
SECTION 2

Declarations and sequential constructs
Page

Lexical elements 2.1
Declarations 2.6

– Type and subtype 2.7
– Constant, variable, signal 2.17
– Entity 2.21
– Architecture 2.26

Expressions 2.27
– Operators 2.28

Aggregates 2 31

© ECEMA 2000 Sequential constructs 2.1

– Aggregates 2.31
– Qualified expressions and type conversions 2.32

Sequential statements 2.36
Subprograms 2.50

Lexical elements

Character set
Letters: A..Z, a..z
Digits: 0..9
Special characters " # & ' () +, -. / : ; < = > _ | ! $ % @ ? [] ^ ` {} ~ *
Space

An identifier is
• letter {[underline] letter_or_digit}
• not case sensitive

© ECEMA 2000 Sequential constructs 2.2

• not case sensitive

Literals (examples)

Decimal literals
Integer literals: 12 0 1E6 123_456
Real literals: 2 0 0 0 0 456 3 14159 26Real literals: 2.0 0.0 0.456 3.14159_26

1.34E-12 1.0E+6 6.023E24
Based literals

Integer literals of value 255: 2#1111_1111# 16#FF# 016#FF#
Integer literals of value 224: 16#E#E1 2#1110_0000#
Real literal of value 4095.0: 16#F.FF#E2 2#1.1111_1111_111#E11

Bit string-literal

© ECEMA 2000 Sequential constructs 2.3

X"FFF" = B"1111_1111_1111"
O"777" = B"111_111_111"
X"777" = B"0111_0111_0111"

Character and string literals

Character literals:

enclosed between two ' characters: 'A' '*' ''' ' '

String literals:

Text enclosed between two " characters

A string must fit on one line.

Use concatenation operation to obtain longer strings:

"First part of a string" &

© ECEMA 2000 Sequential constructs 2.4

"continuation on a second line"

Use concatenation operation to include non graphic characters in a string:

"sequence that includes the " & ACK & "control character"

Comments

-- VHDL is a strongly typed language
-- LRM means Language Reference Manual
-- Refer to the LRM for the syntax and semantics of VHDL
-- The LRM contains also the definition of the standard package,
-- A glossary and a syntax summary using BNF notation

end; -- end is a reserved word

© ECEMA 2000 Sequential constructs 2.5

-- reserved words are in bold face troughout the text

Declarations

– Type and subtype
– Constant, variable, signal
– Package
– Entity
– Architecture
– Configuration

S b

© ECEMA 2000 Sequential constructs 2.6

– Subprograms

Type and subtype declarations

Scalar types
• Enumeration
• Integer
• Floating
• Physical

Composite types
• Array

© ECEMA 2000 Sequential constructs 2.7

• Record

Type and subtype declarations

• A type is characterized by a set of values and a set of operations.
ex: type BYTE_VALUE is range 0 to 255;

• The set of possible values of a given type may be subjected to a constraint.

• A subtype is a type (base type) plus a constraint.
ex: subtype FIRST_100 is INTEGER range 1 to 100;

subtype SEVEN_BIT_V is BYTE_VALUE range 0 to 127;
• The constraint is checked during simulation

© ECEMA 2000 Sequential constructs 2.8

• The constraint is checked during simulation.
• A type is a subtype of itself.
• The base type of a type is the type itself.

Enumeration types
Enumeration type definition

== (enumeration literal { , enumeration literal})
Enumeration literal == identifier | character literal

Encoded as bit vectors
Examples

type TRANSITION is (H, L, R, F, U);
Encoding: H:"000", L:"001", R:"010", F:"011", U:"100"
type BIT is ('0', '1');
type LOGIC4 is ('X', '0', '1', 'Z'); -- '0' and '1' overloaded, type resolved by

context

© ECEMA 2000 Sequential constructs 2.9

type MODE is (NORMAL, SCAN, TEST);
• Order: NORMAL < SCAN < TEST
• Default initialization of signals to the 'LEFT value.

