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Abstract

We study a staffing problem in multi-skill call centers. The objective is to find a minimal-

cost staffing solution while meeting a target level for the quality of service to customers. We

consider a situation in which the arrival rates are unobserved random variables for which

preliminary forecasts are available in a first stage when making the initial staffing decision.

In a second stage, more accurate forecasts are obtained and the staffing may have to be

modified at a cost, to meet the constraints. This leads to a challenging two-stage stochastic

optimization problem. Given the complexity of the queueing model, the quality of service

is estimated by simulation for a large number of scenarios and days. To solve this staffing

problem in reasonable time, we propose a simulation-based approach that combines sample

average approximation with a decomposition method. We provide numerical illustrations

based on three call center examples to show the practical efficiency of our decomposition

approach. The proposed method could be adapted to several other staffing problems with

uncertain demand, e.g., in retail stores, restaurants, healthcare facilities, and other types of

service systems.

1 Introduction

Call centers play a major role in businesses and in public service systems. They are used

to provide information and assistance, order food, taxis, or other products or services, receive

emergency calls, etc. In multi-skill centers, calls are categorized by the type of service requested.

Each call type requires a specific skill and each agent has a subset of all the skills. The agents

are partitioned into groups in which all have the same skill set. See Gans et al. (2003) and

Koole (2013) for more details.
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The quality of service (QoS) is often measured by the service level (SL), defined as the fraction

of calls answered within a given time limit, called the acceptable wait threshold (AWT). Selecting

a staffing means choosing how many agents of each skill set to have in the center. Each agent

has a cost that depends on its skill set. The staffing problem consists in finding a staffing

that minimizes the total cost, under a set of constraints on the QoS. In applications, the day

is usually divided into periods of 15 to 60 minutes and a staffing is selected for each period,

based on distributional forecasts of arrival rates or call volumes (Cez̧ik and L’Ecuyer, 2008,

Ibrahim et al., 2012). A more difficult problem not considered here is the scheduling problem

(Avramidis et al., 2010), in which a set of admissible shift schedules is first specified, and the

decision variables are the number of agents of each group in each shift.

There are two important issues with most staffing methods proposed in the literature: (i)

the arrival rates are often assumed perfectly known, and (ii) the QoS targets (constraints) are

usually defined with respect to the long-term expected value, which is an average over an infinite

number of days. Perfect knowledge of the arrival rates leads to simpler optimization problems,

but arrival rates in real-life call centers are uncertain and depend on multiple factors, such as

the day of the week, time of the day, level of busyness, holidays and special events, etc.; see

for instance (Channouf et al., 2007, Ibrahim et al., 2016, Oreshkin et al., 2016). The QoS for

a given day should then be modeled as a random variable. A manager who wants to meet

the QoS targets for a given proportion of the days, or with a given probability, should impose

distributional or chance constraints. This is especially true if the distribution of the random

variable is unbounded or if the distribution is bounded but the upper bound would lead to far too

conservative solutions. In other terms, one cannot satisfy the QoS constraints for all scenarios,

or doing so would be much too expensive. This motivates the use of chance constraints. The

aim of this paper is to address the aforementioned issues by formulating and solving a staffing

problem under arrival-rates uncertainty and probability constraints.

We consider a chance-constrained two-stage staffing problem with recourse for a multi-skill call

center. The first-stage consists in selecting a staffing based on an initial forecast of the arrival

rates, typically made several days in advance, and with a high level of uncertainty. In the

second-stage, a more accurate forecast becomes available, and recourse actions may be applied

to correct the initial staffing by adding or removing agents at the price of penalty costs. Chance

constraints are imposed on the QoS of the day: The recourse must (always) be chosen so that

the QoS meets its target with a minimum probability threshold, given the updated forecast. We

solve this problem using a sample average approximation (SAA) method. This is challenging,

due to the nonlinearity of the chance constraints, the large number of integer variables, and the

fact that the QoS can only be estimated by Monte Carlo simulation. Previous studies suggest

that the chance constraints can be approximated by linear cuts and that the resulting two-stage

linear program can be solved directly by standard mixed-integer program (MIP) solvers such as

CPLEX. However, the computation time becomes excessive for large instances.

To address this computing cost issue, we propose a simulation-based decomposition method that

consists of two main steps. First, for each scenario, we use simulation to generate linear cuts
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to remove infeasible solutions. Then, we iteratively solve the two-stage stochastic programming

problem in which the chance constraints are replaced by linear ones and we add more cuts

whenever a solution does not satisfy the chance constraints. The first step permits one to create

linear outer approximations of the probability functions and to linearize the chance constraints.

This step is based on the cutting plane method (Atlason et al., 2004), a popular approach to

deal with “S-shaped” constraints. This approach is formally justified only when we are in the

concave regions of the probability functions. In our context, these concave regions are difficult

to identify accurately, and we propose a heuristic that adjusts the staffing to make it very

likely that the cuts are generated from the concave regions. To efficiently solve the resulting

two-stage linear programs at the second step, we propose a way to strengthen the linear cuts

by mixed-integer rounding inequalities (Nemhauser and Wolsey, 1990) and we decompose the

mixed-integer linear problems using the L-shaped method (Birge and Louveaux, 2011). With

this method, instead of solving the complete mixed-integer program directly, we decompose it

and iteratively solve a master program that is enriched by linear cuts at each iteration.

We report numerical experiments for staffing problems over a single time period. Our objective

of this paper is not to solve realistic problems based on real data, but to explore the efficiency of

the decomposition approach. We solve problems ranging from a small example with 2 call types

and 2 agent groups to an example of moderate size with 15 call types and 20 agent groups. In

these examples, our simulation-based decomposition approach returns good staffing solutions

significantly faster than the deterministic equivalence approach examined in Chan et al. (2016).

In the remainder, we review the relevant literature on the staffing and scheduling of multi-skill

call centers in Section 2. In Section 3, we define the two-stage staffing optimization problem and

its SAA formulation. We present our decomposition algorithm in Section 4. In Section 5, we

compare the performance of the proposed algorithm and the deterministic equivalent approach

in multiple numerical experiments. Conclusions are given in Section 6.

2 Literature Review

Much of the research on call centers has focused traditionally on single-skill centers, with a sin-

gle call type (Avramidis and L’Ecuyer, 2005, Gans et al., 2003, Green et al., 2003). Multi-skill

centers involve routing rules, priorities, etc., and are analytically much more complex than a

single queue with a single type of customer. There are no known accurate approximation formu-

las for QoS measures for them, so these measures must be estimated by computationally-costly

simulation. For a multi-skill staffing problem with known arrival rates, Cez̧ik and L’Ecuyer

(2008) developed a simulation-based MIP optimization method where linear cuts are added

iteratively using estimated subgradients of the SL function. Avramidis et al. (2010) extended

this method to solve a shift scheduling problem with multiple periods. These methods are in

fact adaptions and generalizations of the method of Atlason et al. (2004) for agent scheduling in

single-skill call centers with constraints on the expected SL over an infinite time horizon. The
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latter method combines simulation with integer programming and cut generation, based on the

concavity property of the SL function in the Erlang C model, when the queue is in steady state.

However, the concavity property does not necessarily hold in the multi-skill context, so the

methods then become heuristic, but they have been shown to work well empirically. Avramidis

et al. (2009), Pot et al. (2008), Wallace and Whitt (2005) proposed other algorithms for the

single-period staffing problem that use crude approximation formulas, search methods, and cor-

rections by simulation. Call routing is also an important aspect that interplays with routing and

scheduling in multi-skill centers: changing the routing policy often changes the optimal staffing

solution, and vice-versa; see Chan et al. (2014).

The exact arrival rates are usually unknown, and several authors consider stochastic optimiza-

tion to capture this uncertainty. Liao et al. (2012) and Liao et al. (2013) model the uncertain

arrival rates by discrete probability distributions. Gurvich et al. (2010), Helber and Henken

(2010) and Robbins and Harrison (2010) use random sampling from continuous arrival rate

distributions, and Gans et al. (2015) explore the Gaussian quadrature for scenarios generation.

