑑𝑧′,

hence the conclusion. □

Remark 1 The previous results can be extended without difficulty as follows. Let
𝑑, 𝑑′ be integers and put 𝑑 := 𝑑 + 𝑑′. We consider a discrete time Markov chain
𝑋𝑛 := (𝑋𝑛, 𝑋

′
𝑛) with state space X := X ×X′, where X =

∏𝑑
𝑖=1 X𝑖 , X′ =

∏𝑑
𝑖=𝑑+1 X𝑖 ,

with X𝑖 = (𝑎𝑖 , 𝑏𝑖) and −∞ ≤ 𝑎𝑖 < 𝑏𝑖 ≤ +∞, for 1 ≤ 𝑖 ≤ 𝑑. Here 𝑋0 (resp. 𝑋 ′
0)

is a 𝑑-dimensional (resp. 𝑑′-dimensional) random variable and the chain evolves
according to the recurrence:

𝑋𝑛+1 = 𝜑𝑛+1 (𝑋𝑛,𝑈𝑛+1), 𝑋 ′
𝑛+1 = 𝜑′𝑛+1 (𝑋𝑛, 𝑋

′
𝑛,𝑈𝑛+1), 𝑛 ≥ 0. (14)

The variables 𝑈1,𝑈2, . . . are i.i.d. uniform random variables over 𝐼𝑑; the functions
𝜑𝑛+1 : X × 𝐼𝑑 → X and 𝜑′

𝑛+1 : X × 𝐼𝑑 → X′ are measurable. We put 𝜑𝑛+1 (𝑥, 𝑢) :=
(𝜑𝑛+1 (𝑥, 𝑢), 𝜑′𝑛+1 (𝑥, 𝑥

′, 𝑢)), for 𝑥 := (𝑥, 𝑥′) ∈ X. We denote 𝑃𝑛 the law of 𝑋𝑛.
We suppose that 𝜑𝑛+1 satisfies (2) and we assume (A1–A3) for any 𝑖 ∈ [1, 𝑑]. We
suppose that 𝑃0 has density 𝑓 0. For 𝑧 ∈ X, we denote 𝑠𝑧 the indicator function of∏𝑑

𝑖=1 (𝑎𝑖 , 𝑧𝑖) × X′.
The SSS scheme is as follows. We choose 𝑁 = 𝑝𝑑+𝑑 , for some integer 𝑝. For

𝜇 = (𝑚1, . . . , 𝑚𝑑
) ∈ [1, 𝑝]𝑑−1×[1, 𝑝𝑑+1], we set: 𝐿𝜇 :=

∏𝑑−1
𝑖=1 [(𝑚𝑖−1)/𝑝, 𝑚𝑖/𝑝)×

[(𝑚
𝑑
−1)/𝑝𝑑+1, 𝑚

𝑑
/𝑝𝑑+1). Then, for 𝑢 ∈ 𝐼𝑑 , the index 𝜇(𝑢) ∈ [1, 𝑝]𝑑−1× [1, 𝑝𝑑+1]

is such that 𝑢 ∈ 𝐿𝜇 (𝑢) . For initialization, we assume that we can define a set
{𝑌0

𝜇 : 𝜇 ∈ [1, 𝑝]𝑑−1×[1, 𝑝𝑑+1]} of independent random variables with the following
properties.

P1. For any 𝑠 ∈ B+ (X),
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E

[
1
𝑁

∑︁
𝜇

𝑠(𝑌0
𝜇)

]
=

∫
X
𝑠(𝑥)𝑑𝑃0 (𝑥).

P2. There exists some 𝛽0 > 0 such that, for every 𝑧 ∈ X,

Var

(
1
𝑁

∑︁
𝜇

𝑠𝑧 (𝑌
0
𝜇)

)
≤

𝛽0

𝑁1+1/(𝑑+𝑑)
.