(Attribute of a type or object, e.g. MODE'LEFT, MODE'RIGHT)

Predefined Enumeration types

• Character
128 ASCII characters

• BIT
('0', '1')

• BOOLEAN
(FALSE, TRUE)

• SEVERITY_LEVEL
(NOTE, WARNING, ERROR, FAILURE)

© ECEMA 2000 Sequential constructs 2.10

Integer types

Examples
type byte is range 0 to 255; synthesized to 8 bits
type other is range -6 to 7; synthesized to 4bits: 2’s-complement bit vectortype other is range 6 to 7; synthesized to 4bits: 2 s complement bit vector
type WIDTH is range 31 downto 0;
type reverse is range WIDTH'LOW to WIDTH'HIGH;
subtype AT_WIDTH is WIDTH range 15 downto 0;
Each bound must be a locally static expression of some integer type

Predefined integer types

© ECEMA 2000 Sequential constructs 2.11

The only one is the type INTEGER
• The range is implementation dependent
• guaranteed to include the range: -2147483647 to + 2147483647(2**31+1 to 2**31-1)
• The range may be determined from attributes

INTEGER'LOW, INTEGER'HIGH

Physical types

• TIME is the only predefined type
• Appears in package STANDARD

G t d t i l d th 2**31+1 t +2**31 1

type TIME is range -1E18 to 1E18 -- range constraint,
implementation dependent

units -- keyword
fs; -- base unit declaration
ps = 1000 fs; -- secondary unit declaration
ns = 1000 ps; -- ...

• Guaranteed to include the range -2**31+1 to +2**31-1
• All specification of delays must be of type TIME

• Not supported in FPGA Synthesis

© ECEMA 2000 Sequential constructs 2.12

ns 1000 ps; ...
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;

end units;

Floating point types

• Approximate real numbers
• A floating point is defined by a range constraint
• Each bound must be a locally static expression
• Each bound must be of some floating point type

N t t d i FPGA S th i• Not supported in FPGA Synthesis

Examples

type coord_x_type is range 0.0 to 100.0
subtype One_interval is coord_x_type range 0.0 to 1.0;

Predefined floating point types

• REAL is the only predefined type

© ECEMA 2000 Sequential constructs 2.13

REAL is the only predefined type
• Appears in package STANDARD
• Guaranteed to include the range -1E38 to +1E38
• Defined with an ascending range
• The range may be determined from attributes REAL'LOW, REAL'HIGH

Array types

Composite types are: array types and record types

An arra t pe definition ma be either:An array type definition may be either:
• constrained
• unconstrained

constrained array definition
array (discrete range {, discrete range})
of element subtype indication

© ECEMA 2000 Sequential constructs 2.14

unconstrained array definition
array (subtype name range <> {, subtype name range <>})
of element subtype indication

Array types (cont'd)

Predefined array types
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH
type STRING is array (POSITIVE range <>) of CHARACTER;
subtype NATURAL is INTEGER range 0 to INTEGER'HIGHsubtype NATURAL is INTEGER range 0 to INTEGER HIGH
type BIT_VECTOR is array (NATURAL range <>) of BIT;

Examples
type mu_word is array (48 downto 0) of BIT;
type Memory is array (NATURAL range <>) of mu_word;

-- Possible declarations in a sequential part (in the body of a process for example)
variable ROM : Memory (0 to 2**N-1);

© ECEMA 2000 Sequential constructs 2.15

variable ROM : Memory (0 to 2 N 1);
variable ScanChain : BIT_VECTOR (0 to N*L);

-- Possible declaration in a concurrent part (in an architecture for example)
signal mu_pc : mu_word;

Record types
Examples

type DATE is
record

YEAR: POSITIVE range 1 to 3000;
MONTH: STRING(0 to 8);
DAY: POSITIVE range 1 to 31;

end record;

type VERSION is
record

NUMBER: REAL range 0.0 to 30.0;

© ECEMA 2000 Sequential constructs 2.16

CREATED: DATE;
MODIFIED: DATE;

end record;

Object declaration

C d l iConstant declaration

Variable declaration (in a sequential context)

Signal declaration (in a concurrent context)

© ECEMA 2000 Sequential constructs 2.17

Constant declaration

constant identifier {, identifier} : subtype indication [:= expression]
The value of a constant cannot be modified after the declaration is elaborated.

Examples:
constant normal_weight :weight := 70 kg;
constant cycle : TIME := 1 us;
constant e : real := 2.71828 ;
type vect_n is array (Positive range <>) of NATURAL;
constant Five Ones : vect n := (1, 1, 1, 1, 1);

© ECEMA 2000 Sequential constructs 2.18

_ _ (, , , ,);
-- The range of Five_Ones is 5 due to the assignment.

Constants of type record are not supported for synthesis

(the initialization of records is not supported).

