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We propose and analyze a generalized splitting method to sample approximately from a distribution condi-

tional on the occurrence of a rare event. This has important applications in a variety of contexts in operations

research, engineering, and computational statistics. The method uses independent trials starting from a sin-

gle particle. We exploit this independence to obtain asymptotic and non-asymptotic bounds on the total

variation error of the sampler. Our main finding is that the approximation error depends crucially on the

relative variability of the number of points produced by the splitting algorithm in one run, and that this rel-

ative variability can be readily estimated via simulation. We illustrate the relevance of the proposed method

on an application in which one needs to sample (approximately) from an intractable posterior density in

Bayesian inference.
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1. Introduction

We consider the problem of generating samples from a conditional distribution when the

conditioning is on the occurrence of an event that has a small probability. We have a

random variable X defined over a probability space (Rd,B,P), where B can be taken as

the Borel sigma-field, and X has a probability density function (pdf) f . We assume it is

easy to sample exactly from the density f . The rare event on which we condition can be

written in the form B = {S(x)≥ γ} ∈ B for an appropriately chosen measurable function

S : Rd→R called the importance function. The conditional pdf is then

q(x) =
f(x)I{S(x)≥ γ}

`(γ)
, x= (x1, . . . , xd)

>, (1)
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where I is the indicator function, and

`= `(γ) = P(S(X)≥ γ) (2)

is the appropriate (unknown) normalizing constant, which we assume is so small that

estimating it via the naive acceptance-rejection method (simulate X ∼ f until S(X)≥ γ)

is impractical.

Sampling from a distribution conditional on a rare event has many applications. For

example, suppose we want to generate X from an arbitrary density proportional to p(x)

for x ∈ Rd, for some known function p, and that it is too hard to generate samples

directly from this density. Since p is known, we may be able to find a density f such that

supx p(x)/f(x)< γ for some constant γ <∞. Then to generate X, it suffices to generate

a pair of independent random variables X ∼ f and U ∼ U(0,1) conditional on the event

p(X)/f(X)≥ γU , which is frequently a rare event (Kroese et al. 2011)[Section 14.5]. This

fits our framework by taking S((x, u)) = p(x)/(f(x)u).

Another application is Bayesian Lasso regression (Park and Casella 2008), in which

inference requires repeated simulation of a vector β of model parameters, conditional on

the regularization constraint ‖β‖1 <γ. We give a detailed example of this in Section 5.

A third type of application occurs in the setting where we want to estimate the proba-

bility ` of the rare event and to understand under which circumstances the rare event is

likely to occur. A popular method to estimate ` is importance sampling, and the optimal

way to do it is to sample under a density f proportional to the original density conditional

on the rare event, and then adjust the estimator using a likelihood ratio (Tuffin et al. 2014,

Botev and Ridder 2014, Botev et al. 2011). This also fits our framework. In this context,

it can be very useful to sample from the conditional density to get insight on how the rare

event occurs. For instance, in a network with unreliable links, one may want to sample

random configurations of all the links conditionally on a failure of the network, to better

understand what (typically) makes the network fail (Botev et al. 2014, 2012).

The sampling methods examined in this paper are based on the generalized splitting

(GS) algorithm of Botev and Kroese (2012) for drawing a collection of random vectors

whose distribution converges to a target distribution with pdf of the form (1). To apply

GS, we first select an increasing sequence of levels −∞ = γ0 < γ1 < · · · < γτ = γ for the

importance function S. This can be done in pilot runs via a run (Botev and Kroese 2012).
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The algorithm uses a branching process that favors states X having a large value of S(X)

by resampling them conditional on staying above the current threshold, thus “splitting”

those states into new copies, and then discarding those that do not reach the next level.

At the end, the states that have reached the last level γ are retained. This process is

replicated several times independently and all the retained states are collected to form an

empirical version of the target conditional distribution. There are many ways of choosing

the total number of replications (or trials). For example, one can fix them in advance to

a constant n, or one can repeat the procedure until n trials have provided at least one

retained state each, or until the total number of retained states is more than t, or until

a certain computing budget (CPU time) has elapsed. In the latter case, one can either

complete the current trial, or discard it, or just take the states retained so far from that

trial.

There is a large variety of splitting-type or interacting particle algorithms to sample

the state of a Markov chain approximately from its steady-state distribution conditional

on a rare event; see for example Glasserman et al. (1999), Cérou et al. (2005), Cérou

et al. (2012), L’Ecuyer et al. (2007, 2009), Andrieu et al. (2010), Bréhier et al. (2016),

and the references given there. The analysis of these algorithms consists in most cases

in proving their unbiasedness when estimating the expectation of a random variable that

can be nonzero only when the rare event occurs (estimating the probability of the rare

event is a special case of this), and sometimes showing their asymptotic efficiency when

the probability of the rare event decreases toward zero (Dean and Dupuis 2009).

