
K-Local Hyperplane and Convex Distance
Nearest Neighbor Algorithms

Pascal Vincent and Yoshua Bengio
Dept. IRO, Universit´e de Montréal

C.P. 6128, Montreal, Qc, H3C 3J7, Canada
{vincentp,bengioy}@iro.umontreal.ca
http://www.iro.umontreal.ca/∼vincentp

Technical Report 1197

June 20th, 2001

Abstract

Guided by an initial idea of building a complex (non linear) decision surface
with maximallocal marginin input space, we give a possible geometrical intuition
as to why K-Nearest Neighbor (KNN) algorithms often perform more poorly than
SVMs on classification tasks. We then propose modified K-Nearest Neighbor al-
gorithms to overcome the perceived problem. The approach is similar in spirit to
Tangent Distance, but with invariances inferred from the local neighborhood rather
than prior knowledge. Experimental results on real world classification tasks sug-
gest that the modified KNN algorithms often give a dramatic improvement over
standard KNN and perform as well or better than SVMs.

1 Motivation

The notion ofmargin for classification tasks has been largely popularized by the suc-
cess of the Support Vector Machine (SVM) [2, 11] approach. Themarginof SVMs has
a nice geometric interpretation1: it can be defined informally as (twice) the smallest
Euclidean distance between the decision surface and the closest training point. The
decision surface produced by the original SVM algorithm is the hyperplane that max-
imizes this distance while still correctly separating the two classes. While the notion
of keeping the largest possible safetymarginbetween the decision surface and the data
points seems very reasonable and intuitively appealing, questions arise when extending
the approach to building more complex, non-linear decision surfaces. . .

Non-linear SVMs usually use the “kernel trick” to achieve their non-linearity. This
conceptually corresponds to first mapping the input into a higher-dimensional feature

1for the purpose of this discussion, we consider the original hard-margin SVM algorithm for two linearly
separable classes.

1



space with some non-linear transformation and building a maximum-margin hyper-
plane (a linear decision surface) there. The “trick” is that this mapping is never com-
puted directly, but implicitly induced by a kernel. In this setting, the margin being
maximized is still the smallest Euclidean distance between the decision surface and
the training points, but this time measured in some strange, sometimes infinite dimen-
sional, kernel-induced feature space rather than the original input space. It is less
clear whether maximizing the margin in this new space, is meaningful in general. In-
deed [12] shows cases where for any separating decision surface in input space there
is a feature space in which the corresponding decision surface is a maximum margin
hyperplane.

A different approach is to try and build a non-linear decision surface with maximal
distance to the closest data point as measured directly in input space. We could for
instance restrict ourselves to a certain class of decision functions and try to find the
function with maximal margin among this class. But let us take this even further.
Extending the idea of building a correctly separating non-linear decision surface as
far away as possible from the data points, we define the notion oflocal marginas the
Euclidean distance, in input space, between a given point on the decision surface and
the closest training point. Now would it be possible to find an algorithm that could
produce a decision surface which correctly separates the classes and such that thelocal
margin is everywhere maximal along its surface? Surprisingly, the plain old Nearest
Neighbor algorithm (1NN) [5] does precisely this2!

So why does 1NN in practice often perform worse than SVMs? One typical expla-
nation, is that it has too much capacity, compared to SVM, that the class of function it
can produce is too rich. But, considering it hasinfinitecapacity, 1NN is still performing
quite well. This study is an attempt to better understand what is happening, based on
geometrical intuition, and to derive an improved Nearest Neighbor algorithm from this
understanding.

2 Fixing a broken Nearest Neighbor algorithm

2.1 Setting and definitions

The setting is that of a classical classification problem inIRn (the input space).
We are given atraining setS of l points{x1, . . . , xl}, xi ∈ IRn and their cor-

responding class label{y1 = y(x1), . . . , yl = y(xl)}, yi ∈ C, C = {1, . . . , Nc}
whereNc is the number of different classes. The(x, y) pairs are assumed to be sam-
ples drawn from an unknown distributionP (X,Y ). Barring duplicate inputs, the class
labels associated to eachx ∈ S define a partition ofS: let Sc = {x ∈ S | y(x) = c}.