Variable declaration

variable identifier {, identifier} : subtype indication [:= expression]
• A variable is an object with a single current value.

(no history or future projected values)(no history or future projected values.)
• The expression (if present) specifies an initial value of the variable.

It is evaluated at each elaboration of the variable declaration.
• The default initial value for a variable of a scalar type T is T'left.
• Can appear only in algorithmic descriptions: inside processes, procedures and functions.

Examples

© ECEMA 2000 Sequential constructs 2.19

variable atomic_interval : time; -- initial value -1E18 fs (implementation dependent)
variable vector_5 : bit_vector (1 to 5); -- initial value is ('0', '0', '0', '0', '0')
variable index : integer range 0 to 99 := 10; -- explicit initial value 10

Signal declaration

signal identifier {, identifier} : subtype indication [bus | register] [:= expression]
• A signal is an object with a past history of values.
• It may have one (or many) drivers, each with a current valuey (y)

and projected future values.
• The expression (if present) specifies the initial value of the signal at simulation

time 0. The expression is evaluated at each elaboration of the signal.
• The default initial value for a signal of a scalar type T is T'left.
• Can be declared in concurrent descriptions only.

Examples

© ECEMA 2000 Sequential constructs 2.20

Examples
--signals with single drivers
signal Clk1, Clk2 : time;
signal vector_5 : bit_vector (1 to 5);
signal index : integer := -127;

Signals can be given default (initial) values.
However, these initial values are not used for
synthesis.

Entity declaration
entity identifier is
entity header

[generic (interface constant declaration {; interface constant declaration});]
[port (interface signal declaration {; interface signal declaration});]

tit d l ti tentity declarative part
subprogram declaration, subprogram body, type and subtype declaration, constant and
signal declaration, use clause…, but no variable declaration.
All the declarations are visible throughout any architecture of the entity
What is declared in an architecture is not visible to another architecture of the same entity.

[begin
concurrent assertion statement

© ECEMA 2000 Sequential constructs 2.21

passive concurrent procedure call
passive process statement

]
end [entity simple name] ;

Entity header

The entity header declares objects used for communication between a design
entity and its environment
Generics allow static information to be communicated to a block from its
environment. They may be used to specify:
• Number of inputs to a component.
• Number of subcomponents within a block.
• Timing characteristics.
• Physical characteristics of a design: temperature, capacitance, etc.

Ports provide channels for communication between an entity (or a block in
general) with its environment

© ECEMA 2000 Sequential constructs 2.22

general) with its environment.
[signal] identifier{, identifier}:[mode] subtype indication [bus] [:= expression]
• Modes: in (default mode), out, inout, buffer, linkage
• Only signals can be in entity ports (no variables, files or access types).
• The expression defines the default value of the signal.

Modes

• in:
– The value of the signal may only be read.
– Any attribute may be read.

• out
– The value of the signal may be updated.
– Any attribute may be read except: STABLE, QUIET, DELAYED,

TRANSACTION, EVENT, ACTIVE, LAST_EVENT, LAST-
ACTIVE, and LAST_VALUE.

• inout:
– The value of the signal may be read and updated.

© ECEMA 2000 Sequential constructs 2.23

– Any attribute may be read.

Mode association

Possible associations
Formal Actual
in in, inout

X Y

A(1) B(1)

…

out out, inout
inout inout

Cin Ci Co Cout

X Y

A(n) B(n)

C(n) Ci Co

in

in

© ECEMA 2000 Sequential constructs 2.24

S

Sum(1)

C C Co Cout

S

Sum(n)

C() C Co

inout

out

Entity declaration (examples)

entity Full_Adder is -- an one-bit adder
port (X, Y: in Bit; Ci : in Bit := '0' ;

S, Co : out Bit);
end Full_Adder;

entity N_BIT_ADDER is -- an n-stage adder
generic (n: integer := 8);
port (A, B: in Bit_Vector (1 to n) ;

Cin : in Bit := '0' ;
Sum : inout Bit_Vector (1 to n);
Cout : inout Bit);

begin
assert (n>1 and n <= 20) report " operands oversized !" severity error;
assert (Cout /= '1') report "Addition ended with a carry "

© ECEMA 2000 Sequential constructs 2.25

assert (Cout /= 1) report Addition ended with a carry
severity WARNING;
Check_Result (A, B, Cin, Sum, Cout);

end ;

Architectures

• A design entity has a unique interface (entity decalaration), and one or more
architectures.