In this paper, we are interested in the different problem of bounding the difference

between the exact conditional distribution and the distribution obtained by picking a state

from the sample returned by the splitting algorithm. We do this for some variants of the

GS method of Botev and Kroese (2012). L’Ecuyer et al. (2018) proved that this method

provides an unbiased estimator of the expected value of a cost function, but also showed

that a state picked at random from the set of retained states at the last level does not

follow the true conditional distribution in general.

On the other hand, the distance between the two distributions converges to zero when

the number of replicates increases toward infinity. The aim of the present paper is to study

how this convergence occurs and to establish explicit non-asymptotic (risk) bounds on the

total variation (TV) error between the two distributions, their mean absolute value, and
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the expectation of the TV error in the case when it is a random variable. Our bounds are

expressed in terms of simple mathematical expectations that can be estimated easily from

the simulation output.

We provide convergence results for two versions of the GS algorithm. In both, we assume

that whenever a trial returns no state from the rare event set (an empty trial), we discard

it and try again. In the first version, we run GS until we have n non-empty trials, for

some fixed n> 0. We prove that the TV distance between the true conditional distribution

and the distribution of a state picked at random from the retained states from this GS

version is bounded by c1/n where c1 is an unknown constant that can be estimated from

the simulation output. In the second version, we run GS until the total number of retained

states exceeds t, for some fixed positive integer t. For this version, we show that the

convergence rate is of the form c2(t)t
−3/2 =O(t−3/2), where the quantity c2(t) is bounded

uniformly in t and can be estimated from the simulation output. The derivation of these

bounds is made possible thanks to the fact that GS produces independent trials, each one

starting from a single particle, and this permits us to use results from renewal theory for

our analysis.

Typically, approximate simulation from the target pdf (1) is accomplished using Markov

chain Monte Carlo (MCMC) (for example, Jones and Hobert (2001), Taimre et al. (2019)).

While MCMC sampling can be simple to implement, it still poses the challenge of analyzing

its output and deciding how close the sampling or empirical distribution is to the desired

target distribution (Jones and Hobert 2001). The reason for this difficulty is that MCMC

generates a sequence of dependent random vectors Y 1,Y 2, . . .. Typical graphical diagnostic

tools like autocorrelation plots are heuristics, which do not easily provide precise qualitative

measure of how close the simulated random variables follow the target distribution. Also

we have to choose from an infinite number of possible one-dimensional plots. In contrast,

our bounds on the TV error present a more rigorous and theoretically justified convergence

assessment than the autocorrelation plots typically used in MCMC.

The rest of the paper is organized as follows. In Section 2, we recall the GS algorithm used

in this paper. In Section 3, we define our versions of GS used for sampling conditional on the

rare event. In Section 4, we state our main new results on the convergence of the distance

between the empirical and true conditional distributions, and bounds on this distance. The

proofs are given in the Online Supplement. In Section 5, we show how our methodology
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can be applied in a practical setting, namely to sample approximately from the posterior

density of the Bayesian Lasso. In this example, we show how the non-asymptotic risk

bounds can be used to assess convergence and to estimate the error committed when using

GS to sample from the conditional distribution. We also compare the simulation accuracy

of GS with that of the sequential Monte Carlo method (Cérou et al. 2012).

2. Background on Generalized Splitting

We recall the GS method for estimating the rare-event probability ` in (2). This method is a

simple generalization of the classical multilevel splitting technique for rare-event simulation

(Kahn and Harris 1951, Glasserman et al. 1999, Garvels et al. 2002, L’Ecuyer et al. 2009).

Our background material here is similar to the one given in L’Ecuyer et al. (2018).

The idea of GS is to define a discrete-time Markov chain with state Y , which evolves

via a branching-type random mechanism that pushes it toward a state corresponding to

{Y ∈B} ≡ {S(Y )≥ γ} in (1). To estimate the (rare-event) probability (2) via GS, we first

need to choose:

1. an integer s≥ 2, called the splitting factor, and

2. an integer τ > 0 and real numbers −∞= γ0 <γ1 < · · ·<γτ = γ for which

ρl := P(S(Y )≥ γl | S(Y )≥ γl−1)≈ 1/s

for l = 1, . . . , τ (except for ρτ , which can be larger than 1/s). These γl’s represent the τ

levels of the splitting algorithm. In Section 5 we give particular choices of s and τ that are

relevant to our examples.

For each level γl we construct a Markov chain whose stationary density is equal to the

density of Y conditional on S(Y )≥ γl (a truncated density), given by

ql(y) := f(y)
I{S(y)≥ γl}
P(S(Y )≥ γl)

. (3)

Note that q0 = f and qτ = q. We denote by κl ≡ κl(· | ·) the transition kernel of this Markov

chain: κl(dy | x) represents the probability that the next state is in dy when the current

state is x. There are many ways of constructing this Markov chain and κl. A practical

example using Gibbs sampling will be given in Section 5.
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Algorithm 1 GS Sampler 1
Require: s, τ , γ1, . . . , γτ

generate a vector Y from its unconditional density f

if S(Y )<γ1 then

return Xτ = ∅ and M̊ = 0

else

X1←{Y } {this state Y has reached at least the first level}

for l= 2 to τ do

Xl←∅ {list of states that have reached the level γt}

for all Y ∈Xl−1 do

set Y 0←Y {we will simulate s steps from this state}

for j = 1 to s do

sample Y j from κl−1(dy |Y j−1)

if S(Y j)≥ γl then

add Y j to Xl {this state has reached the next level}

return the list Y̊ =Xτ of retained states and its cardinality M̊ .

