
Lattice Tester:
A Software Tool to Analyze Integral Lattices

Pierre L’Ecuyer1 and Christian Weiß2

1 DIRO, Université de Montréal, Canada,
lecuyer@iro.umontreal.ca,

https://www-labs.iro.umontreal.ca/∼lecuyer/
2 Ruhr West University of Applied Sciences, Germany,

christian.weiss@hs-ruhrwest.de,
https://www.hochschule-ruhr-west.de/personenseiten/christian-weiss

Abstract. Lattice Tester is a C++ software library offering tools to measure the
uniformity of lattices in the 𝑡-dimensional integer space Z𝑡 . Such lattices may
come from quasi-Monte Carlo point sets or from multiple recursive linear random
number generators, for example. The uniformity measures include the length of a
shortest nonzero vector in the lattice or in its dual (the spectral test), and figures
of merit that use normalized versions of these lengths for projections of the
lattice on large subsets of coordinates, and take the worst-case over the considered
projections. This paper gives a brief tour of Lattice Tester, its algorithms, its
design, and numerical illustrations. More details and examples can be found in
the user’s guide and the code is freely available on GitHub.

Keywords: lattice structure, spectral test, random number generators

1 Introduction and Overview

The set of vectors of 𝑡 successive outputs from a linear random number generator (RNG)
in scalar or matrix form, from all possible initial states, is known to be the intersection
of a lattice 𝐿𝑡 with the 𝑡-dimensional unit hypercube [0, 1)𝑡 . This holds in particular for
linear congruential generators (LCGs), multiple recursive generators (MRGs), multiply-
with-carry generators, and combinations of them [4,6,16,17,19,24,32,35]. Measuring the
uniformity of this lattice for a range of values of 𝑡 and also of its projections over subsets
of coordinates is a key step in the theoretical analysis of such RNGs. The main measures
that we want to compute for these lattices are the lengths of shortest non-zero vectors in
the primal lattice 𝐿𝑡 or its dual lattice 𝐿∗

𝑡 , for the 𝐿2 and 𝐿1 norms. With the Euclidean
norm, the inverse of the length of a shortest nonzero vector in 𝐿∗

𝑡 represents the maximal
distance between successive hyperplanes in a family of equidistant hyperplanes that
contain all the lattice points. We want this maximal distance to be as small as possible
for the points to cover the space evenly, i.e., the shortest length should be large. With
the 𝐿1 norm, this length corresponds to the minimal number of hyperplanes that contain
all the lattice points in the unit cube. We also want it to be large. Note that all integer
multiples of any lattice vector are in the lattice. Thus, if there is a very short nonzero
vector in the primal lattice, its multiples form a line of equidistant lattice points that

2 Pierre L’Ecuyer and Christian Weiß

are very close to each other, which implies that the lattice points must be concentrated
on fewer lines, which is bad. So we also want the shortest nonzero vector in the primal
lattice to be large.

A small illustration. To illustrate this, Figure 1 shows all the pairs (𝑢𝑛−1, 𝑢𝑛) of succes-
sive outputs of the tiny linear congruential generator (LCG) defined by the recurrence
𝑥𝑛 = 𝑎𝑥𝑛−1 mod 𝑚 and 𝑢𝑛 = 𝑥𝑛/𝑚, for 𝑚 = 101 with 𝑎 = 12 (left) and 𝑎 = 51 (right).
These 101 points have an obvious lattice structure. Each blue point can be expressed as an
integer linear combination of the two red vectors, 𝒗1 = (1/101, 𝑎/101) and 𝒗2 = (0, 1),
which form a basis of the lattice. The lattice contains all integer linear combinations of
the basis vectors, so it has an infinite number of points. The lattice points in the picture
are those that belong to the square [0, 1)2. On the right, the shortest nonzero vector is
small and the distance between the hyperplanes (the lines in this case) that contain all
the points is very large, so we have poor uniformity, whereas on the left they cover the
square more evenly.

0 1

1

𝑢𝑛+1

𝑢𝑛
0 1

1

𝑢𝑛+1

𝑢𝑛

Fig. 1. Lattice structure for LCGs with 𝑚 = 101, for 𝑎 = 12 (left) and 𝑎 = 51 (right).

Integral lattices and measures of uniformity. For general background on lattices in the
real space, see for example [2,3,40]. Computing the length of a shortest nonzero vector
in the dual lattice is known as the spectral test [7,14,17,27].

Similar lattices are used for lattice rules, which are quasi-Monte Carlo integration
methods that estimate the integral of a function over the unit hypercube by its average
over a set of lattice points over the unit hypercube [8,20,22,28,30,45]. Bounds on the
worst-case integration error for certain classes of functions can be obtained in terms
of figures of merit (FOMs) that measure the uniformity of the lattice. Measuring the
uniformity is also essential in that setting. The main difference between these lattices
and those encountered in RNGs is that the number 𝜂 of lattice points per unit of volume,
called the lattice density, is usually modest (at most in the millions) for lattice rules, but

Lattice Tester 3

much larger (more than 2100) for RNGs. For this reason, the FOMs used for these two
applications typically differ. The most popular measures for lattice rules (e.g., P𝛼 with
weights [8,20]) correspond to integration error bounds for certain classes of functions.
They require a computing time that increases at least linearly with 𝜂 and are unusable
when 𝑛 ≥ 2100. The lattice structure of RNGs is usually analyzed via the spectral test,
whose computation requires exponential times in 𝑡 in the worst case but only logarithmic
time in 𝜂, so very large values of 𝜂 can be handled. The spectral test is also relevant and
has been used in FOMs for lattice rules [13,28,36,37].

The aim of this paper is to describe Lattice Tester, a software library written in C++
that offers tools to compute FOMs that serve as measures of uniformity for 𝑡-dimensional
integral lattices, i.e., for which all lattice point coordinates are integers. In most cases
of interest, this integrality property already holds for the dual lattice, and it is obtained
for the primal lattice by rescaling all vector coordinates by an integer factor 𝑚 > 1 that
typically corresponds to the modulus of the generator. In the small example seen earlier,
we would do this with 𝑚 = 101. Then we work with the rescaled lattice Λ𝑡 = 𝑚𝐿𝑡

instead of the original one. The purpose of this rescaling is for all vector coordinates to
be integers, so they can always be represented exactly on the computer. The dual of the
original lattice is then the 𝑚-dual of the rescaled one.

What Lattice Tester does. The main facilities provided by Lattice Tester are the following:

A. Lattice Basis Construction. Given a set of vectors with integer coordinates, find a
basis for the lattice generated by these vectors.

B. Find the 𝑚-Dual Lattice Basis. Given a lattice basis, compute the corresponding
𝑚-dual basis.

C. Lattice Basis Reduction (LBR). Given a lattice basis, find another basis whose
vectors are nearly orthogonal or as short as possible in some sense.

D. Shortest Vector Problem (SVP). Find a (provably) shortest nonzero lattice vector.
E. Figure of Merit Calculation. Compute a FOM that takes into account several lower-

dimensional projections of the lattice.