We suppose that we have generated a set of random variables {𝑌𝑛

𝜇 : 𝜇 ∈
[1, 𝑝]𝑑−1 × [1, 𝑝𝑑+1]}; the transition from 𝑛 to 𝑛 + 1 acts as follows. The numbering
is modified so that (7) is satisfied for 1 ≤ 𝑖 ≤ 𝑑. For 𝜅 = (𝑘1, . . . , 𝑘𝑑+𝑑) ∈ [1, 𝑝]𝑑+𝑑 ,
let 𝐽𝜅 :=

∏𝑑+𝑑
𝑖=1 [(𝑘𝑖 − 1)/𝑝, 𝑘𝑖/𝑝). Let {𝑉𝑛+1

𝜅 : 𝜅 ∈ [1, 𝑝]𝑑+𝑑} be independent
random variables with 𝑉𝑛+1

𝜅 ∼ 𝔘(𝐽𝜅 ). For 𝑢 ∈ 𝐼𝑑+𝑑 , let ¤𝑢 := (𝑢1, . . . , 𝑢𝑑) and
¥𝑢 := (𝑢

𝑑+1, . . . , 𝑢𝑑+𝑑). We define𝑌𝑛+1
𝜅 = 𝜑𝑛+1 (𝑌

𝑛

𝜇 ( ¤𝑉𝑛+1
𝜅 ) , ¥𝑉𝑛+1

𝜅 ). The following holds,
with 𝛽𝑛+1 = Π2

𝑛+1𝛽𝑛 + (𝑑Σ𝑛+1 + 2𝑑)/4.

1. For any 𝑠 ∈ B+ (X),

E

[
1
𝑁

∑︁
𝜇

𝑠(𝑌𝑛

𝜇)
]
=

∫
X
𝑠(𝑥)𝑑𝑃𝑛 (𝑥).

2. For any 𝑧 ∈ X,

Var

(
1
𝑁

∑︁
𝜇

𝑠𝑧 (𝑌
𝑛

𝜇)
)
≤ 𝛽𝑛

𝑁1+1/(𝑑+𝑑)
. (15)

4 Numerical Experiments

In this section, we compare classical MC, SSS and Array-RQMC approaches for the
simulation of multi-dimensional Markov chains. The Array-RQMC method gives
several possibilities for the choices of QMC point sets, randomization and sorting
strategy. The A-Strat version uses stratified samples, while the A-Sobol version
employs Sobol′ sequences. For both schemes, a multivariate batch sort is done. In
dimension 𝑑, with 𝑁 states, an A-method with sorting parameters (𝛼1, . . . , 𝛼𝑑) ∈
(0, 1)𝑑 (satisfying 𝛼1 + · · · + 𝛼𝑑 = 1) firstly sorts the set of 𝑁 states by their first
coordinate in 𝑁𝛼1 subsets of size 𝑁1−𝛼1 ; then it sorts each subset in 𝑁𝛼2 subsets
of size 𝑁1−𝛼1−𝛼2 by their second coordinate, etc. Note that, for a state space of
dimension 𝑑, the SSS method corresponds to the sorting parameters 𝛼1 = · · · =
𝛼𝑑−1 = 1/(2𝑑), 𝛼𝑑 = (𝑑 + 1)/(2𝑑). The extension presented in Remark 1 for a state
space of dimension 𝑑 corresponds to the sorting parameters 𝛼1 = · · · = 𝛼

𝑑−1 =
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1/(𝑑 + 𝑑), 𝛼
𝑑
= (𝑑 + 1)/(𝑑 + 𝑑). In the following, A-Strat and A-Sobol are tested

with uniform sorting parameters and also with SSS parameters.
We calculate the empirical variance of the estimators of∫

R𝑑
𝑠(𝑥)𝑑𝑃𝑛 (𝑥) or

∫
R𝑑
𝑠(𝑥)𝑑𝑃𝑛 (𝑥),

for some 𝑠 or 𝑠. We plot this variance as a function of the number 𝑁 of simulated
chains. Assuming a model 𝐾𝑁−𝛾 for the variance, we can estimate the rate 𝛾 by
linear regression and compare it with the theoretical bounds. Thereafter, we denote
by 𝜑 and Φ the probability density function (pdf) and cdf of the standard normal
distribution, respectively.