The original GS algorithm is summarized in Algorithm 1, and is also given in L’Ecuyer

et al. (2018). The algorithm returns a list Y̊ of retained states that belong to B = {y :

S(y)≥ γ}, as well as the size of this list. This list is a multiset, in the sense that it may

contain the same state more than once. The list Y̊ can be empty and its cardinality M̊ = 0.

The o-ring symbol in the notation is a reminder that the size of the set can be zero. In the

remainder of this article, we define Y and M as the versions of Y̊ and M̊ , conditional on

M̊ ≥ 1.

Let A denote a σ-algebra of Borel measurable subsets of Rd. For some of our results, A

will be a more restricted class than the Borel subsets of Rd. Algorithm 1 can be used to

estimate P(Y ∈A) for any A∈A via the unbiased estimator:

P̂(A) = H̊(A)/sτ−1, (4)

where H̊(A) = |Y̊ ∩A| is the number of states Y ∈ Y̊ that belong to A. In practice, one will

replicate this algorithm several times and take the average. The unbiasedness is implied

by the following lemma, proved in L’Ecuyer et al. (2018).
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Lemma 1 (L’Ecuyer et al. (2018)). For any measurable function ~ : Rd 7→R and any

measurable subset A⊆B, we have

EGS

∑
Y ∈Y̊

~(Y )I{Y ∈A}

= sτ−1E[~(Y )I{Y ∈A}], (5)

where the expectation on the left-hand-side is with respect to Y̊ from Algorithm 1 and the

expectation on the right-hand-side is with respect to the original density f .

By taking ~ as the identity function in (5), we obtain that P̂(A) in (4) is unbiased for

P(A):

EGS[H̊(A)] = EGS

[∑
Y ∈Y̊ I{Y ∈A}

]
= sτ−1P(Y ∈A),

and therefore

EGS[P̂(A)] = EGS[H̊(A)/sτ−1] = P(Y ∈A).

Moreover, since EGS[M̊ ] = sτ−1P(Y ∈B) and A⊆B, we have that

EGS[H̊(A)]

EGS[M̊ ]
= P(Y ∈A |Y ∈B) =

P(Y ∈A)

P(Y ∈B)
.

3. Sampling Conditionally on a Rare Event

When estimating an expectation as in (5), an empty list Y̊ poses no problem: the unbiased

estimator just takes the value 0 in that case. But for our purpose of sampling from a

conditional distribution, we insist that there are no empty sets of retained states. To make

sure that the set of retained states is non-empty, we modify the original GS so that each

trial returns at least one state. Whenever a GS run returns an empty list, we simply discard

it and try again. This gives Algorithm 2.

Algorithm 2 GS Sampler 2
Require: s, τ , γ1, . . . , γτ

repeat

run Algorithm 1

until M̊ > 0

return the list Y =Xτ of retained states and its cardinality M = |Y|.

Does this algorithm still provide an unbiased estimator? An important observation is

that if we replace Y̊ by Y in (5), the equality is no longer true. That is, we get a biased
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estimator of the expectation on the right. However, our main goal here is not to estimate

this expectation, but to sample approximately from the conditional distribution, and we

will analyze methods that use Algorithm 2 for this purpose. As mentioned earlier, there

are several ways of doing it. In this paper, we examine the following two versions: (a) run

a fixed number n of iid replicates of Algorithm 2 and (b) perform replicates until there are

more than t retained states in total. These two approaches are detailed in Algorithms 3

and 4, respectively. In both cases, at the end we collect all the retained states in a multiset

Y∪. For the first version the cardinality of the returned set Y∪ is at least n, whereas in the

second case it is at least t and N(t) is the (random) number of calls to Algorithm 2. We

summarize these two versions as follows.

Algorithm 3 Sampling an empirical distribution from n iid non-empty GS replications
Require: s, τ, γ1, . . . , γτ and n

for i= 1, . . . , n do

run Algorithm 2 to obtain the list Yi of size Mi

return the empirical distribution Q̂n of the states in the set Y∪ :=Y1 ∪ · · · ∪Yn

Algorithm 4 Sampling an empirical distribution with more than t retained states
Require: s, τ, γ1, . . . , γτ and t

i← 0 and T0← 0

repeat

i← i+ 1

run Algorithm 2 to obtain the list Yi and its cardinality Mi

Ti← Ti−1 +Mi

until Ti > t

return N(t)← i and the empirical distribution Q̂N(t) of the set of states Y∪ :=Y1 ∪ · · · ∪YN(t)

Note that Q̂n (or Q̂N(t)) is a random distribution; it is the distribution conditional on

Y∪. The unconditional distribution of a state obtained by generating Y∪ and then selecting

one state randomly from Y∪ is also of interest: this is the (a priori) distribution of a state

sampled from Q̂n (or Q̂N(t)), but before we run the GS algorithm to construct Y∪. We will

denote these two unconditional distributions by

Qn(A) := E[Q̂n(A)] (for Algorithm 3)
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and

Qt(A) := E[Q̂N(t)(A)] (for Algorithm 4)

for all A∈A, where the expectation is with respect to the realization of Y∪. We saw earlier

that
E[H̊(A)]

E[M̊ ]
= P(Y ∈A |Y ∈B).