Problems A, B, and C are relatively easy, whereas D is harder. The NTL library [44]
already implements the LLL and BKZ procedures for Problem C, and we use these
implementations. For A and B, we have faster algorithms than what we have seen
before. For D, we use a branch-and-bound (BB) integer programming optimization
procedure based on the algorithm of [10], with some modifications. It is implemented
for both the 𝐿2 and 𝐿1 norms. It uses a Cholesky decomposition of a previously reduced
basis, and is much faster than the old spectral test algorithms given in [9,14]. We also
examine a variant that uses a triangular basis to compute the bounds.

The latest version of Lattice Tester is built largely over NTL [44], which offers arbi-
trarily large integers and real numbers via the types NTL::ZZ and NTL::RR, polynomial
and modular arithmetic, and many useful tools. Lattice Tester has flexible types named
Int for integers and Real for real numbers. Int can be either int64_t or NTL::ZZ,
whereas Real can be double, xdouble, quad_float, or NTL::RR [23]. The desired
types can be selected via template parameters used by the compiler to compile the code
with the types we want, so very large values of 𝑚 can be handled with NTL::RR if

4 Pierre L’Ecuyer and Christian Weiß

needed while the same code can run much faster by using double when this is suffi-
cient. NTL::RR can handle large real numbers with arbitrary precision, but make the
computations much slower, often more than 50 times slower than using double, in our
experiments.

Lattice Tester is implemented as a library meant to be used by other software. Its
previous version is currently used by LatMRG [26] and by LatNet Builder [29], which pro-
vide tools to construct lattice bases for specific applications. It also contains executable
programs that can serve as examples, including those we used for the experiments re-
ported in this paper. The software is available on GitHub [25] and a detailed user’s guide
can be found in [23].

History. The main facilities offered by Lattice Tester were included in the old LatMRG
software [27], whose first version was written around 1988 in the Modula-2 language,
and whose aim was to study the lattice structure of linear RNGs and search for good ones.
That Modula-2 version was used for [16,17,18,31,33,34], for example. It incorporated the
BB algorithm from [10], the LLL algorithm for pre-reduction, computing a Minkowski-
reduced basis, various types of representation of numbers, various figures of merit,
searching procedures, and more. It used a home-made Modula-2 library for the arithmetic
with arbitrarily large integers. After 2000, Modula-2 was no longer supported, and some
students and assistants started “translating” LatMRG into C++ and making changes and
extensions. This went on for about 15 years without reaching a final product. In 2014,
David Munger separated LatMRG in two pieces: (1) Latcommon, which later became
Lattice Tester, whose task is to compute measures of uniformity for arbitrary integer
lattices, and (2) a new LatMRG which uses those facilities to test the lattice structure of
RNGs and search for good generators under various types of constraints. The rationale
for this split was to make Lattice Tester smaller and more easily usable to analyze lattices
for other purposes than testing RNGs. Further changes were made by various people
after 2014. This evolution led to a code that was complicated, inconsistent, inefficient
in some places, and poorly documented. Recently, we decided to redesign and recode
Lattice Tester and LatMRG. Some new algorithms also came out of this. The aim of this
paper is to present the new Lattice Tester. Another (forthcoming) paper will present the
new LatMRG.

Outline. The remainder is organized as follows. In Section 2, we define the integral
lattices considered here, their 𝑚-dual, and we recall some properties. Section 3 explains
how to obtain a lattice basis from a set of generating vectors and compute its 𝑚-dual.
Section 4 outlines our BB procedure to compute a shortest nonzero vector in the lattice.
In Section 5, we briefly recall the notions of LLL and BKZ reduction, which are the main
ones used in the software. In Section 6, we define FOMs that the software can compute.
In Section 7, we report numerical results that provide insight on how the algorithms and
the software perform in practice. Section 8 provides a conclusion.

Lattice Tester 5

2 Integral Lattices

The integral lattices considered here have the form

Λ𝑡 =

𝒗 = 𝒛𝑽 =

𝑡∑︁
𝑗=1

𝑧 𝑗𝒗 𝑗 such that 𝒛 = (𝑧1, . . . , 𝑧𝑡) ∈ Z𝑡
 , (1)

where 𝑡 is a positive integer and 𝑽 is a matrix whose rows 𝒗1, . . . , 𝒗𝑡 are linearly
independent vectors in Z𝑡 which form a basis of the lattice. The density of Λ𝑡 , which
is the average number of lattice points per unit of volume, is 1/det(𝑽) = det(𝑽−1).
When Λ𝑡 = 𝑚𝐿𝑡 is a rescaled version of a (non-integral) lattice 𝐿𝑡 in the real space,
𝜂𝑡 = 𝑚𝑡/det(𝑽) is the density of 𝐿𝑡 , and the cardinality of the point set 𝐿𝑡 ∩ [0, 1)𝑡 . For
any subset of coordinates 𝐼 = {𝑖1, . . . , 𝑖𝑠} ⊆ {1, . . . , 𝑡}, the projection Λ𝐼 of Λ𝑡 over the
𝑠-dimensional subspace determined by 𝐼 is also an integral lattice

Let 𝒗 ·𝒘 denote the standard inner product of vectors 𝒗 and 𝒘 (for the 𝐿2 norm). The
𝑚-dual lattice of Λ𝑡 is Λ∗

𝑡 = {𝒉 ∈ R𝑡 | 𝒉 · 𝒗 ∈ 𝑚Z for all 𝒗 ∈ Λ𝑡 }. It is assumed that
Λ∗
𝑡 ⊂ Z𝑡 , so it is also an integral lattice. The 𝑚-dual of a given basis 𝒗1, . . . , 𝒗𝑡 is the set

of vectors 𝒘1, . . . ,𝒘𝑡 in Z𝑡 such that 𝒗𝑖 · 𝒘 𝑗 = 𝑚𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 , and 𝛿𝑖 𝑗 = 0
otherwise. The vectors 𝒘1, . . . ,𝒘𝑡 are a basis of the 𝑚-dual lattice. They are the rows of
a matrix 𝑾 = 𝑚(𝑽−1)t. The density 𝜂∗𝑡 of Λ∗

𝑡 is 𝜂∗𝑡 = 1/𝜂𝑡 .
Since 𝑽 · 𝑾 t = 𝑚𝑰 and all the entries of 𝑽 and 𝑾 are integers, each vector 𝑚𝒆𝑖

(𝑚 times the 𝑖th unit vector) can be expressed as an integer linear combination of the
rows of 𝑽 and also the rows of 𝑾, so it must belong to both the primal and 𝑚-dual
lattices. This implies that all operations on vectors to construct or reduce a basis can be
performed modulo 𝑚, as long as this does not exclude a vector 𝑚𝒆𝑖 from the lattice.