The problem is to find adecision functioñf : IRn → C that will generalize well on
new points drawn fromP (X,Y ). f̃ should ideally minimize theexpected classification
error, i.e. minimizeEP [If̃(X)6=Y ] whereEP denotes the expectation with respect to

P (X,Y ) andIf̃(x)6=y denotes the indicator function, whose value is1 if f̃(x) 6= y and
0 otherwise.

In the previous and following discussion, we often refer to the concept ofdecision
surface, also known asdecision boundary. The functionf̃ corresponding to a given

2A formal proof of this is beyond the scope of this article.

2



algorithm defines for any classc ∈ C two regions of the input space: the regionRc =
{x ∈ IRn | f̃(x) = c} and its complementIRn − Rc. Thedecision surfacefor classc
is the interface of these two regions, and can be seen as an− 1 dimensional manifold
(a “surface” inIRn) possibly made of several disconnected components. For simplicity,
when we mentionthe decision surfacein our discussion we consider only the case of
two class discrimination, in which there is a single decision surface.

When we mention atest point, we mean a pointx ∈ IRn that does not belong to the
training setS and for which the algorithm is to decide on a classf̃(x).

By distance, we mean the usual Euclidean distance in input-spaceIRn. The distance
between two pointsa andb will be writtend(a, b) or alternatively‖a− b‖.

The distance between a single pointx and a set of pointsS is the distance to the
closest point of the set:d(x, S) = minp∈S d(x, p).

TheK-neighborhoodVK(x) of a test pointx is the set of theK points ofS whose
distance tox is smallest.

TheK-c-neighborhoodVKc (x) of a test pointx is the set ofK points ofSc whose
distance tox is smallest.

By Nearest Neighboralgorithm (1NN) we mean the following algorithm: the class
of a test pointx is decided to be the same as the class of its closest neighbor inS.

By K-Nearest Neighboralgorithm (KNN) we mean the following algorithm: the
class of a test pointx is decided to be the same as the class appearing most frequently
among the K-neighborhood ofx.

2.2 The intuition

Figure 1:A local view of the decision surface produced by the Nearest Neighbor (left)
and SVM (center) algorithms, and how the Nearest Neighbor solution might get closer
to the SVM solution in the limit, if the manifolds for each class are locally linear (right).

Figure 1 illustrates a possible intuition about why SVMs outperforms 1NNs when
we have a finite number of samples: in the case of classification tasks where the classes
are considered to be mostly separable, we often like to think of each class as forming a
lower-dimensional manifold (in a high dimensional input space) which can reasonably
be considered locally linear. In the case of a finite number of samples, “missing”

3



samples would appear as “holes” introducing artifacts in the decision surface produced
by classical Nearest Neighbor algorithms. Thus the decision surface, while having
the largest possiblelocal marginwith regard to the training points, is likely to have a
poor smalllocal marginwith respect to yet unseen samples falling within the locally
linear manifold, and will thus result in poor generalization performance. This problem
fundamentally remains with the K Nearest Neighbor (KNN) variant of the algorithm,
but, as can be seen on the figure, it does not seem to affect the decision surface produced
by SVMs (as the surface is constrained to a particular smooth form, a straight line or
hyperplane in the case of linear SVMs). It is interesting to notice, if the assumption
of locally linear class manifolds holds, how the 1NN solution approaches the SVM
solution in the limit as we increase the number of samples.

To fix this problem, the idea is to somehowfantasizethe missing points, based on
a local linear approximation of the manifold of each class. This leads to a modified
Nearest Neighbor algorithm described in the next section.