Robbins and Harrison (2010) consider a stochastic scheduling problem for a single-skill call

center, where a penalty cost is given for missing the SL target. Gans et al. (2015) investigate

a two-stage scheduling problem with recourse for single-skill call centers. The forecast is up-

dated during the day, and the schedules can be corrected by adding or removing agents for the

latter part of the day. These two papers use a MIP solver to deal with a MIP where a set of

constraints are generated beforehand by the linearization of the SL and the abandonment ratio,

which are taken as the steady-state values given by the analytic formulas for an M/M/s queue

with abandonments. It is unclear if and how this approach can be generalized to the multi-skill

case, for which no analytic formula is available.

For multi-skill call centers with random arrival rates, Harrison and Zeevi (2005) and Bassamboo

et al. (2006) approximate the level of abandonments by a fluid system, and solve a two-stage

scheduling problem. Their models seek to minimize the scheduling cost function with a penalty

cost on the abandonment ratio. The first-stage decision variables are the schedules, and the

second-stage ones control the work assignment of each agent. A major drawback when opti-

mizing a fluid system is that it assumes implicitly some kind of idealistic fluid routing policy,

which is unrealistic. Gurvich et al. (2010) optimize a two-stage staffing problem with chance

constraints on the steady-state abandonment ratio, for stochastic arrival rates. The requirement

is that the QoS can be violated on at most a fraction δ of the arrival rate realizations, where

δ represents the level of risk tolerance. Chan et al. (2016) propose an extension of the cutting

plane method presented in Cez̧ik and L’Ecuyer (2008) to solve a two-stage staffing problem

with chance constraints on the SL over the day (not the long term SL). The second-stage de-

cision variables are recourse actions to add or remove agents. The present paper considers a

similar model and proposes improvements in the method of solution, based on a decomposition

approach.
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3 Problem Formulation and Sample Average Approximation

We now formulate the two-stage optimization problem considered in this paper. We also give

a SAA formulation in which the constraints are approximated by sampling averages. These

formulations are similar to those in Chan et al. (2016) and Ta et al. (2018).

3.1 Call Center Model

Consider a call center with K call types indexed from 1 to K, and I agent groups numbered

from 1 to I. Agents in group i have the skill set Si ⊆ {1, . . . ,K}, which is the set of call types

they can serve. Conversely, Gk = {i : k ∈ Si} is the set of groups that can handle calls of type

k. Let z = (z1, . . . , zI)
T be the staffing vector, which gives the number of agents in each group.

We assume that calls of type k arrive from a time-homogeneous Poisson process with unknown

rate Λk over the entire period, where the Λk are independent random variables with bounded

support but otherwise arbitrary distributions. This models the forecasting uncertainty.

Agents in the same group are homogeneous and when an agent in group i serves a call of type

k, the service time has a known distribution, for each pair (i, k). A call abandons the queue

(and the call center) when its waiting time exceeds its patience time, which is a random variable

with known distribution that may depend on the call type k. Calls are assigned to agents by

an arbitrary routing policy whose details are not important. In this paper, we do not optimize

the routing policy; we assume it is fixed. One advantage of simulation-based optimization is

that there is no need to impose a specific form of routing policy or specific family of probability

distributions in the model. For example, the service time can be exponential, lognormal, or

gamma, etc. As in Wallace and Whitt (2005), Cez̧ik and L’Ecuyer (2008), and many others, we

optimize the staffing for a single time period.

3.2 Service Level Constraints

We measure the QoS by the SL introduced in Section 1, defined as the proportion of callers who

wait less than an acceptable waiting time (AWT) parameter τ over a given finite time period.

This SL is a random variable and the constraints will be probabilistic: the SL must reach a

certain target l ∈ [0, 1] with probability at least 1− δ for a given δ > 0. The SL can actually be

defined in various ways, depending on how we count abandons, the calls that overlap two or more

periods, etc. Here we use a popular definition, implemented (among others) in ContactCenters

(Buist and L’Ecuyer, 2005). For a staffing vector z and AWT threshold τ , we define

SL = S(z) =
A(z)

T − L(z)
(1)

where T is the total number of calls that arrived in the period, A(z) is the number of those

calls served after waiting at most τ , and L(z) is the number of them that abandoned after
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waiting more than τ . For other definitions, see Jouini et al. (2013). Several authors replace

T , A, and L by their (transient or steady-state) expectations; see for example Atlason et al.

(2004), Avramidis et al. (2009, 2010), Cez̧ik and L’Ecuyer (2008). Then the SL is a constant,

defined as a ratio of expectations, instead of a random variable, and the constraints are no

longer probabilistic.

We define our chance constraints as follows. For each call type k, we select an AWT τk and

denote Sk(z) the SL for call type k during the selected period, given the staffing vector z. Let

S0(z) denote the aggregate SL for all calls, with AWT τ0, over the period. The random variables

S0(z), . . . , SK(z) have distributions that depend on z. The constraints are:

P[Sk(z) ≥ lk] ≥ 1− δk, k = 0, 1, . . . ,K,

where the lk are SL targets and the δk ∈ (0, 1) are given risk thresholds.

3.3 Staffing Problem with Recourse

We now describe the two-stage staffing problem. In the first stage, based on an initial forecast

that provides a prior distributions for the random arrival rate Λk for each call type k, the

manager must select an initial staffing x = (x1, . . . , xI)
T at the corresponding cost per agent of

c = (c1, . . . , cI)
T. Stage 1 can be days or weeks in advance of the target date. Close to the target

period (e.g., the previous day or a few hours before), additional information becomes available

that can improve the forecast of the arrival rates Λk. Let ξ ∈ Ξ denote this new information. It

could be related to weather conditions, the observed number of arrivals in the preceding period,

etc. Let Eξ denotes the expectation with respect to ξ and P[· | ξ] be the probability distribution

conditional on ξ. In particular, the distribution of Λk conditional on ξ is not the same as the

unconditional one. It usually has a smaller variance.

In the second stage, the manager observes the realization of ξ and based on that, the initial

staffing can be modified by adding or removing agents at some penalty costs (by calling them

to work at the last minute or offering them to go back home, or canceling meetings, etc.). Note

that even in the extreme case where the Λk are known exactly conditional on ξ, there is still

uncertainty in the second stage and the SL is still a random variable. The recourse in Stage

2 consists in modifying the initial staffing by adding r+i (ξ) extra agents to group i at a cost

of c+i > ci per agent, or removing r−i (ξ) ≤ xi agents in group i to save c−i per agent, where

0 ≤ c−i < ci. After the recourse, the new number of agents in group i is zi(ξ) = xi+r
+
i (ξ)−r−i (ξ).

Let c, c+, c−, and z(ξ) be the vectors with components ci, c
+
i , c−i , and zi(ξ), respectively. We

define the recourse vectors as r+(ξ) = (r+1 (ξ), . . . , r+I (ξ))T, and r−(ξ) = (r−1 (ξ), . . . , r−I ξ))
T.

Given a staffing z(ξ), the SL for call type k and the aggregate SL are random variables Sk(z(ξ))
for k = 1, . . . ,K, and S0(z(ξ)), respectively. Let gk(z; ξ) = P[Sk(z) ≥ lk | ξ] for k = 0, . . . ,K.
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With this, we have the following chance-constrained staffing problem with recourse:

(P1)



min
x∈X

cTx+ Eξ [Q(x, ξ)] ,

where Q(x, ξ) = min
{

(c+)Tr+(ξ)− (c−)Tr−(ξ)
}

subject to x+ r+(ξ)− r−(ξ) = z(ξ),

gk(z; ξ) ≥ 1− δk, k = 0, . . . ,K,

r+(ξ), r−(ξ) ≥ 0 and integer,

in which X ⊂ NI is the support set of first-stage solutions. The constraints in this formulation

are on the SL, but they could also be on other QoS measures such as average waiting times,

abandonment ratios, etc. We emphasize that in this formulation, for any realization of ξ,

the recourse must be selected so that the probabilistic constraints are satisfied. Without this

assumption, one could be tempted to put no staffing at all on certain days in which ξ takes a

bad value, to save costs. Under our model, this is not allowed.