3 Basis Construction

Often, a lattice basis is given directly from the problem specification. This is the case
in particular when the lattice corresponds to successive output values of a linear RNG
[14,15,27]. But sometimes, we need to construct a basis for the lattice generated by a
finite set of vectors 𝒗1, . . . , 𝒗𝑠 ∈ Z𝑡 together with the vectors 𝑚𝒆1, . . . , 𝑚𝒆𝑡 . We may also
need the corresponding 𝑚-dual basis. This occurs in particular when we want a basis
for the projection Λ𝐼 of Λ𝑡 over a subset 𝐼 of coordinates, and for its 𝑚-dual Λ∗

𝐼
. The

vectors 𝑚𝒆𝑖 always belong to the lattice and we always add them to the set of generating
vectors, often implicitly. Then the generated lattice always has 𝑡 dimensions.

Our fastest construction method returns either a lower-triangular or an upper-
triangular 𝑡 × 𝑡 matrix basis. For the upper-triangular case, it works as follows. We
start with 𝑠 ≥ 1 vectors 𝒗1, . . . , 𝒗𝑠 , with 𝒗𝑖 = (𝑣𝑖,1, . . . , 𝑣𝑖,𝑡). We first replace each 𝑣𝑖, 𝑗
by 𝑣𝑖, 𝑗 mod 𝑚, to obtain a set of 𝑠 generating vectors with 0 ≤ 𝑣𝑖, 𝑗 < 𝑚 for all (𝑖, 𝑗),
together with the vectors 𝑚𝒆𝑖 . If 𝑣𝑖,1 = 0 for all 𝑖, we put 𝑐1 = 𝑚, and we take 𝒙1 = 𝑚𝒆1
as our first basis vector. Otherwise, let 𝑐1 = gcd(𝑣1,1, . . . , 𝑣𝑠,1, 𝑚), assuming here that
the zero values are skipped. When computing 𝑐1 with Euclid’s algorithm, we obtain
𝑐1 = 𝑎0,1𝑚+𝑎1,1𝑣1,1 + · · · +𝑎𝑠,1𝑣𝑠,1 for some integers 𝑎𝑖,1 with −𝑚 < 𝑎𝑖,1 < 𝑚. Our first
triangular basis vector is 𝒙1 = 𝑎1,1𝒗1 + · · · + 𝑎𝑠,1𝒗𝑠 mod 𝑚 and it has 𝑐1 > 0 as its first

6 Pierre L’Ecuyer and Christian Weiß

coordinate. Since 𝑐1 divides each nonzero 𝑣𝑖,1, we can put 𝒗𝑖 = 𝒗𝑖 − (𝑣𝑖,1/𝑐1)𝒙1 mod 𝑚

for 𝑖 = 1, . . . , 𝑠, so all these generating vectors now have zero as their first coordinate,
and their other coordinates are in Z𝑚. The new set 𝒗1, . . . , 𝒗𝑠 , 𝒙1, 𝑚𝒆2, . . . , 𝑚𝒆𝑡 gener-
ates the same lattice as before. Then we repeat the same process with the new vectors
𝒗1, . . . , 𝒗𝑠 , but using their second column, then with the third column, and so on, until
we have 𝒙1, . . . , 𝒙𝑡 which form an upper-triangular basis.

A similar algorithm briefly described in Section 7 of [5] and in Section 3 of [27]
was implemented in the Modula-2 version of LatMRG. That algorithm was modifying
the vectors 𝒙𝑖 along the way while computing the gcd. The algorithm described here is
about 5 times faster in our tests.

For a lower-triangular basis, we proceed in a symmetric way by first computing
𝑐𝑡 = gcd(𝑣1,𝑡 , . . . , 𝑣𝑠,𝑡 , 𝑚) = 𝑎0,𝑡𝑚 + 𝑎1,𝑡 𝑣1,𝑡 + · · · + 𝑎𝑠,𝑡 𝑣𝑠,𝑡 for the last column, putting
either 𝒙𝑡 = 𝑚𝒆𝑡 or 𝒙𝑡 = 𝑎1,𝑡𝒗1 + · · · + 𝑎𝑠,𝑡𝒗𝑠 mod 𝑚 as our last basis vector, and so on.

Once we have a lattice basis 𝑽, computing its 𝑚-dual 𝑾 means solving the linear
system 𝑽𝑾 t = 𝑚𝑰. We have a general implementation of that based on some NTL
facilities. However, this is generally much too slow unless the dimension is very small.
Computing the 𝑚-dual is much easier and faster when the basis is triangular. When 𝑽 is
upper-triangular, its 𝑚-dual 𝑾 must be lower-triangular and its entries are given directly
by 𝑤𝑖,𝑖 = 𝑚/𝑣𝑖,𝑖 for 𝑖 = 1, . . . , 𝑡 and 𝑤𝑖, 𝑗 = − 1

𝑣 𝑗, 𝑗

∑𝑖
𝑘= 𝑗+1 𝑣𝑘, 𝑗𝑤𝑖,𝑘 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑡.

All these entries are integer and can be computed exactly using integer arithmetic. It
is important to recall that the 𝑚-dual of a projection is not the same as the projection
of the 𝑚-dual over the same coordinate set 𝐼. Concrete examples are given in [23]. To
examine the 𝑚-dual of a projection, we need to construct a basis for the projection and
then compute its 𝑚-dual.

To construct a basis from a set of generating vectors, NTL applies an LLL reduction
to this set of vectors. The result is a set of 𝑡 vectors that form a basis, plus some zero
vectors. One advantage of this method is that the basis vectors are reduced, so they tend
to be shorter than with the triangular method. But the triangular method is faster, and
if an 𝑚-dual basis is also required, it can be computed much more efficiently from a
triangular basis.

4 Shortest Vector Problem

A key task of Lattice Tester is to compute a shortest nonzero vector in a lattice. Here we
assume that the lattice basis is given by the rows 𝒗1, . . . , 𝒗𝑡 of the matrix 𝑽. The same
can be done with the 𝑚-dual instead of the primal lattice.

Any lattice vector 𝒗 must be an integer linear combination of the basis vectors, so
finding a shortest nonzero vector for the 𝐿 𝑝 norm can be formulated as the following
integer programming optimization problem with decision variables 𝑧1, . . . , 𝑧𝑡 :

Minimize ∥𝒗∥ 𝑝 subject to 𝒗 = 𝒛𝑽 =

𝑡∑︁
𝑖=1

𝑧𝑖𝒗𝑖 , 𝑧𝑖 ∈ Z,
𝑡∑︁

𝑖=1
|𝑧𝑖 | > 0. (2)

In the following, we denote by 𝑏(𝑝) the 𝐿 𝑝 norm of the shortest currently-known vector
in this lattice. This vector may not be in the basis, but 𝑏(𝑝) is an upper bound on the

Lattice Tester 7

length of a shortest vector, and we are only interested in vectors shorter than that. As
in [10], we solve this problem via a branch-and-bound (BB) algorithm in which we fix
successively 𝑧𝑡 , then 𝑧𝑡−1, then 𝑧𝑡−2, etc. At each step, for any fixed values of 𝑧𝑡 , . . . , 𝑧 𝑗+1
that we consider, we compute a finite range (interval) of values of 𝑧 𝑗 such that all values
outside this range cannot lead to a better solution, and we scan the values of 𝑧 𝑗 in this
range. A critical part of the algorithm is how we obtain these bounds. We examine and
compare two ways of doing that: (1) using a triangular basis and (2) via a Cholesky
decomposition of the matrix of scalar products of basis vectors.

