
Turning Overlap-Save into a Multiband
Mixing, Downsampling Filter Bank

IEEE SIGNAL PROCESSING MAGAZINE [158] MARCH 2006

[dsp TIPS&TRICKS]
Mark Borgerding

1053-5888/06/$20.00©2006IEEE

I
n this article, we show how to
extend the popular overlap-save
(OS) fast convolution filtering tech-
nique to create a flexible and compu-
tationally efficient bank of filters,

with frequency translation and decima-
tion implemented in the frequency
domain. In addition, we supply some tips
for choosing appropriate fast Fourier
transform (FFT) size.

Fast convolution is a well-known and
powerful filtering technique. All but the
shortest finite impulse response (FIR)
filters can be implemented more effi-
ciently in the frequency domain than
when performed directly in the time
domain. The longer the filter impulse
response, the greater the speed advan-
tage of fast convolution.

When more than one output is fil-
tered from a single input, some parts of
the fast convolution algorithm are redun-
dant. Removing this redundancy increas-
es fast convolution’s speed even more.
Sample rate change by decimation
(downsampling) and frequency transla-
tion (mixing) techniques can also be
incorporated efficiently in the frequency
domain. These concepts can be combined
to create a flexible and efficient bank of
filters. Such a filter bank can implement

mixing, filtering, and decimation of mul-
tiple arbitrary channels much faster than
direct time-domain implementation.

SOMETHING OLD
AND SOMETHING NEW
The necessary conditions for vanilla-
flavored fast convolution are covered
pretty well in the literature. However, the
choice of FFT size is not. Filtering multi-
ple channels from the same forward FFT
requires special conditions not detailed
in textbooks. To downsample and shift
those channels in the frequency domain
requires still more conditions.

The first section is meant to be a
quick reminder of the basics before we
extend the OS fast convolution tech-
nique. If you feel comfortable with these
concepts, skip ahead. On the other hand,
if this review does not jog your memory,
check your favorite DSP book for “Fast
Convolution,” “Overlap-Add” (OA),
“Overlap-Save,” or “Overlap-Scrap”
[1]–[5].

REVIEW OF FAST CONVOLUTION
The convolution theorem tells us that
multiplication in the frequency domain
is equivalent to convolution in the time
domain [1]. Circular convolution is
achieved by multiplying two discrete
Fourier transforms (DFTs) to effect con-
volution of the time sequences that the
transforms represent. By using the FFT
to implement the DFT, the computa-
tional complexity of circular convolu-
tion is approximately O(Nlog 2N)
instead of O(N 2), as in direct linear
convolution. Although very small FIR
filters are most efficiently implemented
with direct convolution, fast convolu-
tion is the clear winner as the FIR filters
get longer. Conventional wisdom places
the efficiency crossover point at 25–30

filter coefficients. The actual value
depends on the relative strengths of the
platform in question (CPU pipelining,
zero-overhead looping, memory
addressing modes, etc.). On a desktop
processor with a highly optimized FFT
library, the value may be as low as 16.
On a fixed-point DSP with a single-cycle
multiply-accumulate instruction, the
efficiency value can be over 50.

Fast convolution refers to the block-
wise use of circular convolution to
accomplish linear convolution. Fast con-
volution can be accomplished by OA or
OS methods. OS is also known as “over-
lap-scrap” [5]. In OA filtering, each signal
data block contains only as many sam-
ples as allows circular convolution to be
equivalent to linear convolution. The sig-
nal data block is zero-padded prior to the
FFT to prevent the filter impulse
response from “wrapping around” the
end of the sequence. OA filtering adds
the input-on transient from one block
with the input-off transient from the pre-
vious block.

In OS filtering, shown in Figure 1, no
zero-padding is performed on the input
data, thus the circular convolution is not
equivalent to linear convolution. The
portions that “wrap around” are useless
and discarded. To compensate for this,
the last part of the previous input block
is used as the beginning of the next
block. OS requires no addition of tran-
sients, making it faster than OA. The OS
filtering method is recommended as the
basis for the techniques outlined in the
remainder of this article. The nomencla-
ture “FFTN” in Figure 1 indicates that an
FFT’s input sequence is zero-padded to a
length of N samples, if necessary, before
performing the N-point FFT.

For clarity, the following list defines
the symbols used in this article.

“DSP Tips and Tricks” introduces prac-

tical tips and tricks of design and

implementation of signal processing

algorithms so that you may be able

to incorporate them into your

designs. We welcome readers who

enjoy reading this column to submit

their contributions. Contact Associate

Editors Rick Lyons (r.lyons@ieee.org)

or Amy Bell (abell@vt.edu).

