
AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGE
WITH MANY LONG STREAMS AND SUBSTREAMS

PIERRE L’ECUYER
Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128,

succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7
lecuyer@iro.umontreal.ca

RICHARD SIMARD
Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128,

succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7
simardr@iro.umontreal.ca

E. JACK CHEN
BASF Corporation, 3000 Continental Drive-North, Mount Olive, New Jersey 07828-1234,

chenej@basf.com

W. DAVID KELTON
Department of Quantitative Analysis and Operations Management, College of Business Administration,

University of Cincinnati, Cincinnati, Ohio 45221-0130, david.kelton@uc.edu

(Received December 2000; revision received August 2001; accepted December 2001)

Multiple independent streams of random numbers are often required in simulation studies, for instance, to facilitate synchronization for
variance-reduction purposes, and for making independent replications. A portable set of software utilities is described for uniform random-
number generation. It provides for multiple generators (streams) running simultaneously, and each generator (stream) has its sequence of
numbers partitioned into many long disjoint contiguous substreams. The basic underlying generator for this implementation is a combined
multiple-recursive generator with period length of approximately 2191, proposed by L’Ecuyer (1999a). A C++ interface is described here.
Portable implementations are available in C, C++, and Java via the online companion to this paper on the Operations Research Web site.
�http://or.pubs.informs.org/pages/collect.html�.

Experts now recognize that small linear congruential
generators (LCGs) with moduli around 231 or so

should no longer be used as general-purpose random-
number generators (RNGs). Not only can one exhaust the
period in a few minutes on a PC, but more importantly, the
poor structure of the points can dramatically bias simula-
tion results for sample sizes much smaller than the period
length.
As an example, L’Ecuyer and Simard (2001) consider a

simple simulation problem where n points are generated
randomly in k cells over the two-dimensional square, to
estimate the expected number of repeated values for the
spacings between successive cells that contain a point. They
find that with an LCG of the form

xi = axi−1 mod m� ui = xi/m� x0 ∈
1� � � � �m−1��

if k is large (≈ n3/4) and n ≈ 8m1/3 (or more), the sim-
ulation gives totally wrong results, regardless of m and a.
This means only n≈ 10�000 for m≈ 231 and n≈ 500�000
for m ≈ 248.

Much better RNGs have already been proposed to
replace older unsafe LCGs. We mention, for instance, the
Mersenne twister of Matsumoto and Nishimura (1998),
the combined MRGs of L’Ecuyer (1999a), the combined
LCGs of L’Ecuyer and Andres (1997), and the combined
Tausworthe generators of L’Ecuyer (1999b). All of these
have fairly solid theoretical support, have been extensively
tested, and are easy to use.
However, a single RNG does not always suffice. Many

disjoint random-number subsequences, each having long
period and good statistical properties, are often required
in simulation studies, for instance, to make independent
replications or to associate distinct “streams” of random
numbers with different sources of randomness in the system
to facilitate synchronization for variance reduction (Law
and Kelton 2000).
In this note, we propose a package for uniform

random-number generation with multiple streams of
(pseudo)random numbers and convenient tools to move
around within and across these streams. The structure
and the tools offered are similar to those in the package

0030-364X/02/5006-1073 $05.00
1526-5463 electronic ISSN 1073

Subject classifications: Simulation: random number generation, random variable generation. Statistical analysis. Computers/computer science: software.
Area of review: Simulation.

Operations Research © 2002 INFORMS
Vol. 50, No. 6, November–December 2002, pp. 1073–1075

1074 / L’ecuyer, Simard, Chen, and Kelton

proposed by L’Ecuyer and Côté (1991) and L’Ecuyer and
Andres (1997). The main differences are:
• The underlying “backbone” generator is more robust

and has longer period than those used by these authors. We
use the combined multiple-recursive generator (CMRG)
MRG32k3a proposed by L’Ecuyer (1999a).
• The package proposed here has an object-oriented

design. The streams, which can be seen as virtual RNGs,
are declared at will, as instances of a class, instead of being
numbered from 0 to N where N is fixed.
Other random number packages with multiple streams

have been proposed in recent years; see, for example,
Mascagni and Srinivasan (2000). These packages do not
offer the same tools for streams and substreams as ours,
and are not supported by the same theoretical analysis for
the quality and independence of the different streams.
In what follows, we provide some background on the

backbone CMRG, explain how the streams and substreams
are defined, and give a C++ interface to the package.
Implementations in C, C++, and Java, as well as a more
detailed version of this paper, are available in the online
companion to this paper on the Operations Research Web
site �http://or.pubs.informs.org/pages/collect.html�, and at
�http://www.iro.umontreal.ca/˜lecuyer�.