Supose 𝑽 = 𝑳 is lower-triangular with elements ℓ𝑖, 𝑗 . For 𝒗 = 𝒛𝑳, we have

𝑣𝑘 =

𝑡∑︁
𝑖=𝑘

𝑧𝑖ℓ𝑖,𝑘 = 𝑧𝑘ℓ𝑘,𝑘 + 𝑟𝑘 where 𝑟𝑘 =

𝑡∑︁
𝑖=𝑘+1

𝑧𝑖ℓ𝑖,𝑘 .

Denoting 𝑠 𝑗 (𝑝) =
∑𝑡

𝑘= 𝑗+1 |𝑣𝑘 |𝑝 , we have

∥𝒗∥ 𝑝𝑝 ≥
𝑡∑︁

𝑘= 𝑗

|𝑣𝑘 |𝑝 = 𝑠 𝑗−1 (𝑝) = |𝑣 𝑗 |𝑝 + 𝑠 𝑗 (𝑝) = |𝑧 𝑗ℓ 𝑗 , 𝑗 + 𝑟 𝑗 |𝑝 + 𝑠 𝑗 (𝑝).

For 𝒗 to be shorter than our current best, we must have 𝑠 𝑗−1 (𝑝) < 𝑏(𝑝) 𝑝 , which implies

𝑧min
𝑗 = 𝑧min

𝑗 (𝑝) :=
⌈
𝑐 𝑗 − 𝛿 𝑗 (𝑝)

⌉
≤ 𝑧 𝑗 ≤

⌊
𝑐 𝑗 + 𝛿 𝑗 (𝑝)

⌋
=: 𝑧max

𝑗 (𝑝) = 𝑧max
𝑗 , (3)

where 𝑐 𝑗 = −𝑟 𝑗/ℓ 𝑗 , 𝑗 is the center of the interval and 𝛿 𝑗 (𝑝) = (𝑏(𝑝) 𝑝 − 𝑠 𝑗 (𝑝))1/𝑝/ℓ 𝑗 , 𝑗
is the radius when positive (otherwise the interval is empty).

The BB algorithm then works as follows. We start by computing the bounds (3)
for 𝑗 = 𝑡. For each value of 𝑧 𝑗 in the interval, we compute the bounds on 𝑧 𝑗−1 when
𝑧 𝑗 , . . . , 𝑧𝑡 are fixed and examine each value of 𝑧 𝑗−1 in the interval. We do this recursively
for 𝑗 = 𝑡 −1, . . . , 0. When 𝑗 = 0, we are at a leaf of the BB tree, with 𝑧𝑡 , . . . , 𝑧1 all fixed.
If 𝒛 ≠ 0, we check if the length of the corresponding vector 𝒛𝑽 is shorter than our best
one, in which case we save it. We repeat this until all tree nodes have been explored. The
Lattice Tester guide [23] provides additional explanations and implementation details.

By looking at the formula for 𝛿 𝑗 (𝑝), we see that we want 𝑏(𝑝) as small as possible
and ℓ 𝑗 , 𝑗 > 0 as large as possible, to reduce the width of the interval (3). But since
1/∏𝑡

𝑗=1 ℓ 𝑗 , 𝑗 = 1/det(𝑽) is the density of the lattice and is fixed, it is not possible to
increase all the ℓ 𝑗 , 𝑗 ’s. Typically, the projection of Λ𝑡 over any single coordinate contains
all the integers, which implies that ℓ𝑡 ,𝑡 = 1 for any lower-triangular basis, and then the
number of values of 𝑧𝑡 to examine (at the first level of the tree) will always be very large,
which limits the efficiency of using a triangular basis to compute the bounds in the BB
algorithm. Numerical examples of this are given in [23].

Another way of getting bounds when 𝑝 = 2 (the Euclidean norm) works as follows
[1,10,41]. For an arbitrary basis 𝑽, let 𝑽𝑽 t = 𝑳𝑳t where 𝑳 is a lower-triangular matrix
with elements ℓ𝑖, 𝑗 . This is the Cholesky decomposition of the matrix 𝑽𝑽 t of inner
products of the basis vectors, with the 𝐿2 norm. For any lattice vector 𝒗 = 𝒛𝑽, using the
same notation as in (3), we can write

∥𝒗∥2
2 = 𝒛𝑽𝑽 t𝒛t = 𝒛𝑳𝑳t𝒛t =

𝑡∑︁
𝑘=1

𝑣2
𝑘 ≥ 𝑠 𝑗−1 (2) = |𝑧 𝑗ℓ 𝑗 , 𝑗 + 𝑟 𝑗 |2 + 𝑠 𝑗 (2). (4)

8 Pierre L’Ecuyer and Christian Weiß

This gives the same bounds as in (3), valid for 𝑝 = 2.
This can be extended to bounds for 0 < 𝑝 < 2 by noting that ∥𝒗∥2 ≤ ∥𝒗∥ 𝑝 in that

case. We can use this to show that the bounds (3) are also valid for 0 < 𝑝 < 2 if we take
𝛿 𝑗 (𝑝) = (𝑏(𝑝)2 − 𝑠 𝑗 (2))1/2/ℓ 𝑗 , 𝑗 . The details are in [23].

5 Basis Reduction

An important first step before computing a shortest nonzero vector in a lattice is to
reduce the basis to make its vectors as short and orthogonal as we can in reasonable
time. In the real space R𝑡 , a basis can be made orthogonal (exactly) via the Gram-
Schmidt orthogonalization (GSO) process, which modifies basis vectors by adding
linear combinations (with real coefficients) of other basis vectors. The basis vectors
can also be made as short as we want. But for a lattice basis, we can only add linear
combinations with integer coefficients, and the basis vectors cannot be made as short as
we want. One of the many definitions of “reduced basis” in that setting, is the following.
A basis 𝒗1, . . . , 𝒗𝑡 is called Hermite-Korkine-Zolotarev (HKZ)-reduced [2] if: (i) 𝒗1 is a
shortest nonzero lattice vector; (ii) one cannot reduce another basis vector by adding an
integer multiple of 𝒗1; (iii) the projection of 𝒗2, . . . , 𝒗𝑡 on the subspace that is orthogonal
to 𝒗1 is HKZ-reduced. Algorithms to compute a HKZ-reduced basis can be found in [2,
Chapter 11], but their running time is very long and exponential in 𝑡.

A simple reduction method proposed and used in [9,14] is pairwise reduction, where
at each step we try to reduce the length of one basis vector by adding an integer multiple
of another basis vector, and we stop when it is no longer possible to reduce the length
of any basis vector by adding an integer multiple of another basis vector. This is easy to
achieve but not sufficient for what we need for the BB algorithm.