IEEE SIGNAL PROCESSING MAGAZINE [159] MARCH 2006

SYMBOL CONVENTIONS
x(n) Input data sequence
h(n) FIR filter impulse

response
y(n)=x(n)∗h(n) Convolution of x(n)

and h(n)

L Number of new input
samples consumed per
data block

P Length of h(n)

N = L + P − 1 FFT size
V = N/(P − 1) Overlap factor, the

ratio of FFT length to
filter transient length

D Decimation factor

CHOICE OF FFT SIZE: COMPLEXITY IS
RELATED TO FILTER LENGTH AND
OVERLAP FACTOR
Processing a single block of input data
that produces L outputs incurs a compu-
tational cost related to Nlog(N) =
(L + P − 1) log(L + P − 1). The compu-
tational cost per sample is related to
(L + P − 1) log(L + P − 1)/L . The filter
length P is generally a fixed parameter,
so choosing L such that this equation is
minimized gives the theoretically opti-
mal FFT length. It may be worth men-
tioning that the log base is the radix of
the FFT. The only difference between dif-
ferent-based logarithms is a scaling fac-
tor. This is irrelevant to “big O”
scalability, which generally excludes con-
stant scaling factors.

Larger FFT sizes are more costly to
perform, but they also produce more
usable (nonwraparound) output samples.
In theory, one is penalized more for
choosing too small an overlap factor, V,
than too large. In practice, the price of
large FFTs paid in computation and/or
numerical accuracy may suggest a differ-
ent conclusion.

Some other factors to consider while
deciding the overlap factor for fast con-
volution filtering include:

■ FFT speed—It is common for actual
FFT computational cost to differ
greatly from theory, e.g., due to mem-
ory caching. (“In theory there is no
difference between theory and prac-
tice. In practice there is.” — Yogi
Berra, American philosopher and
occasional baseball manager.)

■ FFT accuracy—the numerical
accuracy of fast convolution filtering
is dependent on the error introduced
by the FFT-to-IFFT (inverse FFT)
round trip. For floating-point imple-
mentations, this may be negligible,
but fixed-point processing can lose
significant dynamic range in these
transforms.
■ Latency—Fast convolution filtering
process increases delay by at least L
samples. The longer the FFT, the
longer the latency.
While there is no substitute for

benchmarking on the target platform, in
the absence of benchmarks, choosing a
power-of-two FFT length about four
times the length of the FIR filter is a
good rule of thumb.

FILTERING MULTIPLE CHANNELS:
REUSE THE FORWARD FFT
It is often desirable to apply multiple fil-
ters against the same input sample
sequence. In these cases, the advantages
of fast convolution filtering become even
greater. The computationally expensive
operations are the forward FFT, the IFFT,
and the multiplication of the frequency
responses. The forward FFT needs to be
computed just once. This is roughly a
“Buy one filter. Get one 40% off” sale.

To realize this computational cost
savings for two or more filters, all filters
must have the same impulse response
length. This condition can always be
achieved by zero padding the shorter fil-
ters. Alternately, the engineer may
redesign the shorter filter(s) to make use

of the additional coefficients without
increasing the computational workload.

FREQUENCY DOMAIN
DOWNSAMPLING: ALIASING IS
YOUR FRIEND
The most intuitive method for reducing
sample rate in the frequency domain is
to simply perform a smaller IFFT using
only those frequency bins of interest.
This is not a 100% replacement for time
domain downsampling. This simple
method will cause ripples (Gibbs phe-
nomenon) at FFT buffer boundaries
caused by the multiplication in the fre-
quency domain by a rectangular window.

The sampling theorem tells us that
sampling a continuous signal aliases
energy at frequencies higher than the
Nyquist rate (half the signal sample rate)
back into the baseband spectrum (below
the Nyquist rate). This is equally true for
decimation of a digital sequence as it is
for analog-to-digital conversion [6].
Aliasing is a natural part of downsam-
pling. To accurately implement down-
sampling in the frequency domain, it is
necessary to preserve this behavior. It
should be noted that, with a suitable
antialiasing filter, the energy outside the
selected bins might be negligible. This
discussion is concerned with the steps
necessary for equivalence. The designer
should decide how much aliasing, if any,
is necessary.

Decimation (i.e., downsampling) can
be performed exactly in the frequency
domain by coherently adding the fre-
quency components to be aliased [7].