3.4 The SAA Formulation

Instead of solving the two-stage problem (P1), we will solve a SAA version. We generate

N scenarios (realizations of ξ) by Monte Carlo. Let ξn denote the realization of ξ under

scenario n. Each scenario provides a different distribution of the Λk’s, conditional on ξn, for

the second stage. Then we define a discrete probability distribution over these N scenarios by

giving probability pn > 0 to scenario n, where
∑N

n=1 pn = 1. In our numerical examples, we

will simply put pn = 1/N for all n. For scenario n, we denote r+n = r+(ξn), r−n = r−(ξn), and

zn = (z1,n, . . . , zI,n)T. For each ξn, we estimate the probability gk(z; ξn) = P[Sk(z(ξn)) ≥ lk | ξn]

in the constraints of (P1) by simulating the call center M times independently, over the given

period, conditional on ξn. These simulations are also independent across the scenarios. We

compute the empirical SL Ŝmk (zn; ξn) for each k and each replication m, and we estimate gk(z; ξn)

by the proportion of the M replications for which the SL constraint was met:

ĝk,M (zn; ξn) =
1

M

M∑
m=1

I[Ŝmk (zn; ξn) ≥ lk] for k = 0, . . . ,K,

where I[·] is the indicator function. With these ingredients, the SAA can be written as

(P2)



min
x, r+n , r

−
n

cTx+

N∑
n=1

pn
[
(c+)Tr+n − (c−)Tr−n

]
,

subject to


x+ r+n − r−n = zn, for n = 1, . . . , N,

ĝk,M (zn; ξn) ≥ 1− δk, for k = 0, . . . ,K, n = 1, . . . , N,

x ∈ X, r+n , r−n ≥ 0 and integer, for n = 1, . . . , N.
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Ta et al. (2018) investigate the convergence properties of this SAA problem. Under reasonable

assumptions which hold in call center examples, they show that the optimal value and the

solutions of the SAA problem converge almost surely to corresponding ones for the true problem

(P2) when N and M increase to infinity.

Two important difficulties arise when solving the SAA (P2): (i) the constraints ĝM (zn; ξn) ≥ 0

are nonlinear and (ii) (P2) is expensive to solve when N is large. Chan et al. (2016) handle issue

(i) by using a cutting plane method in which the nonlinear constraints are replaced by several

linear cuts. This approach can work reasonably well in the simpler situation where there is no

recourse but in the two-stage setting, the SAA (P2) becomes much more expensive to solve

when there is a large number of scenarios. This motivates our introduction of a decomposition

method for (P2) in the next section.

4 General Methodology with a Decomposition Approach

We now introduce our proposed decomposition approach to solve the two-stage staffing opti-

mization problem. To deal with the chance constraints in the SAA, we use the cutting plane

method (Cez̧ik and L’Ecuyer, 2008) to create outer linear approximations of the (nonlinear)

probability functions. This yields two-stage stochastic integer linear programs that could be ex-

pensive to solve. We then propose a way to strengthen the linear cuts generated by the cutting

plane method, and a simulation-based decomposition algorithm that allows to efficiently find

good staffing solutions.

4.1 Cut Generation

We recall the cutting-plane method used by Cez̧ik and L’Ecuyer (2008) and Atlason et al. (2008)

to approximate the chance constraints by linear ones. The method relies on the hypothesis that

the SL function is concave in z, at least around the optimal solution. In this paper, instead of

being on the expected SL as in those previous papers, our constraints are on a tail probability

of the SL, P[S(z) ≥ l], and it is this probability function rather than the expected SL that is

assumed to be concave near the optimum. Chan et al. (2016) observed that these probability

functions typically have an S shape: they are convex for small z and concave for large enough

z, just like the expected SL.

In our approach, we consider each scenario separately, and for each staffing solution that violates

a chance constraint for that scenario, we generate linear cuts based on an (tentative) estimation

of the sub-gradient at that staffing point. After adding enough cuts, we obtain a feasible staffing

solution for the chance constraints. The result of this procedure is a set of linear cuts that serve

as an approximation of the chance constraints and which are used to solve the two-stage problem.

The cutting-plane method is an iterative algorithm that starts at an infeasible solution z and

adds new linear cuts based on the sub-gradient of ĝk,M (z) until a feasible solution is obtained.
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To avoid starting the algorithm at a null solution (z = 0) or in a non-concave region, we use a

heuristic that uses a fluid model approximation and adds linear constraints to impose that the

system has enough capacity (in the fluid model) to serve at least a fraction αk of the arriving

rate for each call type k. This follows Chan (2013) and Chan et al. (2016). The constraints can

be written as ∑
i∈Gk

µk,iwk,i,n ≥ αkΛk,n, k = 1, . . . ,K

∑
k∈Si

wk,i,n ≤ zi, i = 1, . . . , I

wk,i,n ≥ 0, k = 1, . . . ,K, i = 1, . . . , I,

in which the time unit is the length of the period, Λk,n is the arrival rate of call type k in scenario

n, 1/µk,i is the expected service time for call type k by agent group i, wk,i,n ≥ 0 represents the

(fractional) number of agents of group i assigned to calls of type k in scenario n, and we want

to select the parameters αk so that the initial solution is in a concave region of ĝM . If αk < 1,

over an infinite time horizon it would mean that at least a fraction 1−αk of the calls abandon,

on average. Over a finite time horizon, this fraction could be a little smaller because a few of

these calls can be served after the end of the period. So if we expect few abandons, it makes

sense to initially try αk close to 1, then iteratively use simulation to estimate the probability

values in the constraints, and increase αk if they are too small. To do this, we select a threshold

ρ > 0 (e.g., ρ = 0.5), and we add agents to the groups that serve call type k if the estimated

probability is smaller than ρ. We stop this procedure when all the probability values are larger

than ρ. We expect (and assume) that after this, the staffing belongs to the concave region and

the sub-gradient cuts are valid.

Then we generate sub-gradient-based linear cuts independently for each scenario, as follows.

For scenario n with realization ξn, let gnk (z) = ĝk,M (z, ξn) and let qnk(z
∗) denote the estimated

sub-gradient of gnk at z∗, which is a I-dimensional vector whose element i is defined as

qink(z
∗) = [gnk (z∗ + dei)− gnk (z∗)]/d,

where ei is the ith unit vector (with 1 at position i and 0 elsewhere), d ≥ 1 is an integer, and the

simulations required to compute gnk at the two different values to obtain the finite difference are

always made with well-synchronized common random numbers, as explained in L’Ecuyer and

Buist (2006) and Cez̧ik and L’Ecuyer (2008). If the empirical function gnk (z) was guaranteed to

be always convex in each coordinate, we could always take d = 1, but this function is somewhat

noisy, so it may fail to be convex even where its expectation is convex, especially when M is

small, and it is sometimes safer to take d = 2 or 3 for this reason. This issue is discussed in

more details in Cez̧ik and L’Ecuyer (2008).

If qnk(z
∗) is a sub-gradient of gnk at z∗, then we have gnk (z∗) + qnk(z

∗)(z − z∗) ≥ gnk (z). Since
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we want gnk (z) ≥ 1− δk, the following inequality must hold:

qnk(z
∗)z ≥ 1− δk − gnk (z∗) + qnk(z

∗)z∗. (2)

We add this inequality as a constraint (a linear cut) to the second-stage linear program for

scenario n, which reads as:

min
(z,w)∈NI×RK×I

+

{cTz | Anz ≤ bn, Hnz +Knw ≤ hn} , (3)

where Anz ≤ bn refers to the set of sub-gradient cuts and Hnz + Knw ≤ hn are constraints

given by the fluid model. The cutting-plane procedure permits one to approximate (P2) by

a mixed-integer linear programming (MIP) model. Proposition 1 below states that by adding

enough cuts to approximate the chance constraints, we can obtain an optimal solution to (P2)

by solving the corresponding MIP.

Let Q
∧

(x) Let Q
∧

(x) = 1
N

∑N
n=1Q
∧

M (x; ξn) denote the value of the second stage of (P2) for a

given x, where

Q
∧

M (x; ξn) = min (c+)Tr+ + (c−)Tr−

subject to ĝk,M (x+ r+ − r−, ξn) ≥ 1− δk k = 0, . . . ,K

r+, r− ∈ NI .

For each scenario ξn, we denote by QM (x; ξn) the value of the second stage after replacing the

constraints ĝM (z; ξn) ≥ 0 by the linear cuts, i.e.,

(P3)



QM (x; ξn) = min (c+)Tr+ + (c−)Tr−

subject to An(x+ r+ − r−) ≤ bn

Hn(x+ r+ − r−) +Knw ≤ hn

r+, r− ∈ NI

where An(x + r+ − r−) ≤ bn are the linear cuts added for scenario n. By incorporating these

replacements in (P2), we obtain the following large MIP, whose solution approximates the

solution of (P2):

(P4) min
x∈NI

{
f̄(x) = cTx+

1

N

N∑
n=1

QM (x; ξn)

}
.