1. DESCRIPTION AND IMPLEMENTATION
OF THE SOFTWARE

1.1. The Underlying Backbone Generator

L’Ecuyer (1999a) gave several good parameter sets for
CMRGs of different sizes. We have selected one of them,
called MRG32k3a, as our backbone generator. It has two
components each of order 3. At step n, its state is
the pair of vectors s1� n = �x1� n� x1� n+1� x1� n+2� and s2� n =
�x2� n� x2� n+1� x2� n+2�, which evolve according to the linear
recurrences

x1� n = �1403580×x1� n−2−810728×x1� n−3� mod m1�

x2� n = �527612×x2� n−1−1370589×x2� n−3� mod m2�

where m1 = 232 − 209 = 4294967087 and m2 = 232 −
22853= 4294944443, and its output un is defined by

zn = �x1� n −x2� n� mod 4�294�967�087�

un =
{
zn/4294967088 if zn > 0�

4294967087/4294967088 if zn = 0�

Its period length is � = �m3
1−1��m3

2−1�/2≈ 2191 ≈ 3�1×
1057. RNGs with much longer periods are also available,
but their states must contain more bits and are therefore
more expensive to manipulate. We think that our choice is a
reasonable compromise. The parameters have been chosen
so that the period is long, a fast implementation is available
(in floating point arithmetic), and the generator performs
well with respect to the spectral test in up to (at least) 45

dimensions. The spectral test in t dimensions measures the
uniformity of the point set

Tt =
�u0� � � � � ut−1�
�x1�0� x1�1� x1�2� ∈ Z3
m1

�

�x2�0� x2�1� x2�2� ∈ Z3
m2

��

where Zm =
0� � � � �m− 1�, and makes sure that this set
covers the t-dimensional unit hypercube very uniformly.
This Tt is the set of all overlapping t-tuples of successive
values produced by the generator, from all possible initial
states.

1.2. Multiple Streams and Substreams

Let � be the period length of the RNG and T its transition
function; that is, T�sn� = sn+1, where sn is the generator’s
state at step n, and T��s� = s. To partition the generator’s
sequence into disjoint streams and substreams, we choose
two positive integers v and w, and let z = v+w. We first
cut the long cycle into adjacent streams of length Z = 2z

and then partition each of these streams into V = 2v blocks
(or substreams) of length W = 2w.
If s0 is the initial seed of the generator and Ig denotes

the initial state of stream g for g � 1, then we have I1 =
s0, I2 = TZ�s0�� � � � � Ig = TZ�Ig−1� = T �g−1�Z�s0�� � � � . The
first substream of stream g starts in state Ig , the second in
state TW �Ig�, the third in state T 2W �Ig�, and so on. At any
moment during program execution, stream g is in some
state, say Cg . We denote by Bg the starting state of the
substream that contains the current state, i.e., of the current
substream, and Ng = TW �Bg� the starting state of the next
substream. In Figure 1, for example, the state of stream g
is at the 6th value of the third substream, i.e., 2W +5 steps
ahead of its initial state Ig and 5 steps ahead of Bg .

Whenever a new stream is created (instantiated), say
the gth stream, the software automatically computes Ig =
TZ�Ig−1� and puts Cg = Bg = Ig . When going from a sub-
stream to the next one, the software must compute Ng =
TW �Bg�. Of course, W and Z must be large numbers, so
a quick way to compute sn+� from sn for large integers �,
without generating the intermediate values, must be avail-
able. For a combined MRG, we can do this for each of its
components separately, as explained in L’Ecuyer (1990):
One can write sj�n+1 =Ajsj�n mod mj for some 3×3 matrix
Aj , and then sj�n+� = �A�

j mod mj�sj�n mod mj . The matrix
A�

j mod mj is computed via a standard divide-and-conquer
algorithm (Knuth 1998), and can be precomputed once for
� = W and � = Z.

1.3. Choice of v and w

We have selected v = 51 and w = 76, so W = 276 and
Z = 2127. To select v and w, a spectral test for the

L’ecuyer, Simard, Chen, and Kelton / 1075

vectors of nonsuccessive output values spaced h = 2l

steps apart was performed for different integer values
of l, and we chose v and w so that the behavior was
good for l = v, l = w, and l = v + w. More specif-
ically, let Tt�s�h� be the point set obtained if we
replace �un� � � � � un+t−1� by the first t components of
the sequence �un� � � � � un+s−1� uh� � � � � un+h+s−1� un+2h� � � � ,
un+2h+s−1� � � � � in the definition of Tt . If the streams are
started h apart, the points of Tt�s�h� are those obtained
by taking s successive values from the first stream, s suc-
cessive values from the second stream, and so on until t
values have been taken. We looked for values of l such that
for h = 2l, the point set Tt�s�h� was very uniformly dis-
tributed, according to the spectral test, for all s � 16 and
t � 32. This was done for 51� l � 150, and we found that
the uniformity was particularly good for l = 51�76, and
127.