Now let H(A) = |Y ∩A| be the number of states returned by Algorithm 2 that belong to A.

We have E[H(A)] = E[H̊(A) |M̊ > 0] = E[H̊(A)]/P(M̊ > 0). Likewise, E[M ] = E[M̊ ]/P(M̊ >

0). Therefore,
E[H(A)]

E[M ]
=

E[H̊(A)]

E[M̊ ]
= P(Y ∈A |Y ∈B).

We also know that Q̂n(A) and Q̂N(t)(A) converge with probability one to E[H(A)]/E[M ]

when n→∞ and when t→∞, respectively, from the strong law of large numbers applied

to the numerator and the denominator. Thus, they converge almost surely to the desired

conditional probability Q(A) := P(Y ∈A |Y ∈B).

4. Convergence Analysis

We now analyze the convergence of the empirical distribution of the retained states, Q̂n

(or Q̂N(t)), as well as its expected (i.e., unconditional on Y∪) version Qn (or Qt), to the

true conditional distribution Q. The aim is to obtain non-asymptotic or risk bounds on

the distance between Q and the empirical distribution, and its expected (unconditional)

version. For a given class A of measurable sets, we consider the three error criteria:

1. The TV error between the expected (unconditional) distribution Qn and Q, that is:

sup
A∈A
|Qn(A)−Q(A)| .

This error measures the size of the “bias” of Q̂n as an estimator of the true Q.

2. The worst-case mean absolute error of the conditional distribution Q̂n, defined as:

sup
A∈A

E
∣∣∣Q̂n(A)−Q(A)

∣∣∣ .
3. The (random) TV error, supA∈A

∣∣∣Q̂n(A)−Q(A)
∣∣∣, of the conditional distribution Q̂n,

and its expected value:

E sup
A∈A

∣∣∣Q̂n(A)−Q(A)
∣∣∣ .
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By permuting the positions of the expectation, absolute value function, and the supremum

(sup |E[·]| → supE| · | →E sup | · |), we find that the three error criteria dominate each other

as follows:
expected TV error︷ ︸︸ ︷

E sup
A⊆A
|Q̂n(A)−Q(A)| ≥ sup

A⊆A

mean absolute error︷ ︸︸ ︷
E|Q̂n(A)−Q(A)| ≥

TV error︷ ︸︸ ︷
sup
A⊆A
|E[Q̂n(A)]−Q(A)| .

In other words, the expected TV error is the most stringent of these three errors. In fact, the

(expected) TV error of the empirical distribution is so stringent that it does not converge,

unless the class of sets A is restricted. To ensure convergence, in Section 4.2 we will take

A to be a restricted class of subsets. In contrast, the TV and mean absolute errors do not

require any restrictions on the class A and for these error criteria we simply take A to be

the class of all Borel subsets of Rd.

4.1. Convergence of Total Variation and Mean Absolute Errors

Let m :=E[M ] and Var(M) denote the expectation and variance of M , which is the output

of either Algorithm 3, or Algorithm 4. In this section, we state theorems giving non-

asymptotic bounds on the TV error and the (worst-case) mean absolute error. The proofs

of the following results are in the Online Supplement.

Theorem 1 (Sampling via n iid runs of GS). The TV error is bounded as

sup
A
|Qn(A)−Q(A)| ≤ c1n

−1

where c1 :=
(
Var(M) +

√
Var(M)E[M 2]

)
m−2. The worst-case mean absolute error is

bounded as

sup
A

E|Q̂n(A)−Q(A)| ≤ c̃1(n)n−1/2

where c̃1(n) :=
(√

EM 2 +
√

3EM 4/n
)
m−1 is bounded uniformly in n.

The terms c1 and c̃1(n) in these bounds can be estimated from the simulation output.

Theorem 2 (Sampling until GS returns t states). In this case, the TV error is

bounded as

sup
A
|Qt(A)−Q(A)| ≤ c2(t)(t/m)−3/2,

where c2(t) :=
√

(4/3)E[M 3]E[M 2] (m+E[M 2]/t) m−3 is bounded uniformly in t. The

worst-case mean absolute error is bounded as

sup
A

E|Q̂N(t)(A)−Q(A)| ≤ c̃2(t)(t/m)−1/2,
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where c̃2(t) := (EM 2)1/2m−1 + (EM 2)m−3/2t−1/2 is also uniformly bounded in t.

Again, the terms c2(t) and c̃2(t) can be estimated easily by simulation: it suffices to

estimate EM 2 and EM 3 by their empirical versions. The constant m in (t/m)−3/2 could be

absorbed into c2(t), but we choose not to do this, because we want to be able to compare

Qt and Qn on a common scale, where n (the simulation effort of Algorithm 3) and t/m

(the average simulation effort of Algorithm 4 for large t) are the same. The key point to

notice is that we get a better rate for the bound for Qt than for Qn.