[FIG1] Overlap-save (OS) filtering, y(n) = x(n) ∗ h(n).

x(n)

y(n)

FFTN

FFTN

FFTN
−1

Overlap Input: Repeat
P−1 of N Samples

Discard P−1 of N Samples

P−1 Samples

h(n), Length = P

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [160] MARCH 2006

The following octave/Matlab code
demonstrates how to swap the order of
an inverse DFT and decimation.
% Make up a completely

random frequency spectrum

Fx = randn(1,1024) +
i*randn(1,1024);

% Time-domain decimation —

inverse transform then

decimate

x_full_rate = ifft(Fx);

x_time_dom_dec =

x_full_rate(1:4:1024);

%Retain every fourth sample

% Frequency-domain

decimation, alias first,

then inverse transform

Fx_alias = Fx(1:256) +
Fx(257:512) + Fx(513:768) +

Fx(769:1024);

x_freq_dom_dec =

ifft(Fx_alias)/4;

The sequences x_time_dom_dec and
x_freq_dom_dec are equal to each other.
The above sample code assumes a com-
plex time-domain sequence for generali-
ty. The division by four in the last step
accounts for the difference in scaling fac-
tors between the IFFT sizes. As various
FFT libraries handle scaling differently,
the designer should keep this in mind
during implementation. It’s worth not-
ing that this discussion assumes the FFT
length is a multiple of the decimation
rate D. That is, N/D must be an integer.

To implement time-domain decima-
tion in the frequency domain as part of
fast convolution filtering, the following
conditions must be met.

1) The FIR filter order must be a mul-

tiple of the decimation rate D.
P − 1 = K1D
2) The FFT length must be a multiple
of the decimation rate D.
L + P − 1 = K2D

where
■ D is the decimation rate or the
least common multiple of the deci-
mation rates for multiple channels
■ K1 and K2 are integers.

Note if the overlap factor V is an inte-
ger, then the first condition implies the
second. It is worth noting that others
have also explored the concepts of rate
conversion in OA/OS [8]. Also note that
decimation by large primes can lead to
FFT inefficiency. It may be wise to deci-
mate by such factors in the time domain.

MIXING AND OS FILTERING:
ROTATE THE FREQUENCY DOMAIN
FOR COARSE MIXING
Mixing, or frequency shifting, is the mul-
tiplication of an input signal by a com-
plex sinusoid [1]. It is equivalent to
convolving the frequency spectrum of an
input signal with the spectrum of a sinu-
soid. In other words, the frequency spec-
trum is shifted by the mixing frequency.

It is possible to implement time-
domain mixing in the frequency domain
by simply rotating the DFT sequence,
but there are limitations:

1) The precision with which one can
mix a signal by rotating a DFT
sequence is limited by the resolution
of the DFT.
2) The mixing precision is limited fur-
ther by the fact that we don’t use a
complete buffer of output in fast con-
volution. We use only L samples. We
must restrict the mixing to the subset
of frequencies whose periods complete
in those L samples. Otherwise, phase
discontinuities occur. That is, one can
only shift in multiples of V bins.

The number of “bins” to rotate is

Nrot = round
(

Nfr
Vfs

)
• V, (1)

where fr is the desired mixing frequency
and fs is the sampling frequency. The
second limitation may be overcome by
using a bank of filters corresponding to

[FIG2] Conceptual model of a filter bank.

Channel 1

Channel k

x(n)

hk(n) Dk

D

D

ej2πnf
1
/f

s

ej2πnf
k
/f

s

yk(n)

y1(n)

h1(n) D1

*

*

[FIG3] OS filter bank.

x(n)

y1(n)

FFTN

FFTN

Overlap Input: Repeat P−1 of N Samples

Discard (P−1)/D1 of N/D1 Samples

(P−1)/D1 Samples

Nrot1 = Round

h1(n),
Length = P

To Additional
Channels

Mix,
Rotate DFT
Sequence

Decimate,
Wrap/Sum Sequence
Into Desired N/D1 Bins

Channel 1

V
Nf1
Vfs

FFTN/D 1

−1

IEEE SIGNAL PROCESSING MAGAZINE [161] MARCH 2006

[SP]

different phases. However, this increase
in design/code complexity probably does
not outweigh the meager cost of multi-
plying by a complex phasor.

If coarse-grained mixing is unaccept-
able, mixing in the time domain is a bet-
ter solution. The general solution to
allow multiple channels with multiple
mixing frequencies is to postpone the
mixing operation until the filtered, deci-
mated data is back in the time domain.

If mixing is performed in the time
domain:

■ All filters must be specified in
terms of the input frequency (i.e.,
nonshifted) spectrum.
■ The complex sinusoid used for mix-
ing the output signal must be created
at the output rate.

PUTTING IT ALL TOGETHER
By making efficient implementations of
conceptually simple tools, we help our-
selves to create simple designs that are as
efficient as they are easy to describe.
Humans are affected greatly by the sim-
plicity of the concepts and tools used in
designing and describing a system. We
owe it to ourselves as humans to make

use of simple concepts whenever possi-
ble. (“Things should be described as sim-
ply as possible, but no simpler.”—A.
Einstein.) We owe it to ourselves as engi-
neers to realize those simple concepts as
efficiently as possible.