• An architecture body defines the body of the design entity.
• It specifies the relationship between the input and the outputs

of the design entity.

architecture identifier of entity name is
architecture declarative part

subprogram declaration, subprogram body, type and subtype declaration, constant and
signal declaration, use clause…, but no variable declaration.
What is declared in an architecture is not visible to another architecture of the same

© ECEMA 2000 Sequential constructs 2.26

What is declared in an architecture is not visible to another architecture of the same
entity.

begin
architecture statement part {concurrent statements}

end [architecture simple name] ;

Expressions

Operators
Classes of operators listed in order of increasing precedence.

Logical: and or nand nor xor
relational = /= < <= > >=e at o a /
addition + - &
signs + -
multiplication * / mod rem
miscellaneous ** abs not

Operands
Literals

© ECEMA 2000 Sequential constructs 2.27

Aggregates
Qualified expressions
Type conversions

Operators

Logical operators
Operands:
– BIT or BOOLEAN
– One dimensional arrays which have elements of type BIT or BOOLEAN
– The arrays must have the same length.

Relational operators
The result is BOOLEAN.
For = and /= operators the operands may be of any type.
For < , <= , > , >= operators the operands may be of any scalar type or discrete array type.

© ECEMA 2000 Sequential constructs 2.28

Addition operators:
+,-: numeric types
&: concatenation between 2 arrays of the same type or an arrays and an element.

Examples of logical expressions

Signal A,B,C,D: BIT_VECTOR (7 downto 0);
Signal E F G H: BIT VECTOR (3 downto 0);Signal E,F,G,H: BIT_VECTOR (3 downto 0);
Signal X,Y, Z: BIT;
Signal Alpha,Beta, Gamma: LOGICAL;
A <= B or C;
X <= (Y and Z) nor X
Gamma <= Alpha xor Beta

© ECEMA 2000 Sequential constructs 2.29

p
D <= A and H --illegal
Straightforward synthesis

Arithmetic operators

• &, +, -, unary - : supported
• * :supported
• /, mod, rem: right must be power of two
• Indexing:

Signal A: bit_vector (0 to 7);
Signal I: integer range 0 to 7;
Signal Y: bit;
…
Y<= A(I);

A0
.

M Y

© ECEMA 2000 Sequential constructs 2.30

Y<= A(I);

A7

I2
I0

.

.

M
U
X

Y

Aggregate

([choice { | choice} =>] expression {,[choice { | choice} =>] expression)

A choice is a simple expression, a discrete range, an element simple name, or others.

Example:

type Switch is
record

X : Integer;
Y : Time;

end record;

signal S :array (7 downto 1) of Switch :=
(1 | 4 to 5 | 7 => (1, 4 ns),
others => (X => 2 Y => 6 ns));

© ECEMA 2000 Sequential constructs 2.31

others > (X > 2, Y > 6 ns));

signal SP:array (7 downto 1) of Switch :=
((1, 4 ns), (2, 6 ns), (1, 4 ns), (1, 4 ns), (2, 6 ns), (2, 6 ns),(1, 4 ns));

Qualified expressions

– type mark'(expression)
– type mark'aggregate

• A qualified expression is used to explicitly state the type (or subtype) of an
expression or an aggregateexpression or an aggregate.

• The value of the qualified expression is the value of the operand.
• The evaluation checks that the value of the operand belongs to the specified

subtype.
• The operand must have the same type as the base type of the type mark.
• Examples:

POSITIVE '(34*N +M) -- N and M must be integers
()

© ECEMA 2000 Sequential constructs 2.32

STRING'("Success")
• Useful for alleviating ambiguity, when operators or subprograms are

overloaded

Type conversions
• A type conversion provides for explicit conversion between

closely related types.
• type conversion

type mark (expression)
• The operand of a type conversion cannot be:

– null,
– an allocator (used for dynamic allocation of variables),
– an aggregate,
– a string literal.

• If the type mark denotes a subtype, conversion consists of:
conversion to the base type and

© ECEMA 2000 Sequential constructs 2.33

– conversion to the base type, and
– a check that the result belongs to the subtype.

Closely related types (for conversion)

• Abstract numeric types
The operand can be of any integer or floating point type.p y g g p yp

• Array types
The conversion is allowed if the target and operand types:

– have the same dimensionality;
– for each index position, the index types are:

- the same or
- convertible to each other

© ECEMA 2000 Sequential constructs 2.34

– the element types are the same.