4.1 Diffusion

We consider the initial value problem for the 𝑑-dimensional diffusion equation:

𝜕 𝑓

𝜕𝑡
(𝑥, 𝑡) = 𝜈Δ 𝑓 (𝑥, 𝑡), 𝑥 ∈ R𝑑 , 𝑡 > 0 and 𝑓 (𝑥, 0) = 𝑓0 (𝑥), 𝑥 ∈ R𝑑 ,

with constant diffusivity 𝜈 > 0. Here Δ is the Laplacian. We assume that the initial
data satisfies 𝑓0 ≥ 0 and

∫
R𝑑
𝑓0 (𝑥)𝑑𝑥 = 1. Then, for any 𝑡 > 0, it holds that∫

R𝑑
𝑓 (𝑥, 𝑡)𝑑𝑥 = 1. Let 𝐺 be the fundamental solution of the heat operator:

𝐺 (𝑥, 𝑡) :=
1

(4𝜋𝜈𝑡)𝑑/2 e−∥𝑥 ∥2/4𝜈𝑡 , 𝑥 ∈ R𝑑 , 𝑡 > 0,

where ∥𝑥∥ denotes the Euclidean norm of 𝑥 ∈ R𝑑 . Then, for any 𝜏 ≥ 0, 𝑓 (𝑥, 𝑡) =∫
R𝑑
𝐺 (𝑥 − 𝑤, 𝑡 − 𝜏) 𝑓 (𝑤, 𝜏)𝑑𝑤, for 𝑥 ∈ R𝑑 and 𝑡 > 𝜏. If Δ𝑡 is a time step, we set

𝑡𝑛 := 𝑛Δ𝑡 and 𝑓𝑛 (𝑥) := 𝑓 (𝑥, 𝑡𝑛). It follows that

𝑓𝑛+1 (𝑥) =
1

(2𝜈Δ𝑡)𝑑/2

∫
R𝑑

𝑑∏
𝑖=1

𝜑

(
𝑥𝑖 − 𝑤𝑖√

2𝜈Δ𝑡

)
𝑓𝑛 (𝑤)𝑑𝑤.

Consequently, for any 𝑠 ∈ B+ (R𝑑),∫
R𝑑
𝑠(𝑥) 𝑓𝑛+1 (𝑥)𝑑𝑥

=

∫
R𝑑×𝐼𝑑

𝑠(𝑥1 +
√

2𝜈Δ𝑡Φ−1 (𝑢1), . . . , 𝑥𝑑 +
√

2𝜈Δ𝑡Φ−1 (𝑢𝑑)) 𝑓𝑛 (𝑥)𝑑𝑥𝑑𝑢.

We define the Markov chain as in (1). Let 𝑋0 have pdf 𝑓0 and let

𝑋𝑛+1,𝑖 = 𝑋𝑛,𝑖 +
√

2𝜈Δ𝑡Φ−1 (𝑈𝑛+1,𝑖), 1 ≤ 𝑖 ≤ 𝑑,
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where𝑈𝑛+1 ∼ 𝔘(𝐼𝑑). This defines a random walk method [7]. Here, assumption (2)
and hypotheses A1–A3 are satisfied.

As presented, the method is artificial, since we know the exact solution. This
algorithm is a part of fractional step schemes when one considers problems involving
a combination of convection, reaction and diffusion. In this experiment, we take
𝜈 = 1 and define 𝑓0 as the indicator function of the interval [−1/2, 1/2]𝑑 . We choose
Δ𝑡 = 0.001 and 𝑇 = 0.01. We compute the empirical variance (with 𝑀 = 100
replications) of the estimate of