The next proposition says that if the linear cuts are always upper bounds on the chance con-

straints and we add enough of them, we obtain an optimal solution for (P2) by solving (P4).

Proposition 1 Suppose that for each linear cut of the form (2) added to (P4), z∗ is in the

concave region of the probability function gnk , and qnk(z
∗) is a sub-gradient of this probability

function. If (x∗, f̄∗) is an optimal solution and the optimal value of (P4) and if (r∗+n , r∗−n ) is

an optimal solution to (P3) such that ĝk,M (x∗ + r∗+n − r∗−n ; ξn) ≥ 1− δk for all n and k, then
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(x∗, f̄∗) is also an optimal solution and the optimal value to (P2).

Proof. Under the given assumption, given a first-stage solution x, we always have

{
(r+, r−)

∣∣∣∣∣ ĝM (x+ r+ − r−; ξn) ≥ 0

r+, r− ∈ NI

}
⊆

(r+, r−)

∣∣∣∣∣∣∣∣
An(x+ r+ − r−) ≤ bn

Hn(x+ r+ − r−) +Knw ≤ hn

r+, r− ∈ NI , w ≥ 0

 . (4)

We denote by {x∗1, r
∗+
1n , r

∗−
1n , n = 1, . . . , N} and optimal solution to (P2) and by {x∗2, r

∗+
2n , r

∗−
2n , n =

1, . . . , N} and optimal solution to (P4). According to (4) we have

cTx∗1 +
1

N

N∑
n=1

(c+)Tr∗+1n − (c−)Tr∗−1n ≥ c
Tx∗2 +

1

N

N∑
n=1

(c+)Tr∗+2n − (c−)Tr∗−2n . (5)

Moreover, if ĝk,M (x∗2 + r∗+2n − r
∗−
2n ; ξn) ≥ 1− δk for all n, k, then {x∗2, r

∗+
2n , r

∗+
2n , n = 1, . . . , N} is

also a feasible solution to (P2), so

cTx∗1 +
1

N

N∑
n=1

(c+)Tr∗+1n − (c−)Tr∗−1n ≤ c
Tx∗2 +

1

N

N∑
n=1

(c+)Tr∗+2n − (c−)Tr∗−2n . (6)

From (5) and (6) we can deduce that {x∗2, r
∗+
2n , r

∗+
2n , n = 1, . . . , N} is also an optimal solution

to (P2). This completes the proof.

So in principle, we can obtain an optimal solution to the SAA problem (P2) by adding enough

linear cuts to the second-stage problems and then solve the MIP (P4) via a standard solver such

as CPLEX. However, in a large scale setting and as the number of scenarios increases, (P4)

would be too large and too hard to solve directly. We can then rely on the L-shaped algorithms

presented next.

4.2 L-shaped Algorithms

For any first-stage solution x of (P4), evaluating this solution requires solving N second-stage

sub-problems of the form (P3). This suggests an L-shaped decomposition approach for the two-

stage problem. However, the problem involves integer variables at both first and second stages,

and therefore solving it exactly, even with a decomposition method, is very challenging when N

and M are large. The absence of general efficient methods for this type of problem reflects this

difficulty (see Birge and Louveaux, 2011, Chapter 7). Several techniques have been proposed

over the years, but these techniques are either expensive, or developed under specific restrictions

on the two-stage problem, e.g., that the recourse matrix has only integer coefficients, which is

not the case in our context. In what follows, we present a simple integer L-shaped algorithm

that can be combined with mixed-integer rounding inequalities (in Section 4.3) to efficiently

find good integer solutions for the two-stage problem.
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The general idea of the L-shaped method is to replace the recourse function (or the second-stage

objective function) by a piece-wise linear and convex function. Since the nonlinear objective

function at the first stage involves a solution to all the second-stage programs, we want to avoid

numerous function evaluations for it. For this, we define a master linear model in x and we

only evaluate the recourse function as a sub-problem. We do this by considering a continuous

relaxation of the second-stage problem and using the duality properties of this relaxation.

For any first-stage solution x, to get a feasible solution for the second stage, we just need to add

a large enough vector r+ of agents and set r− = 0. This means that the problem (P1) has a

relatively complete recourse, i.e., that the second-stage problems always have feasible solutions,

for any given first-stage solution x (see Birge and Louveaux, 2011, Page 113). In addition, under

the concavity assumption, the linear cuts generated from the cutting plane method (Section 4.1)

are upper bounds on the chance constraints. This means that the problem (P1) has relatively

complete recourse, i.e., the second-stage problems always have feasible solutions given any first-

stage solution x (see Birge and Louveaux, 2011, Page 113). In addition, under the concavity

assumption, the linear cuts generated from the cutting plane method (Section 4.1) are upper

bounds on the chance constraints. In other terms, the linearized second-stage problem will be a

relaxation of the true second-stage problem, and consequently, any feasible solution of the true

second-stage problem will be feasible for the relaxed second-stage problem. Therefore, (P4) is

also relatively complete. Thus, when applying a L-shaped method to solve (P4), we only need

to add optimality cuts, i.e., linear cuts to build a piecewise linear function that approximates

the recourse function, to the master problem.

We can write the master problem of (P4) as

(MP1)


min
x,θ

cTx+ θ

subject to Πx− 1θ ≤ π0
x ∈ X

(7)

where the variable θ ∈ R serves as an underestimation of the second-stage objective function,

while the constraints (7) are optimality cuts obtained by relaxing the second-stage problem and

generating cuts based on its duality. Suppose the constraints of the second-stage problem for

scenario n can be written as Tnx+Wny = rn, where y is the vector of second-stage variables.

In our context, y contains r+, r−, and w (coming from the fluid model). For each solution x∗

and each scenario n = 1, . . . , N , we rewrite the relaxation of the second-stage problem using

equality constraints as

min
y

{
qTy

∣∣∣ Tnx∗ +Wny = rn, y ≥ 0
}
.

We then solve the dual to obtain a dual optimal solution

σn = arg max
σ

{
(rn − Tnx∗)Tσ

∣∣∣ (Wn)Tσ ≤ q
}
.
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The duality properties imply that

QM (x; ξn) = min
y

{
qTy

∣∣∣ Tnx+Wny = rn, y = (r+, r−, w) ≥ 0, r+ and r− integer
}

≥ min
y

{
qTy

∣∣∣ Tnx+Wny = rn, y ≥ 0
}

= max
σ

{
(rn − Tnx)Tσ

∣∣∣ (Wn)Tσ ≤ q
}

≥ σT
n(rn − Tnx).

Since we want θ ≥ 1
N

∑N
n=1QM (x; ξn), we can add the following optimality cut to the master

problem:

θ ≥ 1

N

N∑
n=1

σT
n(rn − Tnx),

or equivalently

−

(
1

N

N∑
n=1

σT
nT

n

)
x− θ ≤ − 1

N

N∑
n=1

σT
nr

n. (8)

It is also possible to add several cuts per master iteration, based on the idea of the multi-cut

L-shaped method (Birge and Louveaux, 2011, Page 198). More precisely, we can partition the

set of all scenarios into L disjoint subsets N1, . . . , NL and reformulate (MP1) as

(MP2)


min

x,θ1,...,θL
cTx+

L∑
l=1

θl

subject to Πlx− 1θl ≤ πl0, l = 1, . . . , L

x ∈ X,

(9)

where the constraints (9) are optimality cuts given by L subsets of scenarios. For each subset

Nl, the following optimality cut can be added to the master problem:

− 1

Nl

∑
n∈Nl

σT
nT

n

x− θl ≤ −
1

Nl

∑
n∈Nl

σT
nr

n. (10)

We summarize this L-shaped approach in Algorithm 1. If L = 1, we have a single-cut L-shaped

algorithm in which only one cut is generated per iteration. If L = N , we generate cuts for each

scenario.