Examples of type conversion

INTEGER (3.1459) -- value 3
INTEGER (3.5) -- implementation dependent 3 or 4
INTEGER (3.6) -- value 4.
…
type table is array(positive range 1 to 8) of bit;
type rev_table is array (positive range 8 downto 1) of bit;
variable tabinc: table;
variable tabdec: rev_table;
…

tabinc <= X"0F"; -- tabinc (1 to 8) ="0F"

© ECEMA 2000 Sequential constructs 2.35

tabinc < X 0F ; tabinc (1 to 8) 0F
tabdec <= rev_table(tabinc); -- tabdec (8 downto 1) = "0F"

…

Sequential statements

– Used to define algorithms for subprograms or processes
– Execute in the order in which they appear.

• Variable assignment statement
• If statement
• Case statement
• Loop statement
• Exit statement
• Next statement
• Null statement
• Signal assignment statement
• Procedure call statement

© ECEMA 2000 Sequential constructs 2.36

• Return statement
• Wait statement (see Section 3)
• Assertion statement (see Section 3)

A typical architecture
Entity interface

a,b: instances of
componentsf

Architecture

Ports

sequential
statements

a

b
c

components

c,d,e, f: processes

© ECEMA 2000 Sequential constructs 2.37

d

e

SR Latch
(Example of variable and signal assignments)

entity SR_Latch is
port (S,R: in Bit; Q, QB: out Bit);
beging

assert (S=0 or R=0) report "S = R = '1' " severity error;
end SR_Latch;

architecture behave of SR_Latch is
begin

process (S, R)
variable state: Bit;
begin

If S /= R then

© ECEMA 2000 Sequential constructs 2.38

If S /= R then
state := S; -- variable assignment

end if;
Q <= state after 2 ns; -- signal assignment
QB <= not state after 2 ns;

end process;
end behave ;

Architecture (Example)N_XOR gate
(Illustration of loop statement)

entity N_XOR_Gate is

generic

architecture behave of N_XOR_Gate is
begin

process (inputs)
i bl T Bit(N: positive := 2);

port

(Inputs: in Bit_Vector (1 to N);

Result : out Bit);

end N_XOR_Gate ;

variable Temp: Bit;
begin

Temp := '0';
for i in Inputs'Range loop

Temp := Temp xor Inputs(i);
end loop;
Result <= Temp after 10 ns;

end process;
end behave ;

© ECEMA 2000 Sequential constructs 2.39

If statement (general)

-- Number of ones in the binary representation of X of range 0 to 7.
-- Even parity of X.

parity := 0;
if X = 0 thenif X = 0 then

nb_of_ones := 0;
elsif X=7 then

nb_of_ones := 3;
parity := 1;

elsif X=1 or X= 2 or X=4 then
nb_of_ones := 1;
parity := 1;

else
nb of ones := 2;

© ECEMA 2000 Sequential constructs 2.40

_ _ ;
end if;

Case statement
-- Number of ones in the binary representation of X of range 0 to 7.
-- Even parity of X.
parity := 0;
case X is

when 0 => nb_of_ones := 0;
when 7 => nb_of_ones := 3;

parity := 1;
when 1 | 2 | 4 => nb_of_ones := 1;

parity := 1;
when others => nb_of_ones := 2;

end case;

© ECEMA 2000 Sequential constructs 2.41

end case;

See also FSM modeling

Loop and Exit statements

[loop label :]
[iteration scheme] loop

sequence of statements
end loop [loop label] ;

iteration scheme
• while condition
• for identifier in discrete range

An exit statement is used to complete the execution of the innermost
enclosing loop statement.

I:=0;
while ((T2(I)/='0') and (I<=131)) loop

I:=0;
loop

© ECEMA 2000 Sequential constructs 2.42

while ((T2(I)/ 0) and (I 131)) loop

T2 (I) := 2 * I;
T3 (I) := T3(I) + 1;
I := I + 1;

end loop;

loop
exit when T2(I)='0' or I>131 ;
T2 (I) := 2 * I;
T3 (I) := T3(I) + 1;
I := I + 1;

end loop;

Null statement

The execution of a null statement has no effect

Example: Rendezvous element:

X RES

0 0
1 no change
2 no change
3 1

Signal RES: Bit := 0; -- initial value
…

case X is
h 0 RES '0'

© ECEMA 2000 Sequential constructs 2.43

when 0 => RES <= '0';

when 3 => RES <= '1';
when others => null;

end case;

Projected output waveform

signal assignment statement
target <= [transport] waveform element {, waveform element};

waveform elementwaveform element
• value expression [after time expression]
• null [after time expression] -- guarded signal (see session 5)

If after clause missing "after 0 ns" is assumed (one delta delay).

