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Thesis Statement

Existing deep visual question answering models tend to rely on language corre-

lations, but can be trained to resist these correlations via appropriate inductive

biases and objective functions.
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SUMMARY

In this dissertation, I propose and study a multi-modal Artificial Intelligence

(AI) task called Visual Question Answering (VQA) – given an image and a natural

language question about the image (e.g., ‘What kind of store is this?’, ‘Is it safe to

cross the street?’ ), the machine’s task is to automatically produce an accurate natural

language answer (‘bakery’, ‘yes’ ). Applications of VQA include – aiding visually

impaired users in understanding their surroundings, aiding analysts in examining

large quantities of surveillance data, teaching children through interactive demos,

interacting with personal AI assistants, and making visual social media content more

accessible.

Specifically, I study the following – 1) how to create a large-scale dataset and define

evaluation metrics for free-form and open-ended VQA, 2) how to develop techniques

for characterizing the behavior of VQA models, and 3) how to build VQA models that

are less driven by language biases in training data and are more visually grounded,

by proposing – a) a new evaluation protocol, b) a new model architecture, and c) a

novel objective function.

Most of my past work has been towards building agents that can ‘see’ and ‘talk’.

However, for a lot of practical applications (e.g., physical agents navigating inside our

houses executing natural language commands) we need agents that can not only ‘see’

and ‘talk’ but can also take actions. In chapter 6, I present future directions towards

generalizing vision and language agents to be able to take actions.
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CHAPTER I

INTRODUCTION

One of the goals of Artificial Intelligence (AI) [441] is to develop systems that can

‘see’ (i.e. understand the contents of an image: who, what, where, doing what?) and

‘talk’ (i.e. communicate the understanding to humans in free-form natural language).

Applications of such systems include:

• Aiding visually impaired users in understanding their surroundings [51] (Hu-

man: ‘What is on the shelf above the microwave?’, AI: ‘Canned containers’ ),

• Aiding analysts in making decisions based on large quantities of surveillance

data (Human: ‘What kind of car did the man in red shirt leave in?’, AI: ‘Blue

Toyota Prius’ ),

• Teaching children through interactive demos (Kid: ‘What animal is that?’, AI:

‘That is Dall Sheep. You can find those in Alaska.’ ),

• Interacting with personal AI assistants (such as Alexa, Siri) (Human: ‘Is my

laptop in my bedroom upstairs?’, AI: ‘Yes’, Human: ‘Is the charger plugged

in?’ ),

• Making visual social media content more accessible (AI: ‘Your friend Bob just

uploaded a picture from his Hawaii trip’, Human: ‘Great, is he at the beach?’,

AI: ‘No, on a mountain’ ).

As a first step towards building machines that can convey their understanding

of visual content via natural language, in this dissertation, I introduce and study

open-ended and free-form Visual Question Answering (VQA) [27, 18] – Given an

image and a natural language question about the image (e.g ., ‘What kind of store is

this?’, ‘How many people are waiting in the queue?’, ‘Is it safe to cross the street?’ ),
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the machine’s task is to automatically produce an accurate natural language answer

(‘bakery’, ‘5’, ‘yes’ ). Akin to a visual Turing test, answering any possible question

about an image is one of the ‘holy grails’ of semantic understanding. VQA is directly

applicable to a variety of applications of high societal impact that involve humans

working in collaboration with machines to elicit and extract situationally-relevant

information from visual data. Examples include aiding visually-impaired users in

understanding their surroundings (‘What temperature is my oven set to?’ ), analysts

in making decisions based on large quantities of surveillance data (‘What kind of

car did the man in the red shirt drive away in?’ ), and users in interacting with a

robot (‘Is my laptop in my bedroom upstairs?’ ). This research has the potential

to fundamentally improve the way visually-impaired users live their daily lives, and

revolutionize how society at large interacts with ever-growing visual data.

I provide below an overview of the specific dimensions of VQA that I study

in this dissertation.