In the next result, we obtain an improved convergence rate of O(1/t2), but at the price of

introducing in the bound an O(exp(−ωt)) term (for some ω > 0) which is hard to estimate.

This term converges exponentially fast in t, so it is asymptotically negligible when t→∞,

but it is not necessarily negligible for a given (finite) t. So we have an asymptotically better

bound that we cannot easily estimate. In practical settings, we may prefer the O((t/m)−3/2)

bound from Theorem 2 that we can more easily estimate to the O((t/m)−2) bound that

we cannot completely estimate.

Theorem 3 (Sampling until GS returns more than t states; asymptotic version).

We have

sup
A
|Qt(A)−Q(A)| ≤ c3(t/m)−2 +O(exp(−ωt)),

where ω > 0 is a (typically unknown) constant and

c3 :=
E[M 2|M − 1− 2r|]

2m3

with r := (EM 2 +m)/(2m).

This result does not include a statement about the mean absolute error, because the

bounds of the mean absolute errors in Theorems 1 and 2 already converge at the optimal

asymptotic rate, and thus cannot be improved.

4.2. Convergence of the Empirical Conditional Distribution Q̂n

We now examine the convergence of the TV error between the empirical distribution Q̂n

and Q when n→∞. This distribution is random, and any realization is discrete with

finite support, so obviously it cannot converge to Q in TV with A taken as all the Borel

sets, because by taking A as the finite set Y∪, we get Q̂n(A) = 1 for any n, but Q(A) = 0

(assuming that Q has a density). Thus, as mentioned previously, we necessarily have to

restrict the class A. We start by giving conditions for TV convergence with probability 1

under the following restrictions on the class A.
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Assumption 1. Suppose that one of the following two conditions holds:

1. A is a class with finite Vapnik-Chervonenkis (VC) dimension, or

2. A is the class of all convex sets in Rd, and the transition kernel in Algorithm 1 has

a probability density κl(y |x).

Theorem 4 (Almost-Sure TV Convergence). Under Assumption 1, we have

almost sure TV convergence:

sup
A⊆A
|Q̂n(A)−Q(A)| −→ 0 with probability 1 when n→∞.

The notion of VC dimension is discussed for example by Vapnik (2013). Roughly speak-

ing, it measures the flexibility of a class of subsets to correctly classify data defined over

Rd, and in our context it measures the complexity of the class of sets A. Sets with higher

VC dimension are more complex.

Note that the class of convex sets has an infinite VC dimension, which is why the second

option in Assumption 1 requires the extra regularity condition on the transition kernel.

This condition will be satisfied if κl is the transition kernel of a Gibbs sampler, but will not

be satisfied for the kernel of a Metropolis-Hastings sampler (Kroese et al. 2011, Equation

6.3, Page 226). Note that the condition does not require that we have a closed form (simple)

formula for the transition density κl(y |x). It only requires that it exists.

Our next result (proof in Online Supplement) provides bounds on the expected TV error

of the empirical distribution, where A is a class of sets with a finite VC dimension.

Theorem 5 (Bound on Expected TV for Empirical Distribution). Suppose the

class A has finite VC dimension v. Then, the expected TV error made by using the empirical

distribution Q̂n as an approximation of Q is bounded as follows:

E sup
A∈A
|Q̂n(A)−Q(A)| ≤

√
Var(M)

m
√
n

+
2
√
v ln(2n)E[M 2 lnM ]

m
√
n

ψ1(v,n),

where

ψ1 =ψ1(v,n) :=

√
(ln(2) + v+ v ln(2n/v))E[M 2]

v ln(2n)E[M 2 lnM ]
+

1

ln(2n)
<∞

is bounded uniformly in (v,n, τ).

As an example, let [a,b] = {y ∈Rd : a≤ y≤ b} represent a rectangle in Rd, and suppose

A is the class of all rectangles in Rd. Then v = 2d (Sauer 1972). If a = −∞, that is, A
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as the class of one-sided intervals of the form [−∞,b], then v = d+ 1. In this case, the

previous theorem can provide a bound on the expected value of the Kolmogorov-Smirnov

statistic:

ks(n) := E
[

sup
x∈Rd

∣∣∣Q̂n(X ≤x)−Q(X ≤x)
∣∣∣ ] . (6)

We will use this type of error bound in Section 5.2 when we assess the quality of our

approximate sampling from a Bayesian posterior.

Using the metric entropy of the class A, it is also possible to obtain a bound without

the logarithmic growth term ln(n) ln(M) in Theorem 5, and to get an expected TV bound

that depends solely on the relative second moment of M .

Theorem 6 (Second Bound on Expected TV for Empirical Distribution).