∫
[0,1)𝑑 𝑓 (𝑥, 𝑇)𝑑𝑥. Here, 𝑠 is the indicator function of

[0, 1)𝑑 .
For 𝑑 = 2, Fig. 2 (left) shows the variance of MC and SSS as a function of 𝑁 ,

for 𝑁 = 44, 54, . . . , 504 (in log10 scales). The calculations are also done with A-Strat
and A-Sobol. The sorting parameters (1/2, 1/2) and (1/4, 3/4) are tested and the
results only show a small difference between them. For both A-methods, the best
choice is drawn. For 𝑑 = 3, the variance of MC and SSS as a function of 𝑁 , for
𝑁 = 36, 46, . . . , 136 (in log10 scales) is shown on Fig. 2 (right). The calculations are
also done using A-Strat and A-Sobol, with the sorting parameters (1/3, 1/3, 1/3)
and (1/6, 1/6, 4/6), without a great difference between the results; only the best
choices are drawn. The regression estimates of the convergence rate 𝛾 are given in
Table 1, for 𝑑 = 2 (second row) and 𝑑 = 3 (third row). A-method refers to uniform
sorting parameters and A-method (italicized) to SSS parameters. The rates of the
upper bounds given in Sect. 3 are indicated in parenthesis. SSS and Array-RQMC
produce smaller variance than classical MC (for the same 𝑁). The variances of
Array-RQMC are smaller than those of SSS; nevertheless, the convergence rates of
SSS are equal or slightly better than those of Array-RQMC. For SSS, the regression
estimates of the rate 𝛾 somehow overtake the rates of the theoretical upper bounds.
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Fig. 2 Random walk for diffusion: empirical variance of 100 estimations of
∫
[0,1)𝑑 𝑓 (𝑥, 𝑇 )𝑑𝑥 as

a function of 𝑁 for MC, SSS, A-Strat and A-Sobol in dimension 𝑑 = 2 (left) and 𝑑 = 3 (right)
(log10-log10 scale)
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4.2 An Asian Option

In the Black-Scholes model, under the risk-neutral measure, the asset price 𝑆𝑡 at time
𝑡 is given by: 𝑆𝑡 = 𝑆0 exp((𝑟 −𝜎2/2)𝑡 +𝜎𝐵𝑡 ), where 𝑟 is the risk-free interest rate, 𝜎
the volatility parameter and 𝐵 is a standard Brownian motion. Let 𝑇 be the maturity
date and 0 < 𝑡1 < · · · < 𝑡𝑞 = 𝑇 be observation times. If 𝐾 is a strike price, we want
to estimate the value of the call option:

𝐶𝑂 = e−𝑟𝑇E

[(
1
𝑞

𝑞∑︁
𝑛=1

𝑆𝑡𝑛 − 𝐾
)
+

]
.

We refer to [8] for further details. If Δ𝑡𝑛+1 := 𝑡𝑛+1 − 𝑡𝑛, we have 𝑆𝑡𝑛+1 = 𝑆𝑡𝑛 exp((𝑟 −
𝜎2/2)Δ𝑡𝑛+1 + 𝜎(𝐵𝑡𝑛+1 − 𝐵𝑡𝑛 )), for 0 ≤ 𝑛 < 𝑞. By setting 𝑋0 := 𝑆0, 𝑋 ′

0 := 1 and
𝑋𝑛 := 𝑆𝑡𝑛 , 𝑋 ′

𝑛 := (1/𝑛)∑𝑛
𝑚=1 𝑆𝑡𝑚 , for 𝑛 ≥ 1, this may be written as in (14):

𝑋𝑛+1 = 𝑋𝑛e(𝑟−𝜎2/2)Δ𝑡𝑛+1+𝜎
√
Δ𝑡𝑛+1Φ

−1 (𝑈𝑛+1 ) ,

𝑋 ′
𝑛+1 =

1
𝑛 + 1

(
𝑋𝑛e(𝑟−𝜎2/2)Δ𝑡𝑛+1+𝜎

√
Δ𝑡𝑛+1Φ

−1 (𝑈𝑛+1 ) + 𝑛𝑋 ′
𝑛

)
,

where 𝑈𝑛+1 ∼ 𝔘(𝐼). Here, the state space is (0, +∞); 𝑑 = 𝑑′ = 1 and hypotheses
A1–A3 are satisfied.