The familiar and simple concepts
shown in Figure 2 may be used for the
design of mixed, filtered, and decimated
channels. The design may be implement-
ed more efficiently using the equivalent
structure shown in Figure 3.

SUMMARY
In this article, we outlined considera-
tions for implementing multiple OS
channels with decimation and mixing in
the frequency domain, as well as supply-
ing recommendations for choosing FFT
size. We also provided implementation
guidance to streamline this powerful
multichannel filtering, down-conversion,
and decimation process.

ACKNOWLEDGMENTS
I would like to thank my wife, Elaine, for
helping me find the time to write this,
and David Evans, for being a DSP mentor
and sounding board.

AUTHOR
Mark Borgerding is a principal engineer
at 3dB Labs, Inc., a small company spe-
cializing in DSP consulting and contract
engineering services. He is often found
lurking on the comp.dsp newsgroup or
tinkering with his KISSFFT library.

REFERENCES
[1] A. Oppenheimer and R. Schafer, Discrete-Time
Signal Processing. Upper Saddle River, NJ: Prentice-
Hall, 1989.

[2] L. Rabiner and B. Gold, Theory and Application
of Digital Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1975.

[3] R. Lyons, Understanding Digital Signal
Processing, 2/E. Upper Saddle River, NJ: Prentice-
Hall, 2004.

[4] S. Orfanidis, Introduction to Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[5] M. Frerking, Digital Signal Processing in
Communication Systems. New York: Chapman &
Hall, 1994.

[6] R. Crochiere and L. Rabiner, Multirate Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[7] M. Boucheret, I. Mortensen, and H. Favaro, “Fast
convolution filter banks for satellite payloads with
on-board processing,” IEEE J. Select. Areas.
Commun., vol. 17, no. 2, pp. 238–248, Feb. 1999.

[8] S. Muramatsu and H. Kiya, “Extended overlap-
add and -save methods for multirate signal process-
ing,” IEEE Trans. Signal Processing, vol. 45, no. 9,
pp. 2376–2380, Sep. 1997.

REFERENCES
[1] P. Elias, “Predictive coding I,” IRE Trans. Inform.
Theory, vol. IT-1 no. 1, pp. 16–24, Mar. 1955.

[2] N. Wiener, Extrapolation, Interpolation, and
Smoothing of Stationary Time Series. Cambridge,
MA: MIT Press, 1949.

[3] C.E. Shannon, “A mathematical theory of com-
munication,” Bell Syst. Tech. J., vol. 27, pp. 379–423,
623–656, 1948.

[4] P. Elias, “Predictive coding II,” IRE Trans. Inform.
Theory, vol. IT-1 no. 1, pp. 24–33, Mar. 1955.

[5] B.S. Atal and M.R. Schroeder, “Predictive coding
of speech,” in Proc. 1967 Conf. Communications and
Proc., Nov. 1967, pp. 360–361.

[6] B.S. Atal and M.R. Schroeder, “Adaptive predic-
tive coding of speech,” Bell Syst. Tech. J., vol. 49 no.
8, pp. 1973–1986, Oct. 1970.

[7] B.S. Atal and S.L. Hanauer, “Speech analysis and
synthesis by linear prediction of the speech wave,” J.
Acoust. Soc. Amer., vol. 50, pp. 637–655, Aug. 1971.

[8] S. Saito, Fukumura, and F. Itakura, “Theoretical
consideration of the statistical optimum recognition
of the spectral density of speech”, J. Acoust. Soc.
Japan, Jan. 1967.

[9] F. Itakura and S. Saito, “A statistical method for
estimation of speech spectral density and formant
frequencies,” Electron. Commun. Japan, vol. 53-A,
pp. 36–43, 1970.

[10] T.E. Tremain, “The government standard linear
predictive coding algorithm: LPC10,” Speech
Technol., vol. 1, pp. 40–49, Apr. 1982.

[11] B.S. Atal and J.R. Remde, “A new model of
LPC excitation for producing natural-sounding
speech at low bit rates,” in Proc. ICASSP’82, May
1982, pp. 614–617.

[12] B.S. Atal and M.R. Schroeder, “Stochastic coding
of speech signals at very low bit rates,” in Proc. Int.
Conf. Commun., ICC’84, May 1984, pp. 1610–1613.

[13] M.R. Schroeder and B.S. Atal, “Code-excited lin-
ear prediction (CELP): High-quality speech at very
low bit rates,” in Proc ICASSP’85, Mar. 1985, pp.
937–940.

[dsp HISTORY] continued from page 157

[SP]