Let τ be the number of levels in Algorithm 1 with splitting factor s and suppose that A

has VC dimension v <∞. Then the empirical distribution Q̂n satisfies:

E sup
A∈A
|Q̂n(A)−Q(A)| ≤

√
Var(M)

m
√
n

+
(s+ 1)4

√
v E[M 2]

m
√
n

ψ2(τ, v,n, s),

where

ψ2 =ψ2(τ, v,n, s) :=

dτ+logs
√
ne∑

k=1

1

sk

(
ln 2

2nv
+

1 + ln(v+ 1)

v
+ 1 + ln(2s2k)

)1/2

< ∞

is bounded uniformly in (τ, v,n, s).

Unfortunately, as we shall see in Section 5.2, the constant ψ2 in this bound is much larger

than ψ1 in Theorem 5. As a result, n has to be impractically large for the above bound to

beat the simpler bound in Theorem 5. Nevertheless, the result is still of theoretical interest

as it shows that the rate of convergence in expectation of the TV distance can be improved

from O(ln(n)/
√
n) to the canonical rate of O(1/

√
n). In addition, the term E[M 2 lnM ]/m2

in Theorem 5 does not appear in Theorem 6.

Remark 1 (Simplifications due to Existence of a Density). If the transition

density κl(x|y) is available in closed form and easily evaluated, we can do much bet-

ter by dropping the restrictions that the class A has a finite VC dimension. Instead, if

κ(x|y) ≡ κτ (x|y) is a transition density with stationary pdf q, then we can define the

empirical density:

q̂n(x) :=
1

Tn

∑
Y ∈Y∪

κ(x|Y ),
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so that we can use Sheffé’s identity (Devroye and Lugosi 2001, Theorem 5.1) to simplify

the uniform deviation over the class B of Borel measurable sets:

2 sup
A∈B

∣∣∣∣∫
A

q̂n(x)dx−Q(A)

∣∣∣∣= ∫ |q̂n(x)− q(x)|dx

Therefore, the bound on the expected TV distance simplifies as follows:

2E
[
sup
A∈B

∣∣∣∣∫
A

q̂n(x)dx−Q(A)

∣∣∣∣]≤E
∫ ∣∣∣∣∣ 1

nM̄n

∑
Y ∈Y∪

κ(x|Y )− 1

nm

∑
Y ∈Y∪

κ(x|Y )

∣∣∣∣∣dx
+E

∫ ∣∣∣∣∣ 1

nm

∑
Y ∈Y∪

κ(x|Y )− q(x)

∣∣∣∣∣dx
≤ 1

m
√
n

(√
Var(M) +

√∫
Var(κ(x|Y ))dx

)
.

Thus, provided the integrated variance
∫
Var(κ(x|Y ))dx can be estimated easily, this

bound can be used as a simpler alternative to Theorem 5. We do not pursue this possibility

further in this article.

5. Numerical Example: Bayesian Lasso

In this section we consider an application of the splitting sampler in Algorithm 2 to the

problem of posterior simulation in Bayesian inference. We estimate the bounds in Theo-

rems 1 to 6 in order to assess the convergence of Algorithms 3 and 4. This convergence

assessment can be used to either assess whether any Bayesian credible intervals are reliably

estimated from the simulation output, or to rank the performance of implementations that

use different Markov chain kernels κl (the Markov chain that yields the smallest TV error

will be the preferred one).

5.1. Approximate Posterior Simulations via Splitting

One of the simplest and most widely used linear regression models for data y =

(y1, . . . , yn′)
> is the Bayesian Lasso (Park and Casella 2008), in which the point-estimator

of the regression coefficient β = (β1, . . . , βd)
> ∈Rd is defined as the minimizer of the con-

strained least squares problem:

min
β
‖y−Xβ‖2

2, subject to ‖β‖1 ≤ γ,

where: (1) X is a matrix with d columns (predictors); (2) the term ‖β‖1 = |β1|+ · · ·+ |βd|

is the least absolute shrinkage and selection operator (Lasso); and (3) γ ≥ 0 is the Lasso
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regularization parameter. In a Bayesian context, inference for (β, σ2) requires repeated

drawing of pairs (β, σ) from the posterior pdf:

q(β, σ|y, γ) ∝ φ(y−Xβ;σ2I) σ−2 I{‖β‖1 ≤ γ}× d!/(2γ)d , (7)

where: a) φ(x; Σ) denotes the multivariate normal pdf with mean zero and covariance

matrix Σ evaluated at x; b) the factor σ−2 results from using an uninformative prior for

the scale σ, and c) I{‖β‖1 ≤ γ}× d!/(2γ)d is the prior of β, uniform over the feasible set.

Note that, unlike the more common Laplace prior used in the Bayesian Lasso (Park and

Casella 2008), here the prior enforces the constraint on β directly.