In this example, we choose 𝑆0 = 100, 𝑟 = Ln(1.09), 𝜎 = 0.2, 𝐾 = 90, 𝑇 =

240/365, Δ𝑡 = 1/365, 𝑞 = 60 and 𝑡𝑛 = 𝑇 − (𝑞 − 𝑛)Δ𝑡 for 𝑛 ∈ [1, 𝑞]. We compare
the variances of the MC, SSS, A-Strat and A-Sobol estimates of 𝐶𝑂: we replicate
the calculation independently 100 times and we compute the sample variance.

Figure 3 shows the variance of MC and SSS as a function of 𝑁 (in log10 scales),
for 𝑁 = 103, 153, . . . , 1003. For the calculations done with A-Strat and A-Sobol,
the sorting parameters (1/2, 1/2) and (1/3, 2/3) are tested. While the differences
between the A-Strat versions are small, this is not the case for the A-Sobol versions.
The regression estimates of the convergence rate 𝛾 are given in Table 1 (fourth row).
SSS and Array-RQMC result in smaller variance than classical MC (for the same 𝑁).
Here, A-Sobol with uniform sorting parameters outperforms the other schemes. With
a similar convergence rate, A-Strat gives smaller variance than SSS. In Sect. 3 we
have established for SSS a O(𝑁−4/3) upper bound for the variance of the estimator
with a cost function of the form 𝑠𝑧 , for 𝑧 > 0: see (15). But we did not prove a bound
for the variance of a SSS estimator of 𝐶𝑂.

5 Conclusion

We consider Markov chain models with a (𝑑 + 𝑑′)-dimensional continuous state
space. We assume that the first 𝑑 components of the chain are advanced independently
from each others and that only 𝑑 random variates are used to advance by one step.
We analyze two approaches for the simulation: classical MC and a method using SS
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Fig. 3 Asian call option: empirical variance of 100 estimates of 𝐶𝑂 as a function of 𝑁 for MC,
SSS, A-Strat and A-Sobol (log10-log10 scale)

Table 1 Estimation of the convergence rate 𝛾 of the sample variance: comparison of classical MC,
SSS, A-Strat and A-Sobol approaches. Italicized names correspond to SSS sorting parameters. The
rates of the upper bounds are indicated in parenthesis.

Experiment MC SSS A-Strat A-Strat A-Sobol A-Sobol

Diffusion 2D 1.00 (1.00) 1.34 (1.25) 1.19 1.24 1.36 1.28

Diffusion 3D 0.97 (1.00) 1.25 (1.17) 1.10 1.12 1.21 1.16

Asian option 0.99 (1.00) 1.37 1.38 1.39 1.95 1.72

samples. Upper bounds on the variance of an estimator for a cost function which
only depends on the first 𝑑 variables are proved. When 𝑁 copies of the chain are
simulated, the order is O(𝑁−1) for MC and our upper bound is O(𝑁−1+1/(2𝑑+𝑑′ ) )
for the stratified strategy. In our numerical experiments, the SSS variance decreased
a bit faster than the bound. The Array-RQMC method gave a lower variance, but we
unfortunately have no proof (so far) of the better convergence rate for that method.
Interesting topics for further research include the extension of our analysis to more
general cost functions and to other stratified approaches, and proving the better
convergence rates for Array-RQMC in more than one dimension.
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with continuous state space by using simple stratified and Sudoku Latin square sampling. In:
Botev Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation, pp.
239–260. Springer, Cham (2022)

7. Ghoniem, A.F., Sherman, F.S.: Grid-free simulation of diffusion using random walk methods.
J. Comput. Phys. 61, 1–37 (1985)

8. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)
9. Haber, S.: A modified Monte-Carlo quadrature. Math. Comput. 20, 361–368 (1966)
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