1.1 Free-form and Open-Ended VQA (chapter 3)

My colleagues and I introduced the task of free-form and open-ended VQA [27, 18].

In order to train and benchmark algorithms on the task of free-form and open-ended

VQA, we collect and analyze a large scale dataset (>0.25M images, >0.76M questions,

∼10M answers) [27, 18]. The questions and answers in the dataset are provided by

human workers on Amazon Mechanical Turk, on top of existing images [269, 516].

Unlike existing computer vision tasks which either represent single narrowly-defined

problem (e.g., image classification, activity recognition), or are difficult to evaluate

(e.g., image captioning), the questions in our VQA dataset require a potentially vast

set of AI capabilities to answer (Fig. 3) – fine-grained recognition (e.g ., ‘What kind

of cheese is on the pizza?’ ), object detection (e.g ., ‘How many bikes are there?’ ),

and commonsense (e.g ., ‘Does this person have 20/20 vision?’ ). Moreover, VQA
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Does it appear to be rainy?

Does this person have 20/20 vision?

Is this person expecting company?

What is just under the tree?

How many slices of pizza are there?

Is this a vegetarian pizza?

What color are her eyes?

What is the mustache made of?

Figure 1: Examples of free-form, open-ended questions in our VQA dataset.

is amenable to automatic evaluation, since many open-ended answers contain only

a few words or a closed set of answers that can be provided in a multiple-choice

format. We also develop and present experimental results of some baselines and

methods for VQA. Finally, in order to push the state-of-the-art (SOTA) on VQA,

we organize annual challenges and workshops on VQA and discuss the how these

challenges and workshops improved the SOTA on VQA and benefitted the language

and vision community in general.

1.2 Analyzing the Behavior of VQA Models (chapter 4)

After the release of our VQA dataset, a number of deep-learning models were proposed

for VQA [27, 84, 495, 485, 208, 24, 465, 217, 280, 25, 400, 227, 150, 321, 197, 480,

483, 510, 381]. Curiously, the performance of most methods was clustered around

60-70% (compared to human performance of 83%) with a mere 5% gap between the

top-9 entries on the VQA Challenge 2016. In order to identify the most fruitful

directions for progress, we develop novel techniques for characterizing the behavior

of VQA models [9]. We analyze several representative state-of-the-art VQA models

[27, 280, 150], including the models developed by us [27] and present three novel

findings that expand our understanding of VQA models – despite the progress, the

VQA models are ‘myopic’ (tend to fail on sufficiently novel instances), often ‘jump
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Figure 2: This figure illustrates outputs from a baseline model (SAN [495]) and the
proposed model (GVQA [12]). For the given test questions, SAN predicts the prior
answers from the training data for the respective question types, resulting in incorrect
answers. However, GVQA, being more visually grounded than SAN, correctly answers
the test questions.

to conclusions’ (converge on a predicted answer after ‘listening’ to just half the

question), and are ‘stubborn’ (do not change their answers across images).

1.3 Overcoming Priors in VQA (chapter 5)

Motivated by the findings of our previous work [9] (and work by others [505, 168, 211])

that VQA models are heavily driven by superficial correlations in the training data

and lack sufficient image grounding and compositionlaity, we address some of these

issues by proposing:

a) a new evaluation protocol (section 5.1). We propose a new evaluation

protocol for VQA – train and test sets have different prior distributions of answers for

different question types (first few words of the question) [12]. Specifically, we create

a new split of the VQA dataset [27] – Visual Question Answering under Changing

Priors (VQA-CP). We evaluate several existing VQA models on the new split and

find that their performance degrades significantly compared to the original VQA split.