4.3 Strengthening the Cutting Planes

In this section we present a way to strengthen the sub-gradient cuts defined in (2) by using

mixed-integer rounding (MIR) inequalities. This approach plays a central role in the develop-

ment of strong cutting planes for mixed-integer programming. MIR inequalities can be derived

from a single mixed-integer constraint, and have been shown to be able to generate all facets

inducing valid inequalities for any mixed 0-1 integer program (Nemhauser and Wolsey, 1990).

13



Algorithm 1: L-shaped algorithm

repeat
Select L clusters of scenarios that form a partition of all scenarios
Solve (MP2) to obtain a solution (x∗, θ∗1, . . . , θ

∗
L)

Compute

Q(x∗) =
N∑
n=1

min
y

{
qTy

∣∣∣ Tnx∗ +Wny = rn, y ≥ 0
}

if
∑L

l=1 θ
∗
l < Q(x∗) then

Add L optimality cuts to (MP2)

until
∑L

l=1 θ
∗
l ≥ Q(x∗);

Return x∗ as a first-stage solution

These MIR inequalities can improve the L-shaped algorithm described in the previous section,

since this L-shaped method relies on second-stage continuous relaxations.

Consider a sub-gradient cut of the form
∑I

i=1 aizi ≥ b. Since the sub-gradients are always

generated to be non-negative, we have ai ≥ 0 for all i = 1, . . . , I. Let P = {z ∈ NI |
∑I

i=1 aizi ≥
b} be the set of feasible solutions under the sub-gradient cuts.

Proposition 2 The following inequalities hold for all z ∈ P:

∑
t=1,...,I
t6=i

atzt + diaizi ≥
⌈
b

ai

⌉
diai, ∀ i = 1, . . . , I, (11)

where di = b/ai − db/aie+ 1.

Proof. Given i ∈ {1, . . . , I} such that ai > 0, we can write the inequality
∑I

i=1 aizi ≥ b as

∑
t=1,...,I
t6=i

atzt
ai

+ zi ≥
b

ai
,

which can be written as ∑
t=1,...,I
t6=i

atzt
ai
≥ b

ai
+ 1−

⌈
b

ai

⌉
+

⌈
b

ai

⌉
− zi − 1. (12)

Since zi ∈ N, we consider the two cases zi ≥ db/aie and zi ≤ db/aie − 1. If zi ≥ db/aie then

∑
t=1,...,I
t6=i

atzt
ai
≥
(

1 +
b

ai
−
⌈
b

ai

⌉)(⌈
b

ai

⌉
− zi

)
= di

(⌈
b

ai

⌉
− zi

)
, (13)

as the left side of the inequality is non-negative and the right side is non-positive. Moreover, if
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zi ≤ db/aie − 1, given that b/ai − db/aie+ 1 ≤ 1, from (12) we obtain

∑
t=1,...,I
t6=i

atzt
ai
≥ di + di

(⌈
b

ai

⌉
− zi − 1

)
= di

(⌈
b

ai

⌉
− zi

)
. (14)

We obtain (11) by combining (13) and (14).

We now consider a set of feasible staffing solutions at scenario n after adding sub-gradient cuts

and fluid constraints Pn =
{
Anz ≤ bn, Hnz + Knw ≤ hn

}
. Let J be the number of rows of

matrix An, anij its element on row i and column j, and bnj the jth element of vector bn. The

constraints given by the sub-gradient cuts can be strengthened using Proposition 2 as follows.

We will use these stronger inequalities in our method.

Corollary 1 The following inequalities hold for all z ∈ Pn

∑
t=1,...,I
t6=i

anjtzt + dni a
n
jizi ≤

⌈
bnj
anji

⌉
dni a

n
ji, i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, anji 6= 0, (15)

where dnji = bnj /a
n
ji − dbnj /anjie+ 1.

4.4 The Simulation-based Decomposition Algorithm

Algorithm 2 summarizes our complete simulation-based decomposition method. The algorithm

has two main parts. In the first part, we solve the staffing optimization problem for each

scenario separately to approximate the chance constraints by linear cuts. In the second part,

we iteratively solve the two-stage stochastic linear programs in which the chance constraints

are replaced by linear cuts using the L-shaped approach. If the second-stage solution given by

the L-shaped method is found to be unfeasible for the chance constraints, we use simulation

to generate more linear cuts (2) to better approximate the chance constraints. This iterative

procedure stops when we find first-stage and second-stage solutions that satisfy all the chance

constraints. Proposition 3 states that under reasonable conditions, the procedure will stop after

a finite number of steps.

Given that the arrival rates are assumed to be bounded, we can always choose a staffing large

enough such that all the probability constraints are satisfied. So, without loss of generality we

can assume that the set of feasible staffing solutions at the first stage is finite. Steps 1 and 2

of Algorithm 2 are basically a procedure to separately solve the staffing optimization problem

for each scenario, i.e., we iteratively generate cuts and solve the corresponding linear programs

until getting a staffing solution satisfying all the chance constraints. An important step of the

algorithm is that when there is a call type for which the corresponding probability value is

too small, then we need to adjust the staffing, as the current staffing does not belong to the

concave region of the probability function and would result in bad cuts. Moreover, since the
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Algorithm 2: Simulation-based decomposition algorithm with strengthened cuts

# 1. Initialization
– Select a threshold ρ > 0 to determine a “concave region” for the functions ĝM , e.g., ρ = 0.5
– Add preliminary constraints using the fluid model approximation
– Select a step size d ∈ N∗ for the subgradient estimations and s ∈ N∗
# 2. Iteratively adding linear cuts
For each scenario n = 1, . . . , N
repeat

Solve minz,w {cTz | Anz ≤ bn,Hnz +Knw ≤ hn} to obtain a solution z∗

# 2.1 For each k with too small prob. value, add s agents to a group that can serve call type k
repeat

Run the simulation with staffing z∗ to obtain ĝM (z∗; ξn)
k̄ = argmink ĝk,M (z∗; ξn)
if ĝk̄,M (z∗; ξn) < ρ then

Select i randomly and uniformly in Gk̄ and set z∗i = z∗i + s

until ĝk̄,M (z∗; ξn) ≥ ρ for all k;
# 2.2 Add sub-gradient cuts
for k = 0, . . . ,K do

if ĝk,M (z∗; ξn) < 1− δk then
Add sub-gradient cut (2) to the set {Anz ≤ bn}

until ĝk,M (z∗; ξn) ≥ 1− δk for all k;
– Add valid inequalities for each sub-gradient cuts initialized (as per Corollary 1)
# 3. Iteratively solving the linear problem and adding more linear cuts
repeat

# 3.1. Solve the sub-problem to obtain a first- and second-stage solution
– Solve sub-problem (P4) using the L-shaped (Algorithm 1) and obtain a solution x∗

– Compute (r∗+n , r∗−n ) = argminr+,r−∈NIQM (x∗; ξn), n = 1, . . . , N
# 3.2. Add more linear cuts if there are unsatisfied chance constraints
for n = 1, . . . , N ; k = 0, . . . ,K do

z∗n = x∗ + r∗+n − r∗−n
if ĝk,M (z∗n; ξn) < 1− δk then

Add sub-gradient cut (2) and corresponding MIR inequalities (11) to the set {Anz ≤ bn}

until ĝk,M (x∗ + r∗+n − r∗−n ; ξn) ≥ 1− δk for all n and k # Stop when all constraints are satisfied;

linear cuts added after Step 1 and 2 of Algorithm 2 might be not sufficient to approximate the

chance constraints, in Step 3 we need to solve the approximate problem (P4) to get first- and

second-stage solutions and add more cuts if these solutions do not satisfy the chance constraints.

In Step 3.1, we can either solve (P4) by a MIP solver (e.g., CPLEX) if it is not too large, or

use the L-shaped method in a large-scale setting.

Proposition 3 Assuming that the arrival rates are always bounded from above and the support

set X of first-stage solutions is finite, Algorithm 2 stops after a finite number of iterations.

Proof. The L-shaped algorithm generates a sequence of first-stage candidates {x0, x1, . . .}, and

based on the properties of the optimality cuts, the algorithm stops when it finds a candidate

solution that was already seen previously (Benders, 1962). Since X is finite, this implies that

the algorithm must stop after a finite number of steps. In Steps 1 and 3 of Algorithm 2, for each

scenario, each time when a staffing solution is infeasible, this solution is removed by sub-gradient
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cuts. Since the arrival rates are bounded from above, the number of infeasible solutions (r+, r−)

for the second-stage problem is finite, so the number of added cuts for each scenario must be

finite. Therefore, Algorithm 2 converges in a finite number of iterations.