2. A C++ INTERFACE TO THE
PACKAGE RNGSTREAMS

We now describe the main public members of the class
RngStream in C++. Other methods and further details
are available at the INFORMS home page in the Opera-
tions Research Online Collection at �http://or.pubs.informs.
org/Pages/collect.html�.
class RngStream
{
public:

RngStream (const char *name = "");

This constructor creates a new stream with (optional) descriptor name.
It initializes its seed Ig , and sets Bg and Cg to Ig . The seed Ig is equal
to the initial seed of the package if this is the first stream created;
otherwise it is Z steps ahead of the seed of the most recently created
stream.

static void SetPackageSeed (const unsigned long seed[6]);

Sets the initial seed s0 of the package to the six integers in the vector
seed. The first three integers in the seed must all be less than m1 =
4294967087, and not all 0; and the last three integers must all be less
than m2 = 4294944443, and not all 0. If this method is not called, the
default initial seed is (12345, 12345, 12345, 12345, 12345, 12345).

void ResetStartStream ();

Reinitializes the stream to its initial state: Cg and Bg are set to Ig .

void ResetStartSubstream ();

Reinitializes the stream to the beginning of its current substream: Cg

is set to Bg .

void ResetNextSubstream ();

Reinitializes the stream to the beginning of its next substream: Ng is
computed, and Cg and Bg are set to Ng .

void SetAntithetic (bool a);

If a = true, the stream will start generating antithetic variates, i.e.,
1−U instead of U , until this method is called again with a= false.

void IncreasedPrecis (bool incp);
After calling this method with incp = true, each call to the gener-
ator (direct or indirect) for this stream will return a uniform random
number with more bits of resolution (53 bits if machine follows IEEE
754 standard) instead of 32 bits, and will advance the state of the
stream by two steps instead of one. More precisely, if s is a stream
of the class RngStream, in the nonantithetic case, the instruction “u=
s�RandU01��” will be equivalent to “u= �s�RandU01��+s�RandU01��∗
fact�%1�0” where the constant fact is equal to 2−24. This also applies
when calling RandU01 indirectly (e.g., via RandInt, etc.). By default,
or if this method is called again with incp = false, each call to
RandU01 for this stream advances the state by one step and returns a
number with 32 bits of resolution.

void WriteState () const;
Writes (to standard output) the current state Cg of this stream.

double RandU01 ();
Normally, returns a (pseudo)random number from the uniform dis-
tribution over the interval �0�1�, after advancing the state by
one step. The returned number has 32 bits of precision in the
sense that it is always a multiple of 1/�232 − 208�. However, if
IncreasedPrecis(true) has been called for this stream, the state is
advanced by two steps and the returned number has 53 bits of preci-
sion.

long RandInt (long i, long j);
Returns a (pseudo)random number from the discrete uniform distribu-
tion over the integers
i� i+1� � � � � j�. Makes one call to RandU01.

};

ACKNOWLEDGMENT

This work was supported by NSERC-Canada grant number
ODGP0110050 to the first author.

REFERENCES

Knuth, D. E. 1998. The Art of Computer Programming, Volume
2: Seminumerical Algorithms, 3rd ed. Addison-Wesley,
Reading, MA.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Anal-
ysis, 3rd ed. McGraw-Hill, New York.

L’Ecuyer, P. 1990. Random numbers for simulation. Comm. ACM
33(10) 85–97.
. 1999a. Good parameters and implementations for com-
bined multiple recursive random number generators. Oper.
Res. 47(1) 159–164.
. 1999b. Tables of maximally equidistributed combined
LFSR generators. Math. Comput. 68(225) 261–269.
, T. H. Andres. 1997. A random number generator based on
the combination of four LCGs. Math. Comput. Simulation 44
99–107.
, S. Côté. 1991. Implementing a random number package with
splitting facilities. ACM Trans. Math. Software 17(1) 98–111.
, R. Simard. 2001. On the performance of birthday spacings
tests for certain families of random number generators. Math.
Comput. Simulation 55(1–3) 131–137.

Mascagni, M., A. Srinivasan. 2000. Algorithm 806: SPRNG: A
scalable library for pseudorandom number generation. ACM
Trans. Math. Software 26 436–461.

Matsumoto, M., T. Nishimura. 1998. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Modeling Comput. Simula-
tion 8(1) 3–30.