Thus, the proposed split can serve as a benchmark to evaluate the degree of visual

groundedness in VQA models.

b) a new model architecture (section 5.2). We propose a novel Grounded
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Visual Question Answering (GVQA) model [12] that contains inductive biases and

restrictions in the architecture specifically designed to prevent the model from ‘cheat-

ing’ by primarily relying on priors in the training data. Specifically, GVQA explicitly

disentangles the recognition of visual concepts present in the image from the identi-

fication of plausible answer space for a given question, enabling the model to more

robustly generalize across different distributions of answers. GVQA significantly out-

performs the baseline VQA model (SAN) [495] on VQA-CP. Fig. 2 illustrates outputs

from GVQA and SAN. For the given test questions, SAN predicts the prior answers

from the training data for the respective question types, resulting in incorrect an-

swers. However, GVQA, being more visually grounded than SAN, correctly answers

the test questions.

c) a novel objective function (section 5.3). Although GVQA can be built

on top of any existing VQA model, it does require non-trivial changes in the archi-

tecture. To address this issue, we propose a simple drop-in regularizer that can be

added to any existing VQA model’s objective function [359]. To do this, we intro-

duce a question-only model that takes the question encoding from the VQA model

and must leverage language biases in order to succeed. We then pose training as an

adversarial game between the VQA model and this question-only adversary – dis-

couraging the VQA model from capturing language biases in its question encoding.

This approach improves performance significantly for multiple base models (including

GVQA), achieving state-of-the-art on VQA-CP.

1.4 Contributions

In this dissertation, we:

1. introduce the task of free-form and open-ended Visual Question Answering

(VQA). We collect a large scale dataset (>0.25M images, >0.76M questions,

∼10M answers) and make it publicly available (www.visualqa.org). We present
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baselines and methods for VQA, and organize annual challenges and workshops

to push the state-of-art on VQA.

2. develop novel techniques to characterize the behavior of VQA models. We

analyze several representative VQA models and present three novel findings

that expand our understanding of VQA models.

3. address the issue of VQA models being driven by superficial correlations in

training data and lacking sufficient image grounding by proposing:

(a) a new evaluation protocol to evaluate the degree of visual groundedness in

VQA models.

(b) a novel Grounded VQA (GVQA) model that contains inductive biases and

restrictions in the architecture specifically designed to prevent the model

from ‘cheating’ by primarily relying on priors in the training data.

(c) a novel adversarial regularization scheme that can be added to any ex-

isting VQA model’s objective function, without significantly changing the

underlying VQA model’s architecture.
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CHAPTER II

RELATED WORK

In this chapter, I will discuss how our work on Visual Question Answering (VQA)

is related to other research efforts in similar directions. I will first discuss related

work on VQA, then Analyzing the Behavior of VQA Models followed by Overcoming

Priors in VQA.

2.1 Visual Question Answering (VQA)

VQA Efforts. Several recent papers have studied visual question answering [158,

286, 439, 51]. However, unlike our work, these are fairly restricted (sometimes syn-

thetic) settings with small datasets. For instance, [286] only considers questions

whose answers come from a predefined closed world of 16 basic colors or 894 ob-

ject categories. [158] also considers questions generated from templates from a fixed

vocabulary of objects, attributes, relationships between objects, etc. In contrast,

our proposed task involves open-ended, free-form questions and answers provided by

humans. Our goal is to increase the diversity of knowledge and kinds of reasoning

needed to provide correct answers. Critical to achieving success on this more dif-

ficult and unconstrained task, our VQA dataset is two orders of magnitude larger

than [158, 286] (>250,000 vs . 2,591 and 1,449 images respectively). The proposed

VQA task has connections to other related work: [439] has studied joint parsing of

videos and corresponding text to answer queries on two datasets containing 15 video

clips each. [51] uses crowdsourced workers to answer questions about visual content

asked by visually-impaired users. In concurrent work, [289] proposed combining an

LSTM for the question with a CNN for the image to generate an answer. In their

model, the LSTM question representation is conditioned on the CNN image features
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at each time step, and the final LSTM hidden state is used to sequentially decode

the answer phrase. In contrast, the model developed by us explores “late fusion” –

i.e., the LSTM question representation and the CNN image features are computed

independently, fused via an element-wise multiplication, and then passed through

fully-connected layers to generate a softmax distribution over output answer classes.