2.3 The basic algorithm

Given a test pointx, we are really interested in finding the closest neighbor, not among
the training setS, but among an abstract, virtually enriched training set that would con-
tain all thefantasized“missing” points of the manifold of each class, locally approxi-
mated by a hyperplane. We shall thus consider, for each classc, the local hyperplane
that passes through theK points of the K-c neighborhood ofx.

Formally, this local hyperplane can be defined as

LHK
c (x) =

{
p
∣∣∣ p =

K∑
k=1

αkNk, α1..K ∈ IRK,
K∑

k=1

αk = 1

}
(1)

where{N1, . . . , Nk} = VKc (x).
Another way to define this hyperplane, that gets rid of the constraint

∑
αk = 1, is

to take a reference point within the hyperplane as an origin, for instance the centroid3

N̄ = 1
K

∑K
k=1 Nk. This same hyperplane can then be expressed as

LHK
c (x) =

{
p
∣∣∣ p = N̄ +

K∑
k=1

αk
−→
V k, α1..K ∈ IRK

}
(2)

where
−→
V k = Nk − N̄ .

Typically LHK
c (x) will define aK − 1 dimensional hyperplane (unless there are

colinearities, in which case it will have a smaller dimensionality).
Ourmodified nearest neighbor algorithmthen associates a test pointx to the classc

whose hyperplaneLHK
c (x) is closest tox. Formallyf̃(x) = arg minc∈C d(x, LHK

c (x)),
whered(x, LHK

c (x)) is logically calledK-local Hyperplane Distance, hence the name
K-local Hyperplane Distance Nearest Neighboralgorithm (HKNN in short).

3We could be using one of theK neighbors as the reference point, but this formulation with the centroid
will prove useful later.

4



Computing, for each classc

d(x, LHK
c (x)) = min

p∈LHKc (x)
‖x− p‖

= min
α1..K∈IRK

∥∥∥∥∥x− N̄ −
K∑
k=1

αk
−→
V k

∥∥∥∥∥ (3)

amounts to solving a linear system inα, that can be easily expressed in matrix form as:

(V ′ · V ) · α = V ′ · (x− N̄) (4)

wherex andN̄ aren dimensional column vectors,α = (α1, . . . , αK)′, andV is a
n×K matrix whose columns are the

−→
V k vectors defined earlier.

2.4 Links with other paradigms

The proposed HKNN algorithm is very similar in spirit to theTangent Distance Al-
gorithm [9]. LHK

c (x) can be seen as a tangent hyperplane representing a set of local
directions of transformation (any linear combination of the

−→
V k vectors) that do not

affect the class identity. These areinvariances. The main difference is that in HKNN
these invariances are inferred directly from the local neighborhood in the training set,
whereas in Tangent Distance, they are based on prior knowledge. It should be interest-
ing (and relatively easy) to combine both approaches for improved performance when
prior knowledge is available.

We should also mention close similarities between our approach and the recently
proposedLocal Linear Embedding[8] method for dimensionality reduction, and the
more general paradigm ofLocal Learning Algorithms[3, 1, 7]. The idea of fantasizing
points around the training points in order to define the decision surface is also very
close to methods based on estimating the class-conditional input density [10, 4].

It is interesting to look at HKNN from a different, less geometrical angle: it can
be understood as choosing the class that achieves the best reconstruction (the smallest
reconstruction error) of the test pattern through a linear combination ofK particular
prototypes of that class (theK neighbors). From this point of view, the algorithm is
very similar to theNearest Feature Line(NFL) [6] method. They differ in the fact that
NFL considers all pairs of points for its search rather than the localK neighbors, thus
looking at many (l2) 2 dimensional “hyperplanes”, rather than a singleK dimensional
one.