The LLL reduction algorithm proposed in [38] is weaker than HKZ, but much
stronger than pairwise reduction. It provides in polynomial time a set of nearly orthogonal
basis vectors by approximating in some sense the GSO process. The returned basis is
called LLL reduced with factor 𝛿 where 1/4 < 𝛿 < 1 and 𝛿 is a parameter to specify.
For the details, see [23,38,40,43]. A larger 𝛿 gives better reduction but takes more time.
Some authors fix 𝛿 at 3/4 [12,39,40], but we prefer values closer to 1. Then, the returned
𝒗1 is typically not much longer than a shortest nonzero vector in the lattice.

A stronger reduction is the blockwise Korkine-Zolotarev (BKZ) reduction introduced
in [42], which essentially strengthens LLL by putting additional conditions that depend
on another parameter 𝑘 called the block size. BKZ can be seen as an approximation of the
HKZ reduction. The larger is 𝑘 , the stronger is the reduction. With 𝑘 = 2 it is equivalent
to LLL-reduction. See [43] for an algorithm and further details. For 1/4 < 𝛿 < 1 and
𝑘 ≥ 2, the algorithm returns a basis that is BKZ-reduced with factor 𝛿 for block sizes 𝑘 .

The LLL and BKZ are implemented in NTL (for the 𝐿2 norm only) and we use
these implementations with minor modifications. LLL and BKZ do not always return a
shortest vector; this is why we also need the BB algorithm.

Lattice Tester 9

6 Figures of Merit That Examine Projections

When comparing generators, we look at shortest vector lengths for several values of 𝑡
and also for projections over subsets 𝐼 of non-successive coordinates. These lengths are
normalized to values between 0 and 1: we divide the raw values by upper bounds on
the best possible value that can be achieved for the given lattice density and dimension.
In our setting, we assume that there is an integer 𝑘 ≥ 1 for which the density of Λ𝐼 is
1 for 𝑠 ≤ 𝑘 and 𝑚𝑘−𝑠 for 𝑠 > 𝑘 , while the density of Λ∗

𝐼
is 𝑚−𝑠 for 𝑠 ≤ 𝑘 and 𝑚−𝑘

for 𝑠 > 𝑘 . (Do not confound this 𝑘 with the BKZ block size defined earlier, both are
standard notation.) This assumption holds for the lattices that we are interested in. In
particular, for rank-1 lattice rules, we have 𝑘 = 1, while for MRGs, 𝑘 corresponds to the
order of the recurrence [27]. There are several ways of selecting the upper bounds; see
[23] for the details.

To define a figure of merit (FOM) for the lattice, we select a class I of subsets of
coordinate indices 𝐼 = {𝑖1, . . . , 𝑖𝑠} ⊆ {1, . . . , 𝑡}, compute the normalized shortest vector
length for each one, perhaps divide it by a weight 𝜔𝐼 that depends on 𝐼, and take either
the worst case (minimum) or the sum of these weighted normalized values as the FOM.
This can be done for either the primal or 𝑚-dual lattice, with either the 𝐿1 or 𝐿2 norm.

As a concrete example, a standard FOM that is implemented takes I = 𝑆1 (𝑡1) ∪
𝑆2 (𝑡2) ∪ · · · ∪ 𝑆𝑑 (𝑡𝑑) for some integer 𝑑 ≥ 1 and vector of integers 𝒕 = (𝑡1, . . . , 𝑡𝑑) ≥ 0,
where 𝑆1 (𝑡1) = {𝐼 = {1, . . . , 𝑠} | 𝑑 + 1 ≤ 𝑠 ≤ 𝑡1} and 𝑆𝑠 (𝑡𝑠) = {𝐼 = {𝑖1, . . . , 𝑖𝑠} |
1 ≤ 𝑖1 < · · · < 𝑖𝑠 ≤ 𝑡𝑠} for 𝑠 = 2, . . . , 𝑑. The worst-case FOM is then defined as

𝑀𝒕 = 𝑀𝑡1 ,...,𝑡𝑑 = min
1≤𝑠≤𝑑

min
𝐼∈𝑆𝑠 (𝑡𝑠)

ℓ𝐼

𝜔𝐼 ℓ̃
∗
𝑠 (𝑚, 𝑘)

(5)

where 𝑠 = |𝐼 | and ℓ̃∗𝑠 (𝑚, 𝑘) is the normalization upper bound for the 𝑚-dual. This FOM
takes the worst case over all the projections over 𝑠 successive dimensions for 𝑑 < 𝑠 ≤ 𝑡1,
and over sets of possibly non-successive coordinates that are not too far apart in up
to 𝑑 dimensions. Note that giving a smaller weight 𝜔𝐼 to a projection 𝐼 reduces its
importance because the minimum in (5) is then less likely to reached by this projection.
This type of FOM was used in [19,21,28], for example. The special case with 𝑑 = 1 and
unit weights has been used for selecting LCGs and MRGs [11,17,18,24].

When the lattice comes from a linear RNG based on a recurrence, adding the same
integer to all the indexes in the set 𝐼 does not change the point set. Then, imposing the
extra condition 𝑖1 = 1 in the definition of 𝑆𝑠 (𝑡𝑠) does not change the value of 𝑀𝑡1 ,...,𝑡𝑑

and reduces the number of sets 𝐼 to consider. In our implementation, the user has the
choice of imposing this condition or not. We write the FOM 𝑀

(1)
𝒕 when the condition

is imposed. In that case, the new set 𝑆𝑠 (𝑡𝑠) has cardinality
(𝑡𝑠−1
𝑠−1

)
and 𝑀

(1)
𝒕 is a worst

case over (𝑡1 − 𝑑) +∑𝑑
𝑠=2

(𝑡𝑠−1
𝑠−1

)
projections, which can be much smaller than when the

condition 𝑖1 = 1 is not imposed. For 𝑑 = 4 and 𝑡𝑠 = 32 for all 𝑠, for example, we have
5, 019 projections with the condition compared to 41, 444 without it.

When searching for a lattice with the best possible FOM in a given class, it is not
necessary to evaluate all the terms of the FOM for each candidate. We usually keep a
minimal passing target and discard a candidate as soon as we know its FOM will be
below the target. We call this early discard. In case we want to find the 𝑟 best candidates,

10 Pierre L’Ecuyer and Christian Weiß

the target will usually be the FOM of the 𝑟th best retained candidate so far. The order
in which we evaluate the terms in (5) also has an impact on the speed of the search. It is
usually faster to evaluate the low-order terms first: start with the projections of 𝑆2 (𝑡2),
then 𝑆3 (𝑡3), etc., and end with 𝑆1 (𝑡1).

One may also consider a two-stage strategy for the search. In the first stage, we
may use just a fast evaluation (e.g., only LLL and perhaps a vector 𝒕 with smaller
coordinates) to preselect a list of good candidates. In the second stage, we would further
test the retained candidates with a more complete evaluation including BKZ+BB, to
select the best ones. We may also consider more than two stages, narrowing the list
of candidates at each stage. At first, we thought that this would be the most effective
approach, but we found out in our experiments that a single stage is usually as good
or better. The reason is that maintaining a larger list in the first stage makes the early
discard less effective by reducing the passing target.