To sample a new state (βk, σk) during the course of splitting, we need to simulate from a

transition density κl((σk,βk) | (σk−1,βk−1)), which is stationary with respect to the density

(3). We simulate a move from (σk−1,βk−1) to (σk,βk) as follows. Given βk−1, we sample

(1/σ2
k) ∼ Gamma((n′+ 1)/2,‖y−Xβk−1‖2

2/2),

which is the gamma distribution with mean (n′+ 1)/‖y−Xβk−1‖2
2 and shape parameter

(n′ + 1)/2. Given (σk,βk−1), we simulate βk via a “hit-and-run” Gibbs sampler (Kroese

et al. 2011, Page 240). In other words, the new state is βk =βk−1 +λd, where d is a point

uniformly distributed on the surface of the d-dimensional unit hyper-sphere, and the scalar

λ is simulated according to:

(λ |d, σk,βk−1) ∼ ϕ(λ |d, σk,βk−1) :=
q(βk−1 +λd, σk |y, γ)∫
q(βk + ξd, σk |y, γ)dξ

.

The conditional pdf ϕ(λ |d, σ,βk−1) is a univariate truncated normal, which can be simu-

lated easily (Botev and L’Ecuyer 2017).

As a concrete illustration we use the “diabetes dataset” (Park and Casella 2008), con-

sisting of n′ = 442 patients. For each patient, we have a record of d= 10 predictor variables

(age, sex, body mass index, and 7 blood serum measurements, so that X is a matrix of

size 442× 10), and a response variable, which measures the severity of nascent diabetes.

We fix γ = 1200, which corresponds to the Lasso regularization parameter value used by

Park and Casella (2008).

To simulate from the Bayesian posterior (7) we ran Algorithm 2 with splitting factor

s= 100 and n= 104 using the following τ = 4 levels: (γ1, γ2, γ3, γ4) = (1907,1368,1230,1200)
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to obtain the multiset Y∪. The first three levels were chosen so that ρj ≈ 0.01 for j =

1, . . . ,3. The values for τ, γ1, . . . , γτ were selected by running the adaptive pilot algorithm

in (Botev et al. 2012)[Algorithm 4]. The marginal empirical distribution of each coefficient

βj is illustrated in Figure 1 as a boxplot.

Age Sex BMI BP tc ldl hdl tch ltg glu

-200

0

200

400

600

Figure 1 Empirical marginal distributions of the ten coefficients βj corresponding to the ten predictors, sampled

approximately from (7). For comparison, the unconstrained (ordinary) least squares solution for each

βj is displayed as a circle.

5.2. Convergence Assessment via Theoretical Bounds

Using the output of Algorithm 2 from the previous section we calculated point estimates

of the unknown terms, c1, c̃1(n), c2(t), c̃2(t), c3,ψ1,ψ2, appearing in Theorems 1 through 6.

Note that all the unknown terms depend on moments of M . For example, some of the point-

estimates of the moments of M are (EM,EM 2)≈ (5.9,71). Figure 2 shows the estimates

of c1/n, c2(t) (t/m)−3/2, and c3 (t/m)−2, which bound the TV error (see Theorems 1 to 3),

on a common scale with t= n× 5.9 (since m=E[M ]≈ 5.9).

There is one major take-home message from Figure 2, namely, that Algorithm 4 (sam-

pling to exceed t states) simulates more closely (in terms of TV error) from the target

distribution Q than Algorithm 3 (n iid non-empty replications). Of course, the downside
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Figure 2 Comparison of three bounds on the TV error, c1/
√
n, c2(t) × (t/m)−3/2, and c3 × (t/m)−2, where

t= n×m.

of using Algorithm 4 is that the number of trials, N(t), is random (with expectation t/m

for large t).

In addition, reading off from Figure 2 we can see that if we run Algorithm 4 with

t > 5.9×103, then the TV error between Qt and Q is estimated as less than 10−3 using the

non-asymptotic bound c2(t)(t/m)−3/2 and as less than 10−5 using the asymptotic bound

c3(t/m)−2 (it is asymptotic, because we ignored the asymptotically negligible O(exp(−ωt))

term in Theorem 3).
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Figure 3 Left: estimates of the worst-case mean absolute error; Right: estimates of the expected TV error.
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As for the mean absolute error, the left pane of Figure 3 shows the estimated bounds

c̃1(n)n−1/2 and c̃2(t)(t/m)−1/2 given in Theorems 1 and 2, respectively, using t= n×m.

It is clear that the bound c̃2(t)(t/m)−1/2 is always smaller. Note that both bounds are

asymptotically equivalent to first order — as n becomes larger, the two bounds converge

to each other. Based on the mean absolute error, in this example we again conclude that

Algorithm 4 (sample more than t = m × n states) is a better performing sampler than

Algorithm 3 (n iid non-empty runs).

Next, we apply the results of Theorems 5 and 6 to bound the expectation of the

Kolmogorov-Smirnov statistic, ks(n), given in (6). Let b5(n) and b6(n) be the upper bounds

on (6) derived in Theorems 5 and 6, respectively (here v = d+ 1 = 11). The right pane

of Figure 3 shows the estimated bounds on the value of ks(n). There are a number of

observations to be made.

First, we can see that for the range of the plot, b5(n) = O(ln(n)/
√
n) yields a better

risk bound than b6(n) = O(1/
√
n) (despite the superior convergence rate of b6). This is

because, as mentioned previously, the constant ψ2 in Theorem 6 is much larger than ψ1 in

Theorem 5. In fact, the cross-over for which ultimately b6(n)< b5(n) happens for n> 1019

(not shown on Figure 3).