5 Numerical Illustrations

5.1 Algorithms and Experimental Setting

We evaluate the performance of the proposed simulation-based decomposition algorithm using

three call center models of different sizes: a small one, a medium one, and a large one. We

compare our approach with the algorithm presented in Chan et al. (2016), which solves (P4)

directly via a MIP solver such as CPLEX. Problem (P4) can be formulated as the following

deterministic equivalent problem

(MIP)



min
x,r+n ,r

−
n

cTx+
1

N

N∑
n=1

(c+)Tr+n + (c−)Tr−n

subject to An(x+ r+n − r−n ) ≤ bn, ∀n = 1, . . . , N

Hn(x+ r+n − r−n ) +Knw ≤ hn, ∀n = 1, . . . , N

x ∈ X, r+n , r−n ∈ NI , w ≥ 0.

When reporting our results, we denote Algorithm 2 by LS and the approach in which (P4)

is solved directly by CPLEX by DE (deterministic equivalent). In our experiments with the

three examples, we use the multi-cut LS (Algorithm 1). We will show in Section 5.6 that this

multi-cut version outperforms the single-cut one, especially for medium and large call centers.

When running the algorithms, we use independent random numbers across the scenarios for

both the first-stage and second-state simulations. When estimating subgradients, on the other

hand, we use common random numbers across the two terms of the finite difference, as in Cez̧ik

and L’Ecuyer (2008). We select step sizes d = 1 and s = 1, and take M = 1000 for all examples.

To assess the quality of the solutions returned by the algorithms, we perform an out-of-sample

evaluation of each returned solution on an independent set of scenarios. For this, we take 1000

scenarios for the small example, and 100 scenarios for the medium and large examples. We

compute and report the “out-of sample” costs given by the first-stage solutions returned by the

LS and DE approaches for these new sets of scenarios.

In our experiments, the cost ci of an agent of group i is taken as an affine function of its number

of skills:

ci = 1 + 0.05(|Si| − 1)

where |Si| is the cardinality of Si, for all i, and c = (c1, . . . , cI)
T. For the costs of adding or

removing agents, we consider three cases, labeled R1, R2, and R3, as defined in Table 1.
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Test case c+ c−

R1 2c 0.5c
R2 1.5c 0.75c
R3 1.1c 0.9c

Table 1: Costs of adding and removing agents

The arrival rate λk for call type k (for the entire period) is the realization of a random variable Λk

of the form Λk = ξkβk (a product of two random variables), where the realization of ξk is unveiled

at the beginning of the second stage, while βk remains unknown. For our illustrations, we take

simple choices of distributions: we suppose that ξk has a truncated normal distribution with

parameters that generally depend on k and that βk follows a symmetric triangular distribution

of mean and mode 1, minimum 0.9, and maximum 1.1 (see Avramidis et al., 2004). The normal

distribution is truncated to satisfy the assumptions of Proposition 3.

The experiments were conducted on a machine running Debian 8 with Intel(R) Xeon(R) E5620

CPUs running at 2.40GHz. The computer has 8 physical CPUs and 98GB of memory. The

simulations were made using the ContactCenters simulation software (Buist and L’Ecuyer,

2005), developed in Java with the SSJ simulation library (L’Ecuyer et al., 2002). The algorithms

were coded in MATLAB and linked to IBM ILOG CPLEX 12.6 optimization routines under

default settings. To speed up the computations, the steps of performing simulations and adding

sub-gradient cuts for each scenario were run in parallel using the 8 physical CPUs.

5.2 Example 1: A Small Call Center

We first consider a small call center with K = 2 call types and I = 2 agent groups, with S1 = {1}
and S2 = {1, 2}. This small example will permit us to use a larger number of scenarios than the

larger ones. We assume that for the two call types: (i) each caller abandons with probability 2%

if it has to wait, (ii) patience times are exponential with means 10 and 6 minutes, (iii) the “mean”

arrival rate ξk follows a normal distribution with means 100 and 70 calls per hour, 15% standard

deviations from the means, and truncated to intervals [75, 125] and [52.5, 87.5], respectively,

and (iv) all service times are exponential with means 10 and 7.5 minutes. The length of the

period is one hour. The parameters in the SL constraints are τ1 = τ2 = τ0 = 120 (seconds),

l1 = l2 = 80%, and l0 = 85%. For each case (R1, R2, and R3), we generate 5 independent sets

of 100, 200, 300, 400, 500 scenarios. The parameters αk for the initial constraints with the fluid

model are taken as α1 = α2 = 1.

For DE, the MIP problem (MIP) is typically very large because of the large number of scenarios,

and CPLEX cannot find an optimal solution even with a time budget of several hours. So we

set the time limit to 200 seconds and the optimal gap to 0.05%. The first step (Initialization)

in Algorithm 2 takes about 85 and 400 seconds for the instances with 100 and 500 scenarios,

respectively. This step is the same for LS and DE, so in the tables we only report the computing

times for the remainder, i.e., for solving the two-stage stochastic linear programs and to generate
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N Methods
R1 R2 R3

Cost Time (s)
Out of
sample
cost

Cost Time (s)
Out of
sample
cost

Cost Time (s)
Out of
sample
cost

100 LS 32.72 73 33.13 32.33 148 32.25 31.39 76 31.60
DE 32.65 275 33.03 32.31 828 32.15 31.39 277 31.61

200 LS 32.74 296 33.13 32.08 298 32.21 31.55 315 31.61
DE 32.74 693 33.13 32.06 697 32.12 31.52 350 31.54

300 LS 33.00 456 33.13 32.18 449 32.22 31.56 476 31.61
DE 32.96 838 33.03 32.15 839 32.13 31.55 1290 31.61

400 LS 32.58 611 33.15 32.09 896 32.22 31.43 633 31.61
DE 32.58 982 33.15 32.06 981 32.12 31.42 1507 31.61

500 LS 32.82 771 33.13 32.02 765 32.21 31.29 830 31.61
DE 32.81 1133 33.03 32.01 1131 32.12 31.29 1170 31.61

Table 2: Value of the best solution found for (P4) (Cost), total CPU time (in seconds, excluding
the initialization), and cost of the retained first-stage solution of (P4) estimated out-of-sample,
for the small call center

more cuts by simulation. The LS method needs only a few seconds to return a solution. The

rest of the time is for the simulation.

The results obtained by LS and DE for the three cost structures R1, R2, and R3 are reported

in Table 2. The smallest costs and CPU times are in bold. While the objective values returned

by both approaches are similar, DE gives slightly better costs in 11 instances out of 15. On

the other hand, LS runs much faster than DE for all instances. The L-shaped method returns

a solution in a few seconds, while CPLEX always exceeds the time budget of 200 seconds. In

the out-of-sample evaluation, the two methods return solutions having the same cost in 5/15

instances, DE returns a less expensive solution in 9/15 instances, and it returns a slightly worse

cost in one instance. In all cases, the out-of-sample costs given by the two methods are quite

close in value. Overall, we find that LS is highly preferable for this example, because it returns

its solution much faster, and the solution is almost never worse than with DE.

5.3 Example 2: A Medium-Size Call Center

We now consider a medium-size call center with K = 6 call types and I = 8 agent groups. We

assume that (i) the callers do not abandon immediately in case they have to wait, (ii) patience

times are exponential with means between 36 and 52 minutes, (iii) for the different k, we suppose

that ξk follows a normal distribution with mean from 0.45 to 9.15 calls per minute and standard

deviation which is 10% of the mean, truncated to 2.5 standard deviations on each side of the

mean, and (iv) all service times have a lognormal distribution with mean between 5.1 and

11.3 minutes. The length of the period is 10 hours. We take τk = 120 (seconds) and lk = 80%

for k = 0, . . . ,K. We try two sets of targets for the chance constraints: (i) 1 − δ0 = 85%

and 1 − δk = 80%, k = 1, . . . ,K, and (ii) 1 − δ0 = 95% and 1 − δk = 90% for k = 1, . . . ,K.