7 Experimental Results with Lattice Tester

We report a few results from experiments made to compare underlying algorithms,
evaluation methods, and search strategies, for lattices that correspond to LCGs with
with modulus 𝑚 and multiplier 𝑎, similar to the small example of the introduction.
In each case, an initial basis 𝑽0 for the rescaled lattice is obtained by taking 𝒗1 =

(1, 𝑎, 𝑎2 mod 𝑚, . . . , 𝑎𝑡−1 mod 𝑚) and 𝒗𝑖 = 𝑚𝒆𝑖 for 𝑖 = 2, . . . , 𝑡. For all the reported
results, 𝑚 = 1099511627791, a prime integer near 240, and the flexible types are Int =
NTL::ZZ, Real = double. The computations were made on a Intel Core i9-12900H
processor running Ubuntu. The programs used for these experiments (and many more)
are included in the GitHub distribution and explained in [23].

7.1 Comparing basis construction methods

Here we test and compare methods that construct a triangular or LLL-reduced basis,
in up to 70 dimensions. We start with the basis 𝑽0 and apply LLL with 𝛿 = 0.5 to
obtain another basis 𝑽1 made of shorter vectors. Then we apply the lower-triangular
construction method of Section 3 to 𝑽1 to obtain 𝑽2, we apply the upper-triangular
method to 𝑽1 to obtain 𝑽3, and we apply it again to 𝑽3 to construct 𝑽4, just to see how
much faster the algorithm runs when the basis is already upper-triangular. After that,
we compute 𝑽5 as the 𝑚-dual of 𝑽4 as in Section 3, and we apply LLL with 𝛿 = 0.5 to
𝑽5 to obtain a reduced 𝑚-dual basis 𝑽6. We transform 𝑽6 to a lower-triangular 𝑚-dual
basis, then transform it to an upper-triangular 𝑚-dual basis, then repeat this with the
old triangularization method of [5]. We repeat all of this for 1000 different multipliers
𝑎, in 10, 20, . . . , 70 dimensions. For each type of transformation and each number of
dimensions, we collect the total computing time for the 1000 multipliers. These times
are reported in Figure 2.

We find that building a triangular primal basis or a lower-triangular 𝑚-dual basis
is much faster than applying LLL, although computing an upper-triangular 𝑚-dual
basis turns out to be slower than computing a lower-triangular one in this setting. The

Lattice Tester 11

Num. dimens.: 10 20 30 40 50 60 70

LLL 0.5 65522 218894 404905 664439 998318 1441736 1978508
LowTri 7506 20418 32563 45374 59742 75688 92373
UppTri 7504 20460 33221 45965 60206 75519 91994
UppTri2 3356 7445 12948 20297 29253 39084 50442
mDualUp 2336 11207 35725 82420 155578 256210 395274
LLLDual 0.5 39642 107380 148186 197315 258669 335396 431495
LowTriDual 26896 81010 115344 156796 206513 262508 325442
UppTriDual 24431 102341 226101 381063 568147 786156 1025855
UppTriDualOld 76137 369105 833980 1511613 2457780 3725551 5353556

Fig. 2. Timings for basis construction methods in microseconds, with 𝑚 = 1099511627791.

triangularization algorithm runs faster when the basis is already triangular. The old
triangulation algorithm (UppTriDualOld) is about five times slower than the new one.

We made a similar experiment to assess the speed and effectiveness of the LLL
algorithm, using the same 1000 lattices. In the following, we use the notation LLL𝑥
to denote LLL with factor 𝛿 = 0.𝑥. From the initial basis 𝑽0, we first apply LLL5
(𝛿 = 0.5), then apply LLL8 to the resulting basis, then LLL99, and finally LLL99999
(𝛿 = 0.99999), each time recording the squared length of the shortest basis vector. After
that, we apply LLL99999 directly to 𝑽0 (this is labeled LLL99999-new). We want to
see if the incremental reduction could be faster and/or lead to a shorter shortest vector
than the direct reduction with the large 𝛿. Then, we transform the reduced basis to
an upper-triangular one, compute its 𝑚-dual (which is lower triangular), and apply the
same sequence of LLL reductions to this 𝑚-dual basis. We repeated this for the 1000
multipliers 𝑎.

Figure 3 reports the timings and the average square length of the shortest vector for
each case, to assess the effectiveness of LLL. By comparing the average square lengths
for LLL with 𝛿 = 0.5 and 𝛿 = 0.99999 in Figure 3, we see that taking 𝛿 closer to 1 gives
significantly shorter vectors. Performing LLL by increasing 𝛿 incrementally is often
faster than doing it directly with a 𝛿 very close to 1, and often leads to shorter vectors
than when we call LLL directly with the largest 𝛿. This suggests that an incremental
approach may provide a better pre-reduction, which could lead to a faster BB algorithm
afterward. As an illustration, in Table 3, in 30 dimensions, the sum of times for LLL5,
LLL8, LLL99, and LLL99999 is about 1.13 seconds and the sum of square lengths of
shortest vectors after these reductions is about 4.219× 1026, whereas the corresponding
values for LLL99999-new are 1.87 seconds and 4.285 × 1026. The behavior is similar
for the 𝑚-dual.

7.2 Testing reduction methods and the BB

We now compare the performances of different pre-reduction strategies when finding a
shortest nonzero vector with the BB algorithm, for both the primal and the 𝑚-dual, this

12 Pierre L’Ecuyer and Christian Weiß

Timings for different methods, in microseconds (10^{-6} seconds):

Num. dimens.: 10 20 30 40 50 60 70

LLL5 64869 219722 403349 662631 992828 1425139 1952965
LLL8 9454 105528 320263 558927 867797 1249442 1740953
LLL99 6439 59711 324137 756823 1158413 1640169 2256611
LLL99999 4446 22733 87235 235154 217145 341597 525429
LLL99999-pnew 86986 664243 1867248 3270545 4839269 6671719 8795632
UppTri 7345 19610 38004 60208 78052 96182 116560
mDualUT 2173 10891 31267 69461 130790 221707 345579
LLL5-dual 38815 106590 145790 191292 248674 321531 414551
LLL8-dual 8910 88210 214656 285721 365275 465224 585702
LLL99-dual 6054 53389 250845 477284 605111 750198 922590
LLL99999-dual 4281 22005 72351 160969 253837 364170 474355
LLL99999-dnew 46986 258713 646636 937362 1079113 1239884 1424416

Average square length of shortest basis vectors:

Num. dimens.: 20 30 40 50 60

LLL5 2.1623e+23 9.0331e+23 1.2074e+24 1.2089e+24 1.2089e+24
LLL99999 1.1352e+23 4.2196e+23 9.4600e+23 1.2085e+24 1.2089e+24
LLL99999-pnew 1.1383e+23 4.2847e+23 9.7951e+23 1.2085e+24 1.2089e+24
LLL5-dual 46.535 39.233 35.574 33.287 31.688
LLL8-dual 26.056 17.529 16.349 15.647 15.085
LLL99999-dual 24.939 14.647 12.784 12.226 11.873
LLL99999-dnew 25.152 14.923 13.271 12.819 12.487

Fig. 3. Timings in microseconds and average square length for LLL with 𝑚 = 1099511627791.

time with 50 choices of multipliers. For each strategy, the basis is pre-reduced and then
the BB algorithm is called to find a shortest vector. We compute the time to do this, the
square length of the shortest basis vector, and the number of calls to the recursive BB
procedure (the number of visited nodes in the BB tree). Figure 4 reports the average
values for selected cases, for the𝑚-dual lattices with the 𝐿2 norm and using the Cholesky
decomposition for the BB. Here, BKZ𝑥-𝑘 means BKZ with factor 𝛿 = 0.𝑥 and block
size of 𝑘 , and “+BB” means that BB was applied.