Second, from the right pane of Figure 3 we can see that the expectation of the

Kolmogorov-Smirnov statistic is indeed the most stringent error criteria, because we need a

very large n to guarantee an acceptably small error (at least n> 107 to make b5(n) smaller

than 10−2).

Third, we observe that since the transition kernel, κl, has a density (it is the transition pdf

of a Gibbs Markov chain), Theorem 4 ensures the almost sure convergence of the empirical

TV uniformly over the class A of all convex subsets, that is, supA∈A |Q̂n(A)−Q(A)| −→ 0

with probability one.

Finally, we note that our convergence results do not theoretically quantify the speed of

convergence of the Markov chains, induced by the kernels κl. This dynamics is captured

by the moments of M , which we estimate empirically, but not theoretically. To analyze

theoretically the growth of the moments of M will require an analysis of the speed of

convergence of all Markov chains used in Algorithm 1.
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5.3. Comparison with Sequential Monte Carlo for Rare Event Estimation

In the Bayesian context, the rare-event probability `(γ) = P(‖β‖1 ≤ γ) is the normalizing

constant of the posterior (7), also called the model evidence or marginal likelihood, which

is of importance in model selection and inference.

From equation (4) above, we can see that an estimator of ` using n= 104 independent

runs of Algorithm 1 is ˆ̀:= (M̊1 + · · ·+ M̊n)/(nsτ−1) with relative error

√
Var(M̊)

/
(ˆ̀√n).

We obtained the estimate of ˆ̀= 2.4× 10−8 with estimated relative error of 3.6%.

For completeness, and as a benchmark to our results, we compared the performance

of Algorithm 1 with the popular sequential Monte Carlo (SMC) method for rare-event

estimation of Cérou et al. (2012), as described on top of page 798, column 1. For the SMC

we used the same intermediate thresholds (γ1, γ2, γ3, γ4) = (1907,1368,1230,1200) (in the

notation on page 798, we have Ak := {‖β‖1 < γk}) and a total simulation effort of 6× 106

particles to estimate `. This is roughly twice the average simulation effort for n runs of

Algorithm 1, which is approximately n×
∑τ

k=1
1
ρk
≈ 3.4× 106. Despite this, the relative

error of the SMC estimator of ` was estimated as 12%, or about three times larger than

the relative error of ˆ̀.

The observation that the GS algorithm can, under certain conditions, perform better

than sequential Monte Carlo methods is known and is already explained in Botev and

Kroese (2012). Briefly, the GS sampler is expected to outperform standard SMC methods

when the Markov chain induced by κl converges slowly to its stationary pdf (3). Conversely,

when the Markov chain at each level l mixes fast (the particles follow the law of (3) almost

exactly), then SMC methods are to be preferred. As previously explained (Botev and

Kroese 2012), unlike standard SMC methods, the GS sampler does not have a bootstrap

resampling step, which is advantageous when the transition kernel κl fails to create enough

“diversity” in the samples (bootstrap resampling reduces the diversity). This advantage,

however, disappears if the Markov chains at each level are mixing fast, and as a result using

a fixed number of particles at each level (Cérou et al. 2012, Page 798) leads to superior

accuracy compared to using a random number of particles (as in the GS Algorithm 1).

6. Summary and Conclusions

We presented two different implementations of the generalized splitting method that can

be used to simulate approximately from a conditional density in high dimensions. In the
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first implementation, we construct an empirical distribution Q̂n from n iid non-empty

replications of the GS sampler (Algorithm 1). In the second implementation, we construct

an empirical distribution Q̂N(t) by running Algorithm 2 until we have more than t states

in total. In both implementations, Q̂n and Q̂N(t), and their respective expectations Qn and

Qt, aim to approximate the true distribution Q.

To assess the quality of the approximations we derived non-asymptotic bounds on three

different error criteria: (1) the total variation errors of Qn and Qt, widely used in MCMC

convergence analysis; (2) the mean absolute errors of Q̂n and Q̂N(t); and (3) the expected

total variation error of Q̂n.

The main take-away messages are as follows. First, the GS sampler in Algorithm 4, which

samples until we have more than t states in total, converges faster than the GS sampler in

Algorithm 3, which samples n iid non-empty replications.

Second, the proposed splitting samplers provide a simple qualitative method for assessing

whether they are sampling accurately from the target distribution. Any unknown constants

and terms in the theoretical error estimates depend only on moments of the number M

of particles, which can be readily estimated from the simulation output. This allows us

to make qualitative statements such as “choose n> 103 to (approximately) obtain a total

variation error of less than 10−3”, or to rank the performance of different implementations

of the algorithms.

Finally, we have confirmed that, under certain conditions, generalized splitting can be

more efficient than sequential Monte Carlo in estimating rare-event probabilities. This

observation extends not just to estimation, but approximate sampling as well, because if

an algorithm is not the most efficient in estimating a rare-event probability, then it will

also not be the most efficient algorithm to simulate conditional on the rare event.
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