The parameters αk in the fluid model are taken as 1, 4, 1, 1.2, 1, 3. These values were adjusted

manually to ensure that the initial constraints were removing the non-concave regions of the

probability functions.
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Cost
CPU time

(hour)
Out-of-sample

cost

(1 − δk, 1 − δ0) Cases N LS DE LS DE LS DE

(0.80, 0.85)

R1
20 186.90 186.90 0.26 0.54 188.25 188.11
50 188.10 188.15 1.95 3.43 188.02 188.09
70 184.35 184.63 1.55 3.94 188.6 188.91

R2
20 179.39 179.47 0.74 3.61 186.99 187.26
50 179.94 179.90 1.87 3.10 185.60 185.22
70 183.86 183.87 3.32 5.45 183.17 183.32

R3
20 180.10 180.13 1.44 2.57 187.41 188.10
50 177.43 177.48 1.61 5.25 184.15 184.15
70 175.31 175.41 3.57 10.08 183.32 183.64

(0.90, 0.95)

R1
20 191.43 191.34 1.31 2.94 194.68 194.65
50 193.64 193.78 1.17 2.69 194.32 194.57
70 191.16 191.17 2.39 2.33 195.32 195.46

R2
20 185.77 185.75 0.37 0.87 193.20 193.34
50 186.40 186.46 2.07 3.84 191.21 191.32
70 190.33 190.34 1.44 4.63 189.71 189.89

R3
20 185.03 185.00 2.06 4.00 195.62 194.89
50 183.21 183.30 2.54 4.43 190.72 190.72
70 180.47 180.61 3.38 10.65 189.28 189.28

Table 3: Value of best solution found for (P4) (Cost), CPU time (in hours, excluding initial-
ization), and cost of retained first-stage solution estimated out-of-sample, for the medium-size
call center

Since the simulation here is more expensive than for the small call center of the previous ex-

ample, we only consider instances with less than 100 scenarios. For each cost structure, we

independently generate instances of 20, 50, 70 scenarios and we use the sample size M = 1000

to estimate the chance constraints. We solve each instance and report the corresponding first-

stage solutions. For the out-of-sample validation, we use 100 independent scenarios. We set a

time budget of 10 minutes for CPLEX.

Table 3 reports the results. As in the previous example, the smallest costs and shortest CPU

times are indicated in bold. Note that Step 1 in Algorithm 2) takes about 0.14, 0.22, and 0.38

hours for the instances with 20, 50, and 70 scenarios, respectively. The solutions returned by

the two methods have similar costs, both in-sample and out-of-sample, although LS is slightly

better more often than DE. It is also significantly faster. We also see that better solutions

are obtained when increasing the number of scenarios from 20 to 70 for the cost structures R2

and R3, but not for R1, for which the difference between c+ and c− is larger.

In Table 4, we report the first-stage solutions, the first-stage costs as well as the averages of

the numbers of added or removed agents for the three cases with N = 70 scenarios. As for the

small call center, we see that the first-stage costs under R1 and R2 are higher than under R3,

and the average value of r+ under R1 and R2 is smaller than under R3.
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(1− δk, 1− δ0) Case Algorithm xT cT x Average r+ Average r−

(0
.8

0,
0.

85
) R1

LS (33, 26, 88, 6, 0, 0, 4, 11) 181.30 4.11 10.64
DE (34, 26, 88, 6, 0, 0, 5, 10) 182.40 3.78 11.27

R2
LS (34, 26, 92, 6, 0, 0, 6, 10) 187.70 4.30 14.40
DE (33, 26, 92, 5, 0, 0, 6, 11) 186.60 3.99 11.34

R3
LS (33, 23, 84, 7, 0, 0, 3, 4) 165.90 15.36 9.24
DE (33, 23, 84, 8, 0, 0, 2, 5) 167.10 14.06 8.67

(0
.9

0,
0.

95
) R1

LS (37, 25, 91, 4, 3, 0, 6, 7) 186.70 4.71 10.69
DE (36, 26, 92, 4, 2, 0, 6, 7) 186.55 4.76 10.63

R2
LS (32, 27, 93, 7, 2, 0, 4, 12) 190.90 5.21 11.04
DE (32, 27, 94, 6, 2, 0, 4, 13) 192.00 4.63 11.20

R3
LS (32, 24, 86, 8, 0, 0, 3, 5) 170.15 17.33 10.66
DE (32, 24, 86, 8, 0, 0, 3, 5) 170.15 17.03 10.11

Table 4: First-stage solutions, first-stage costs and average number of additions and removals
of agents for N = 70 for the medium call center

5.4 Example 3: A Larger Call Center

We now consider a larger call center with K = 20 call types and I = 15 agent groups. We assume

that (i) the callers abandon with probability 0.1 in case they have to wait, (ii) all patience times

are exponential with means 6 minutes (iii) for each call type k, the arrival rate ξk follows a normal

distribution with mean from 130 to 260 calls per hour and standard deviations which is 10% of

the mean, truncated to 2.5 standard deviations, and (iv) all service times are exponential with

means 7.5 minutes. We take τk = τ0 = 20 (seconds), lk = 50% for k = 1, . . . ,K, and l0 = 80%.

The length of the period is one hour. For the chance constraints, we try (i) 1 − δ0 = 85% and

1− δk = 80%, k = 1, . . . ,K, and (ii) 1− δ0 = 95% and 1− δk = 90% for k = 1, . . . ,K. For each

cost structure R1, R2 and R3, we test LS and DE with 20, 50, and 70 scenarios. For DE, we

give CPLEX a time budget of 10 minutes and a MIP gap of 0.05%. We also take αk = 1 for all

k.

Table 5 reports the results. Step 1 of Algorithm 2 takes from 1.6 to 4.0 hours for 20 to 70

scenarios, respectively. Both in-sample and out-of-sample, the costs of the retained solutions

are slight better (but not much) for LS than for DE. LS also requires much less CPU time for all

instances. The out-of-sample costs are also improved when we increase the number of scenarios.

Note that the computing time for one iteration of Step #3 of Algorithm 2 for the LS and

the DE can be approximated as (νLS + ν) and (νDE + ν), respectively, where νLS stands for

the total computing time to solve (P4) by the LS method (Algorithm 2), νDE stands for the

total computing time required by CPLEX to solve (MIP), ν is the CPU time required to

perform simulation and add more sub-gradient cuts for unsatisfied chance constraints (Step 2.2

in Algorithm 2). For the medium and large examples, νLS is very small (a few seconds, see

Table 8 below) compared to νDE (set as 10 minutes). The number of iterations at Step #3 is

always smaller for LS than for DE, and this is why LS is faster than DE in all instances.

Table 6 reports the first-stage solutions, first-stage costs and the average numbers of added or

removed agents for R1, R2, R3. As for the small and medium call centers, we observe that in
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Cost
CPU time

(hour)
Out-of-sample

cost

(1 − δk, 1 − δ0) Case N LS DE LS DE LS DE

(0.80, 0.85)

R1
20 156.62 156.75 1.08 5.20 159.77 158.64
50 157.13 157.20 2.44 7.98 158.59 159.39
70 157.66 158.65 2.29 9.90 158.52 158.75

R2
20 157.47 158.31 1.07 5.24 157.85 158.50
50 156.54 156.67 1.98 7.27 156.98 157.07
70 154.86 156.11 2.67 6.34 156.78 156.96

R3
20 161.61 164.37 1.12 4.89 158.43 157.58
50 154.65 154.86 2.37 10.48 158.03 158.09
70 155.72 159.18 2.76 9.01 158.02 159.43

(0.90, 0.95)

R1
20 170.23 170.18 0.04 1.17 174.85 174.83
50 171.55 171.68 0.41 1.93 174.44 174.66
70 172.44 172.61 0.82 1.82 174.57 174.78

R2
20 172.02 171.95 0.29 1.28 173.82 173.92
50 169.97 170.01 0.16 0.96 172.46 172.57
70 169.63 169.77 0.58 1.19 172.68 172.70

R3
20 168.37 168.44 0.40 3.95 175.56 175.07
50 167.17 167.64 0.96 5.19 173.60 174.79
70 167.38 167.80 1.19 5.04 171.02 171.77

Table 5: Value of the best solution found for (P4) (Cost), CPU time (in hours, excluding the
initialization), and cost of retained solution estimated out-of-sample, for the large call center

all three cases, LS generally gives a slightly lower first-stage cost than DE. The costs for R1 and

R2 are larger than for R3, and we also obtain a larger first-stage cost when the SL targets are

higher. Moreover, the average numbers of added or removed agents is smaller for R1 and R2

than for R3.