Time expression cannot be negative.

null assignment turns the driver of the signal off.

© ECEMA 2000 Sequential constructs 2.44

Updating a projected output waveform

• All old transactions that are projected to occur at or after the time at which the earliest
new transaction is projected to occur are deleted from the projected output waveform.

• The new transactions are then appended to the projected output waveform.
if the word transport is absent, inertial delay is assumed, and more processing steps are
necessary:

• New transactions are marked.
• An old transaction is marked if:

- it precedes a marked transaction, and,
- its value is the same as the marked transaction.

• The transaction that determines the current value is marked.

© ECEMA 2000 Sequential constructs 2.45

• All unmarked transaction are deleted.

Examples of projected output waveform

A <= 1, 2 after 1 ns, 1 after 3 ns, 0 after 5 ns, 1 after 9 ns;

0 1 2 3 4 5 6 7 8 9 10

1*
-

2 at 1 ns
-

A

© ECEMA 2000 Sequential constructs 2.46

1 at 3 ns
-

0 at 5 ns
-

1 at 9 ns

Examples of projected output waveform (cont'd)

process -- transport delay
begin

A <= transport 1, 2 after 1 ns, 1 after 3 ns, 0 after 5 ns, 1 after 9 ns;
A <= transport 1 after 4 ns, 2 after 6 ns, 0 after 10 ns;
wait;

end process;

0 1 2 3 4 5 6 7 8 9 10

1*
2 at 1 ns
1 t 3

A

© ECEMA 2000 Sequential constructs 2.47

1 at 3 ns
0 at 5 ns 1 at 4 ns
1 at 9 ns 2 at 6 ns
 0 at 10 ns

Examples of projected output waveform (cont'd)
process -- inertial delay
begin

A <= 1, 2 after 1 ns, 1 after 3 ns, 0 after 5 ns, 1 after 9 ns;
A <= 1 after 4 ns, 2 after 6 ns, 0 after 10 ns;
wait;

end process;end process;

0 1 2 3 4 5 6 7 8 9 10

1*
2 at 1 ns
1 at 3 ns
0 5

A

© ECEMA 2000 Sequential constructs 2.48

0 at 5 ns
1 at 9 ns
1 at 4ns
2 at 6 ns
0 at 10 ns

Multiple assignments to a signal in a process

signal X : Bit_vector (0 to 1);
…
process ;p
begin

X <= "11" after 1 ns;
X <= "01" after 2 ns;
X <= "10" after 3 ns;
X <= "00" after 4 ns;
wait;

© ECEMA 2000 Sequential constructs 2.49

end process;
...
All assignments are executed but only the last one takes effect due to inertial delay.
If transport delay used then the waveform is reproduced.

Subprograms

• Subprogram declaration
Formal parameters
- Constant and variable parameters
- Signal parameters

• Subprogram body
• Subprogram call
• Subprogram overloading
• Operator overloading

© ECEMA 2000 Sequential constructs 2.50

• Operator overloading

Subprograms

• procedure identifier [(formal parameter list)];
• function designator [(formal parameter list)] return type mark;

The designator is either an identifier or an operator symbolThe designator is either an identifier or an operator symbol
• A procedure call is a statement.
• A function call is an expression and returns a value.
• The definition of a program can be given in two parts:

– A declaration defining its calling conventions
– A subprogram body defining its execution.

• All subprograms can be called recursively.