We find that applying BKZ with a large 𝑘 before the BB is much more effective
than applying LLL, especially in large dimensions, and using an incremental strategy
for LLL does not bring much gain when BKZ is applied. In 20 dimensions or less, we
do not see much difference between the pre-reduction methods applied before BB. But
if we apply only LLL, the BB gets much slower than with BKZ, even with 𝛿 = 0.99999,
because the pre-reduction is not as good, so the BB tree has more nodes. If we apply
only LLL with a smaller 𝛿, such as LLL5 and LLL9, the BB fails frequently in the larger
dimensions, because there are way too many nodes to examine in the BB tree. This is
why LLL5+BB and LLL9+BB are not shown in the table. Doing the BB without any
LLL or BKZ reduction is also totally impractical, it fails most of the time even in 5

Lattice Tester 13

DUAL lattice, Norm: L2NORM, Decomposition: CHOLESKY.

Num. dimensions: 5 10 20 30 40

Computing times in microseconds:

LLL5 667 2119 5420 7349 11160
LLL99999 586 2532 13435 32540 46944
BKZ99999-10 575 2509 17465 67577 168436
L5+L9+BKZ-10 663 2768 17659 65919 162216

LLL99999+BB 660 3207 19430 208532 73554207
BKZ99999-12+BB 517 2871 24310 152247 14199518
L5+L9+BKZ-12+BB 674 3355 24001 160298 12090483

Average square length of shortest basis vector:

LLL5 36783.7 255.0 46.82 40.64 36.38
LLL99999 36395.1 231.9 25.38 14.84 13.50
BKZ99999-10 36395.1 231.4 25.16 14.28 11.94
L5+L9+BKZ-10 36395.1 231.4 25.14 14.26 11.86
All +BB methods 36395.1 231.4 25.14 14.10 11.50

Average number of calls to the recursive BB procedure:

LLL99999+BB 5 16 793 129459 58161623
BKZ99999-12+BB 5 16 693 53608 11006050
L5+L9+BKZ-12+BB 5 16 668 56555 9309786

Fig. 4. Comparing pre-reductions for 𝑚 = 1099511627791.

dimensions. Note that when BB is applied and succeeds, the length of the shortest basis
vector must be the same for all pre-reduction methods.

For the first four rows of the table, only pre-reductions are applied (no “+BB”).
These “methods” are much faster, but do not return a shortest vector, especially in large
dimensions. For instance, in 30 and 40 dimensions, the average square length is more
than three times larger after LLL5 only than after BB. This is very significant!

Results for other values of 𝑚, higher dimensions, other Real types, for the primal
and dual lattices, the 𝐿1 and 𝐿2 norms, bounds based on a triangular basis, etc., are
given in [23]. We find there that computing a shortest vector with the 𝐿1 norm is slower
than with the 𝐿2 norm with the Cholesky decomposition, and that using bounds based
on a triangular basis is usually much slower than with the Cholesky decomposition.

7.3 Searching for a lattice with the best FOM

This example compares different methods for finding the 3 best LCG multipliers 𝑎

among 100, 000 different ones, in terms of the FOM 𝑀
(1)
𝒕 for 𝒕 = (𝑡1, . . . , 𝑡𝑑) =

(32, 32, 16, 12, 10), for either the primal or the 𝑚-dual lattices. Method 1 computes all
the terms of the FOM for each 𝑎 (no early discarding) using BKZ+BB with 𝛿 = 0.99999
and 𝑘 = 10. Method 2 applies the same BKZ+BB, but uses early discarding. Method

14 Pierre L’Ecuyer and Christian Weiß

3 applies only LLL with 𝛿 = 0.99999 and also use early discarding. Method 4 uses
two stages with early discarding at each stage. The first stage uses only LLL99999 and
retains the 50 best multipliers, while the second stage tests the latter as in Method 3.
Method 5 does the same but replaces 𝒕 by 𝒕0 = (4, 32, 16, 12) on the first stage. Table 1
summarizes the results. It gives the CPU time (in seconds) for each method, for the
primal and the 𝑚-dual. For Methods 4 and 5, we give the timing for each stage. We see
that the second stage takes negligible time compared to the first stage. Method 1 is much
too slow and Method 4 is not really competitive with Methods 2, 3, 5. Methods 4 and 5
are also not guaranteed to return the three best 𝑎, because there is a chance that one of
them could be eliminated in the first stage. In our experiment, all methods returned the
same best, but Methods 4 and 5 sometimes missed the second and third best. Moreover,
the two-stage approach was never faster in our tests.

Table 1. Timings for the search example with 𝑚 = 1099511627791.

method primal 𝑚-dual
1. BKZ+BB, naive 2427.2 2253.2
2. BKZ+BB, discard 7.3 9.0
3. LLL only, discard 7.0 8.6
4. Two stages, stage 1 with LLL 13.4 15.1

stage 2 with BKZ+BB 0.024 0.03
5. Two stages, stage 1 with LLL and 𝒕0 7.2 9.6

stage 2 with BKZ+BB and 𝒕 0.024 0.05

8 Conclusion

We have described Lattice Tester and showed examples of what it can do. Its main goal is
to compute a shortest nonzero vector in an integral lattice. This is done via a BB integer
programming algorithm. We have shown that applying strong pre-reductions such as
LLL or BKZ before the BB is practically essential for the algorithm to be effective in
large dimensions. LLL or BKZ alone often provide a very short vector by themselves,
sometimes a shortest one, but not always, especially in large dimensions. The user guide
[23] and the GitHub site [25] provide much more details about Lattice Tester, including
algorithm descriptions, examples, a detailed description of the API, and the source code.
We plan to use it in the near future to search for good parameters for new RNGs.

Acknowledgement

This work has been supported by the NSERC Discovery Grant RGPIN-2018-05795 to
Pierre L’Ecuyer. Erwan Bourceret, Raymond Couture, Marc-Antoine Savard, Richard
Simard, and Mamadou Thiongane contributed to the C++ code.