3 Fixing the basic HKNN algorithm

3.1 Problem arising for large K

One problem with the basic HKNN algorithm, as previously described, arises as we
increase the value ofK, i.e. the number of points considered in the neighborhood of
the test point. In a typical high dimensional setting,exactcolinearities between input
patterns are rare, which means that as soon asK > n, any pattern ofIRn (including
nonsensical ones) can be produced by a linear combination of theK neighbors. The

5



“actual” dimensionality of the manifold may be much less thanK. This is due to “near-
colinearities” producing directions associated to small eigenvalues of the covariance
matrix V ′ · V that are but noise, that can lead the algorithm to mistake those noise
directions for “invariances”, and may hurt its performance even for smaller values of
K. Another related issue is that the linear approximation of the class manifold by a
hyperplane is valid only locally, so we might want to restrict the “fantasizing” of class
members to a smaller region of the hyperplane. We considered two ways of dealing
with these problems.4

3.2 The convex hull solution

One way to avoid the above mentioned problems is to restrict ourselves to considering
the convex hullof the neighbors, rather than the whole hyperplane they support (of
which the convex hull is a subset). This corresponds to adding a constraint ofαk ≥
0, k ∈ 1..K to equation (1). Unlike the problem of computing the distance to the
hyperplane, the distance to the convex hull cannot be found by solving a simple linear
system, but typically requires solving a quadratic programming problem (very similar
to the one of SVMs). While this is more complex to implement, it should be mentioned
that the problems to be solved are of a relatively small dimension of orderK, and that
the time of the whole algorithm will very likely still be dominated by the search of the
K nearest neighbors within each class. This algorithm will be referred to asK-local
Convex Distance Nearest Neighbor Algorithm(CKNN in short).

3.3 The “weight decay” penalty solution

This consists in incorporating a penalty term to equation (3) to penalize large values of
α (i.e. it penalizes moving away from the centroid, especially in non essential direc-
tions):

d′(x, LHK
c (x))2 = min

α1..K∈IRK

∥∥∥∥∥x− N̄ −
K∑
k=1

αk
−→
V k

∥∥∥∥∥
2

+ λ
K∑
k=1

α2
k (5)

The solution forα is given by solving the linear system(V ′ ·V +λIn)·α = V ′ ·(x−N̄ )
whereIn is then× n identity matrix. This is equation (4) with an additional diagonal
term. The resulting algorithm is a generalization of HKNN (basic HKNN corresponds
to λ = 0).

4 Experimental results

We performed a number of experiments, to highlight different properties of the algo-
rithms: • A first 2D toy example (see Figure 2) graphically illustrates the qualitative
differences in the decision surfaces produced by KNN, linear SVM and CKNN.
• Table 1 gives quantitative results on two real-world digit OCR tasks, allowing to
compare the performance of the different old and new algorithms.

4A third interesting avenue, which we did not have time to explore, would be to keep only the most
relevant principal components ofV , ignoring those corresponding to small eigenvalues.

6



• Figure 3 illustrates the problem arising with largeK, mentioned in Section 3, and
shows that the two proposed solutions: CKNN and HKNN with an added weight de-
cayλ, allow to overcome it.
• In our final experiment, we wanted to see if the good performance of the new algo-
rithms absolutely depended on having all the training points at hand, as this has a direct
impact on speed. So we checked what performance we could get out of HKNN and
CKNN when using only a small but representative subset of the training points, namely
the set of support vectors found by a Gaussian Kernel SVM. The results obtained for
MNIST are given in Table 2, and look very encouraging. HKNN appears to be able to
perform as well or better than SVMswithoutrequiring more data points than SVMs.

Figure 2:2D illustration of the decision surfaces produced by KNN (left, K=1), linear
SVM (middle), and CKNN (right, K=2). The “holes” are again visible in KNN. CKNN
doesn’t suffer from this, but keeps the objective ofmaximizing the margin locally.

Table 1: Test-error obtained on the USPS and MNIST digit classification tasks by
KNN, SVM (using a Gaussian Kernel), HKNN and CKNN. Hyper parameters were
tuned on a separate validation set. Both HKNN and CKNN appear to perform much
better than original KNN, and even compare favorably to SVMs.