© ECEMA 2000 Sequential constructs 2.51

Formal parameters

formal parameters
– may be constants, variables or signals for procedures
– may be only constants or signals for functionsay be o y co sta ts o s g a s o u ct o s
– No global objects can be modified inside a function: the mode is always in.
– Mode: in, out, inout for procedures.
– variable is the default class for modes: out, inout.
– constant is the default class for mode in.

syntax

© ECEMA 2000 Sequential constructs 2.52

[constant] identifier list: [in] subtype indication [:= static expression]
[signal] identifier list: [mode] subtype indication [bus] [:=static expression]]
[variable]identifier list : [mode] subtype indication [:= static expression]

Subprogram body

procedure body
procedure identifier [(formal parameter list)] is

{subprogram declarative item} -- no signal declaration
begin

{sequential statement} no return statement{sequential statement} -- no return statement
end [identifier] ;

function body
function designator [(formal parameter list)] return type mark is

{subprogram declarative item} -- no signal declaration
begin

{sequential statement} -- must contain: return [expression]
end [designator] ;

© ECEMA 2000 Sequential constructs 2.53

Examples of subprograms

function W_AND (INPUT : BIT_VECTOR) return BIT is

variable RESULT : BIT := '1';

i

-- pragma resolution_method
wired and

Begin

for I in INPUT'low to INPUT'high loop -- for I in INPUT'range loop

if INPUT (I) = '0' then

RESULT := '0';

exit;

d if

_

-- The code in this function is ignored by RTL synthesis but
parsed for correct syntax

© ECEMA 2000 Sequential constructs 2.54

end if;

end loop;

return RESULT ;

end W_AND;

Signal parameters

• During the execution of a subprogram, a reference to a formal within an
expression is equivalent to a reference to the associated actual signal.

• An assignment to the driver of a formal signal is equivalent to an assignment to
the driver of the actual signal.

• Attributes STABLE, QUIET, DELAYED of a formal signal parameter cannot
be read within a subprogram, however, EVENT, ACTIVE, LAST_EVENT, and
LAST_ACTIVE are available since they are functional attributes of the formal
parameters.

© ECEMA 2000 Sequential constructs 2.55

Subprogram overloading
• A given subprogram designator is overloaded if it is used in several subprogram

specifications.

procedure count (C: Character; S: String; NB: inout INTEGER);
counts the number of occurrences of C in S-- counts the number of occurrences of C in S.

procedure count (B: BIT; V: BIT_vector; NB: inout INTEGER);
-- counts the number of occurrences of B in V.

procedure check (setup:Time; signal D: Data);
procedure check (hold:Time; signal D: Data);

count ('a', message, NB); -- correct implementation determined

© ECEMA 2000 Sequential constructs 2.56

count ('1', V1,NB); -- from parameter types
check (setup => 10 ns, D => DL);
check (10 ns, DL); -- ambiguous
-- See 6.13-6.14 for other examples of subprogram overloading

Operator overloading
type logic4 is ('X','0','1','Z');
…

function "and"(a,b: logic4) return logic4 is
type tablogic4 is array (logic4,logic4) of logic4;

constant table:tablogic4:=constant table:tablogic4:=
(('X','0','X','X'),
('0','0','0','0'),
('X','0','1','X'),
('X','0','X','Z'));

begin
return table(a,b);

end "and";

X 0 1
X X 0 X
0 0 0 0
1 X 0 1
Z X 0 X

Z
X
0
X
Z

© ECEMA 2000 Sequential constructs 2.57

…
signal P, Q : logic4;
signal A : Bit;
…
P <= "and" ('0', 'Z');
Q <= '1' and 'Z'; -- invocation of the " logic4" and.
A <= '1' and '0'; -- invocation of the "Bit" and since A is of type BIT.

Adding bit vectors

function "+" (bv1, bv2 : in bit_vector) return bit_vector;
…
function "+" (bv1, bv2 : in bit vector) return bit vector isfunction (bv1, bv2 : in bit_vector) return bit_vector is

alias op1 : bit_vector(bv1'length - 1 downto 0) is bv1;
alias op2 : bit_vector(bv2'length - 1 downto 0) is bv2;
variable result : bit_vector(bv1'length - 1 downto 0);
variable carry_in : bit;
variable carry_out : bit := '0';

© ECEMA 2000 Sequential constructs 2.58

Adding bit vectors (cont'd)

begin
assert(not(bv1'length /= bv2'length))
report """+"": operands of different lengths"
severity failure;y

--- else
for index in result'reverse_range loop
carry_in := carry_out; -- of previous bit
result(index) := op1(index) xor op2(index) xor carry_in;
carry_out := (op1(index) and op2(index))

or (carry_in and (op1(index) xor op2(index)));
end loop;

© ECEMA 2000 Sequential constructs 2.59

end loop;
--- end if;
return result;

end "+";