5.5 Value of a Stochastic Solution

Some may argue that the two-stage stochastic model considered in this paper is too much work,

in particular with large-scale call centers, as the model involves a set of solutions instead of one

solution as in one-stage models. To show that this more complicated two-stage stochastic model

is worthwhile, we evaluate its relevance using the notion of value of a stochastic solution (VSS).

For this, we solve a much simpler problem in which all the random variables are replaced by

their expected values. In our context, it means that we solve the following one-stage staffing

optimization problem, called the mean value problem, in which the random factor ξ is replaced

by its expectation ξ̄ = E[ξ]:

minimize
x

cTx

subject to P[Sk(x) ≥ lk | ξ̄] ≥ 1− δk, k = 0, . . . ,K, (16)

x ≥ 0 and integer.

In general, there is no reason to believe that a solution x(ξ̄) to this problem is close to a solution

to the recourse problem (P1), and the VSS is a concept to measure how bad a decision x(ξ̄) is

compared to a solution of the more realistic recourse model (P1).
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(1 − δk, 1 − δ0) Models Algorithms xT cT x Averaged r+ Averaged r−

(0
.8

0
,0

.8
5
)

R1
LS

(20, 0, 3, 15, 0, 0, 21,
12, 15, 7, 12, 5, 5, 6, 8)

156.05 1.44 2.92

DE
(21, 0, 2, 16, 0, 4, 22,

13, 14, 10, 11, 2, 4, 5, 6)
157.50 1.35 3.50

R2
LS

(20, 0, 5, 15, 0, 0, 22,
12, 13, 10, 11, 6, 5, 5, 5)

156.10 1.33 3.87

DE
(19, 0, 5, 16, 0, 0, 23,

12, 11, 7, 12, 4, 8, 6, 7)
157.05 1.70 4.39

R3
LS

(19, 0, 6, 17, 0, 0, 21,
13, 15, 7, 11, 5, 3, 2, 7)

151.85 4.94 3.50

DE
(19, 0, 4, 16, 0, 0, 22,

16, 13, 7, 12, 0, 4, 6, 7)
151.95 4.58 2.94

(0
.9

0
,0

.9
5
)

R1
LS

(21, 0, 7, 18, 0, 3, 23,
11, 15, 6, 11, 6, 7, 3, 10)

170.35 1.93 4.17

DE
(20, 0, 8, 18, 0, 3, 23,

11, 16, 6, 12, 6, 6, 3, 10)
170.40 1.64 4.59

R2
LS

(22, 0, 6, 17, 0, 1, 22,
14, 15, 7, 12, 3, 7, 4, 10)

168.00 2.79 4.83

DE
(22, 0, 6, 17, 0, 1, 22,

13, 15, 7, 13, 3, 7, 4, 10)
168.00 2.76 4.60

R3
LS

(19, 0, 6, 18, 0, 0, 22,
14, 15, 4, 13, 4, 4, 4, 10)

159.60 10.99 7.14

DE
(20, 0, 6, 18, 0, 0, 22,

14, 15, 4, 13, 4, 5, 4, 10)
162.00 10.16 7.87

Table 6: First-stage solutions, first-stage costs and average number of added or removed agents
for N = 70, for the large call center

To compute the VSS, we first solve the mean value problem (16) using the SAA method with

sample size M = 1000, to obtain a solution x(ξ̄). The VSS can then be computed as the gap

between the (out-of-sample) cost of a solution obtained by solving (P2) and the cost of the

solution x(ξ̄) when used in the two-stage model. We compute the VSS for the three instances

of 70 scenarios with two sets of targets (0.80,0.85) and (0.90,0.95), as in the previous sections.

For the costs of the recourse problems, we use those obtained by the LS approach, noting

that the costs given by the DE are also quite similar. Table 7 reports the VSS as well as the

percentage of increase (denoted by “% of increase” in the table) of the cost when we use the

mean value problem, compared with the cost of our best solution to the two-stage problem. The

reported VSS and their relative values (the percentages) are quite significant, especially with

R3 and the larger targets (0.90, 0.95). We also observe a VSS increase from R1 to R3, and

from moderately low targets (0.80, 0.85) to higher ones (0.90, 0.95). This shows that the cost

of ignoring uncertainty in choosing a staffing decision is significant.

5.6 A Comparison of the Single-cut and Multi-cut LS Approaches

We provide a brief comparison of the performance of the multi-cut and single-cut L-shaped

approaches on our three call center examples. For the multi-cut approach we choose L = N

(we generate cuts for each scenario), as in our context the number of scenarios is not large

and choosing L = N reduces the number of iterations in Algorithm 1. We try the three cost

structures R1, R2, and R3 for the recourse. We also set a limit of 300 iterations per call of
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Medium example Large example

(1− δk, 1− δ0) Cases VSS % of increase VSS % of increase

(0.80,0.85)
R1 4.69 2.55% 8.79 5.58%
R2 12.86 7.00% 10.28 6.64%
R3 17.07 9.74% 13.01 8.35%

(0.90,0.95)
R1 6.89 3.60% 10.25 5.94%
R2 15.37 8.08% 11.98 7.06%
R3 19.88 11.02% 15.16 9.06%

Table 7: VSS for the medium and large examples

Algorithm 1. Table 8 reports the average number of iterations and the average CPU times

in Algorithm 1 per call to this algorithm, with each of the two LS approaches. Again, the

smallest numbers are in bold. The symbol “–” indicates that the corresponding approach failed

to converge within 300 iterations. We find that for all call center sizes, the multi-cut approach

requires fewer iterations. The CPU time is slightly larger with the multi-cut for the small

call center (and also increases with the number N of scenarios, because there are then more

constraints in the master problem), but becomes much smaller than for the single-cut when the

size of the model increases. For the largest model, the single-cut approach fails to converge

within 300 iterations in all instances, while the multi-cut converges in about 20 to 60 iterations,

and the average CPU times are reasonable (20 to 200 seconds). The results clearly show the

superiority of the multi-cut approach for our simulation-based decomposition algorithm, in

particular for large instances.

Case
Small call center Medium call center Large call center

# scenarios 300 600 800 20 50 70 20 50 70

R1
single-cut

# iterations 7.4 6.6 6.6 71.2 111.5 99.6 – – –
CPU time (s) 3.6 6.5 8.9 59.5 98.9 190.0 – – –

multi-cut
# iterations 4.7 4.4 3.9 26.2 26.2 24.0 54.2 26.6 23.6

CPU time (s) 4.3 17.9 20.2 17.7 21.1 29.5 156.6 31.6 29.7

R2
single-cut

# iterations 9.1 8.5 9.3 79.2 82.5 98.4 - - -
CPU time (s) 7.5 15.7 20.4 65.2 95.6 181.3 - - -

multi-cut
# iterations 8.1 7.9 7.5 25.3 24.5 23.7 62.2 55.6 58.1
CPU time (s) 11.7 42.3 82.4 16.3 21.0 27.9 70.1 65.3 72.3

R3
single-cut

# iterations 8.2 9.4 9.1 58.8 72.3 70.2 - - -
CPU time (s) 9.6 16.3 26.6 51.2 79.3 145.2 - - -

multi-cut
# iterations 7.5 8.1 8.9 19.3 20.1 18.9 43.4 38.2 35.7
CPU time (s) 11.9 48.2 98.7 13.3 17.2 21.2 53.3 45.3 56.2

Table 8: Comparison of the single-cut and multi-cut approaches

6 Conclusion

We have proposed and tested a simulation-based SAA method combined with a decomposition

algorithm for staffing optimization under arrival rate uncertainty. The problem is formulated

as a two-stage stochastic program with integer recourse. We reported numerical results based

on call center models of three different sizes. Our results show that the decomposition approach

outperforms a direct approach that does not use decomposition to solve the approximating
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MIP problem, especially for the large call center example. It provides good-quality solutions in

reasonable time.

These results open several interesting directions for future research, e.g., the extension of the

method from staffing to scheduling problems. The proposed methodology might also be useful

for other similar workforce management problems, such as staffing and scheduling in hospitals,

clinics, and retail stores, for example, and especially for applications in which the constraints

are constructed based on complex queuing models, for which the performance needs to be

approximated by simulation.
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