Data Set Algorithm Test Error Parameters used

USPS KNN 4.98% K = 1
(6291 train, SVM 4.33% σ = 8, C = 100
1000 valid., HKNN 3.93% K = 15, λ = 30

2007 test points) CKNN 3.98% K = 20
MNIST KNN 2.95% K = 3

(50000 train, SVM 1.30% σ = 6.47, C = 100
10000 valid., HKNN 1.26% K = 65, λ = 10

10000 test points) CKNN 1.46% K = 70

5 Conclusion

From a few geometrical intuitions, we have derived two modified versions of the KNN
algorithm that look very promising. HKNN is especially attractive: it is very simple to

7



0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0 20 40 60 80 100 120

er
ro

r 
ra

te

K

CKNN
basic HKNN

HKNN, lambda=1
HKNN, lambda=10

Figure 3:Error rate on MNIST as a function ofK for CKNN, and HKNN with different
values ofλ. As can be seen the basic HKNN algorithm performs poorly for large values
ofK. As expected, CKNN is relatively unaffected by this problem, and HKNN can be
made robust through the added “weight decay” penalty controlled byλ.

Table 2:Test-error obtained on MNIST with HKNN and CKNN when using a reduced
training set made of the 16712 support vectors retained by the best Gaussian Kernel
SVM. This corresponds to 28% of the initial 60000 training patterns. Performance is
even better than when using the whole dataset (previous Table). But here, hyper param-
etersK andλ were chosen with the test set, as we did not have a separate validation
set in this setting. It is nevertheless remarkable that comparable performances can be
achieved with far fewer points.

Data Set Algorithm Test Error Parameters used
MNIST (16712 train s.v., HKNN 1.23% K = 60, λ = 10

10000 test points) CKNN 1.36% K = 45

implement on top of a KNN system, as it only requires the additional step of solving
a small and simple linear equation, and appears to greatly boost the performance of
standard KNN even above the level of SVMs. The proposed algorithms share the
advantages of KNN (no training required, ideal for fast adaptation, natural handling of
the multi-class case) and its drawbacks (requires large memory, slow testing). However
our latest result also indicate the possibility of substantially reducing the reference
set in memory without loosing on accuracy. This suggests that the algorithm indeed
captures essential information in the data, and that our initial intuition on the nature of
the flaw of KNN may well be at least partially correct.

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.Artificial
Intelligence Review, 1996.

8



[2] B. Boser, I. Guyon, and V. Vapnik. An algorithm for optimal margin classifiers.
In Fifth Annual Workshop on Computational Learning Theory, pages 144–152,
Pittsburgh, 1992.

[3] L. Bottou and V. Vapnik. Local learning algorithms.Neural Computation,
4(6):888–900, 1992.

[4] Olivier Chapelle, Jason Weston, L´eon Bottou, and Vladimir Vapnik. Vicinal risk
minimization. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors,Advances in
Neural Information Processing Systems, volume 13, pages 416–422, 2001.

[5] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification.IEEE Trans-
actions on Information Theory, 13(1):21–27, 1967.

[6] S.Z. Li and J.W. Lu. Face recognition using the nearest feature line method.IEEE
Transactions on Neural Networks, 10(2):439–443, 1999.

[7] D. Ormoneit and T. Hastie. Optimal kernel shapes for local linear regression. In
S. A. Solla, T. K. Leen, and K-R. Mller, editors,Advances in Neural Information
Processing Systems, volume 12. MIT Press, 2000.

[8] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding.Science, 290(5500):2323–2326, Dec. 2000.

[9] P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri. Transformation invari-
ance in pattern recognition — tangent distance and tangent propagation.Lecture
Notes in Computer Science, 1524, 1998.

[10] S. Tong and D. Koller. Restricted bayes optimal classifiers. InProceedings of
the 17th National Conference on Artificial Intelligence (AAAI), pages 658–664,
Austin, Texas, 2000.

[11] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

[12] Bin Zhang. Is the maximal margin hyperplane special in a feature space? Tech-
nical Report HPL-2001-89, Hewlett-Packards Labs, 2001.

9