Lattice Tester 15

References

1. Afflerbach, L., Grothe, H.: Calculation of Minkowski-reduced lattice bases. Computing 35,
269–276 (1985)

2. Bremner, R.M.: Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its
Applications. Pure and Applied Mathematics. Chapman & Hall, CRC Press (2012)

3. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Grundlehren
der Mathematischen Wissenschaften 290. Springer-Verlag, New York (1999)

4. Couture, R., L’Ecuyer, P.: Linear recurrences with carry as random number generators. In:
Proceedings of the 1995 Winter Simulation Conference, pp. 263–267 (1995)

5. Couture, R., L’Ecuyer, P.: Orbits and lattices for linear random number generators with
composite moduli. Mathematics of Computation 65(213), 189–201 (1996)

6. Couture, R., L’Ecuyer, P.: Distribution properties of multiply-with-carry random number
generators. Mathematics of Computation 66(218), 591–607 (1997)

7. Coveyou, R.R., MacPherson, R.D.: Fourier analysis of uniform random number generators.
Journal of the ACM 14, 100–119 (1967)

8. Dick, J., Kritzer, P., Pillichshammer, F.: Lattice Rules: Numerical Integration, Approximation,
and Discrepancy. Springer (2022)

9. Dieter, U.: How to calculate shortest vectors in a lattice. Mathematics of Computation
29(131), 827–833 (1975)

10. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis. Mathematics of Computation 44, 463–471 (1985)

11. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in
Operations Research. Springer-Verlag, New York, NY (1996)

12. Helfrich, B.: Algorithms to construct Minkowski-reduced and Hermite-reduced lattice bases.
Theoretical Computer Science 41, 125–139 (1985)

13. Hickernell, F.J., Hong, H.S., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for
quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing 22(3), 1117–1138
(2001)

14. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
third edn. Addison-Wesley, Reading, MA (1998)

15. L’Ecuyer, P.: Random numbers for simulation. Communications of the ACM 33(10), 85–97
(1990)

16. L’Ecuyer, P.: Combined multiple recursive random number generators. Operations Research
44(5), 816–822 (1996)

17. L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random
number generators. Operations Research 47(1), 159–164 (1999)

18. L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice
structure. Mathematics of Computation 68(225), 249–260 (1999)

19. L’Ecuyer, P.: Uniform random number generation. In: S.G. Henderson, B.L. Nelson (eds.)
Simulation, Handbooks in Operations Research and Management Science, pp. 55–81. Else-
vier, Amsterdam, The Netherlands (2006). Chapter 3

20. L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Finance and Stochas-
tics 13(3), 307–349 (2009)

21. L’Ecuyer, P.: Random number generation. In: J.E. Gentle, W. Haerdle, Y. Mori (eds.) Hand-
book of Computational Statistics, second edn., pp. 35–71. Springer-Verlag, Berlin (2012)

22. L’Ecuyer, P.: Randomized quasi-Monte Carlo: An introduction for practitioners. In: P.W.
Glynn, A.B. Owen (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2016, pp.
29–52. Springer, Berlin (2018)

16 Pierre L’Ecuyer and Christian Weiß

23. L’Ecuyer, P.: Lattice Tester guide (2025). https://www-labs.iro.umontreal.ca/~lecuyer/papers.
html

24. L’Ecuyer, P., Blouin, F., Couture, R.: A search for good multiple recursive random number
generators. ACM Transactions on Modeling and Computer Simulation 3(2), 87–98 (1993)

25. L’Ecuyer, P., Bourceret, E., Munger, D., Savard, M.A., Simard, R., Thiongane, M., Weiss, C.:
Lattice Tester (2025). https://github.com/pierrelecuyer/latticetester

26. L’Ecuyer, P., Bourceret, E., Munger, D., Savard, M.A., Simard, R., Wambergue, P.: Latmrg
(2022). https://github.com/umontreal-simul/LatMRG

27. L’Ecuyer, P., Couture, R.: An implementation of the lattice and spectral tests for multiple
recursive linear random number generators. INFORMS Journal on Computing 9(2), 206–217
(1997)

28. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Management Science 46(9),
1214–1235 (2000)

29. L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC
and RQMC point sets. In: A. Keller (ed.) Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC 2020, pp. 51–70. Springer, Berlin (2022)

30. L’Ecuyer, P., Munger, D.: On figures of merit for randomly-shifted lattice rules. In: H. Woźni-
akowski, L. Plaskota (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159.
Springer-Verlag, Berlin (2012)

31. L’Ecuyer, P., Simard, R.: Beware of linear congruential generators with multipliers of the
form 𝑎 = ±2𝑞 ± 2𝑟 . ACM Transactions on Mathematical Software 25(3), 367–374 (1999)

32. L’Ecuyer, P., Simard, R.: On the lattice structure of a special class of multiple recursive
random number generators. INFORMS Journal on Computing 26(2), 449–460 (2014)

33. L’Ecuyer, P., Touzin, R.: Fast combined multiple recursive generators with multipliers of the
form 𝑎 = ±2𝑞 ±2𝑟 . In: Proceedings of the 2000 Winter Simulation Conference, pp. 683–689.
IEEE Press (2000)

34. L’Ecuyer, P., Touzin, R.: On the Deng-Lin random number generators and related methods.
Statistics and Computing 14, 5–9 (2004)

35. L’Ecuyer, P., Wambergue, P., Bourceret, E.: Spectral analysis of the MIXMAX random
number generators. INFORMS Journal on Computing 32(1), 135–144 (2020)

36. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer-Verlag (2009)
37. Lemieux, C., L’Ecuyer, P.: A comparison of Monte Carlo, lattice rules and other low-

discrepancy point sets. In: H. Niederreiter, J. Spanier (eds.) Monte Carlo and Quasi-Monte
Carlo Methods 1998, pp. 326–340. Springer-Verlag, Berlin (2000)

38. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients.
Math. Ann. 261, 515–534 (1982)

39. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. No. 50 in SIAM
CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1986)

40. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications. Springer
Verlag, Berlin, Heidelberg (2010)

41. Pohst, M.: On the computation of lattice vectors of minimal length, successive minima and
reduced bases with applications. ACM SIGSAM Bulletin 15, 37–44 (1981)

42. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical
Computer Science 53(2), 201–224 (1987)

43. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solv-
ing subset sum problems. In: L. Budach (ed.) Fundamentals of Computation Theory: 8th
International Conference, pp. 68–85. Springer-Verlag, Berlin, Heidelberg (1991)

44. Shoup, V.: NTL: A Library for doing Number Theory. Courant Institute, New York University,
New York, NY (2018). https://shoup.net/ntl/

45. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

https://www-labs.iro.umontreal.ca/~lecuyer/papers.html
https://www-labs.iro.umontreal.ca/~lecuyer/papers.html
https://github.com/pierrelecuyer/latticetester
https://github.com/umontreal-simul/LatMRG
https://shoup.net/ntl/

	Lattice Tester: A Software Tool to Analyze Integral Lattices