[272] generates abstract scenes to capture visual common sense relevant to answering

(purely textual) fill-in-the-blank and visual paraphrasing questions. [378] and [448]

use visual information to assess the plausibility of common sense assertions. [499]

introduced a dataset of 10k images and prompted captions that describe specific as-

pects of a scene (e.g ., individual objects, what will happen next). Concurrent with

our work, [156] collected questions & answers in Chinese (later translated to English

by humans) for COCO images. [369] automatically generated four types of questions

(object, count, color, location) using COCO captions.

Text-based Q&A is a well studied problem in the NLP and text processing

communities (recent examples being [129, 128, 473, 372]). Other related textual

tasks include sentence completion (e.g ., [372] with multiple-choice answers). These

approaches provide inspiration for VQA techniques. One key concern in text is the

grounding of questions. For instance, [473] synthesized textual descriptions and QA-

pairs grounded in a simulation of actors and objects in a fixed set of locations. VQA is

naturally grounded in images – requiring the understanding of both text (questions)

and vision (images). Our questions are generated by humans, making the need for

commonsense knowledge and complex reasoning more essential.

Describing Visual Content. Related to VQA are the tasks of image tag-

ging [112, 243], image captioning [247, 134, 309, 89, 131, 451, 116, 222, 290, 229] and

video captioning [374, 172], where words or sentences are generated to describe visual

content. While these tasks require both visual and semantic knowledge, captions can

often be non-specific (e.g., observed by [451]). The questions in VQA require detailed

9



specific information about the image for which generic image captions are of little use

[51].

Other Vision+Language Tasks. Several recent papers have explored tasks

at the intersection of vision and language that are easier to evaluate than image

captioning, such as coreference resolution [235, 361] or generating referring expres-

sions [225, 312] for a particular object in an image that would allow a human to

identify which object is being referred to (e.g ., “the one in a red shirt”, “the dog

on the left”). While task-driven and concrete, a limited set of visual concepts (e.g .,

color, location) tend to be captured by referring expressions. As we demonstrate, a

richer variety of visual concepts emerge from visual questions and their answers.

2.2 Analyzing the Behavior of VQA Models

Our work is inspired by previous works that diagnose the failure modes of models for

different tasks. [223] constructed a series of oracles to measure the performance of a

character level language model. [189] provided analysis tools to facilitate detailed and

meaningful investigation of object detector performance. Our work aims to perform

behavior analyses as a first step towards diagnosing errors for VQA.

[495] categorize the errors made by their VQA model into four categories – model

focuses attention on incorrect regions, model focuses attention on appropriate regions

but predicts incorrect answers, predicted answers are different from labels but might

be acceptable, labels are wrong. While these are coarse but useful failure modes, we

are interested in understanding the behavior of VQA models along specific dimen-

sions – whether they generalize to novel instances, whether they listen to the entire

question, whether they look at the image.
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2.3 Overcoming Priors in VQA

Countering Priors in VQA: In order to counter the language priors in the VQA

v1 dataset, [168] balance every question by collecting complementary images for ev-

ery question. Thus, for every question in the proposed VQA v2 dataset, there are

two similar images with different answers to the question. By construction, language

priors are significantly weaker in the VQA v2 dataset. However, the train and test

distributions are still similar, unlike our work where the train and test answer distri-

butions are by design different (section 5.1). So, leveraging priors from the train set

will still benefit the model at test time. [505] balance the yes/no questions on abstract

scenes from the VQA v1 dataset in a similar manner. More recently, [216] propose

two new evaluation metrics that compensate for the skewed distribution of question

types and for the skewed distribution of answers within each question type in the test

set. As a remedy for machines using “shortcuts” to solve multiple-choice VQA, [79]

describe several principles for automatic construction of good decoys (the incorrect

candidate answers). [80] study cross-dataset adaptation for VQA. They propose an

algorithm for adapting a VQA model trained on one dataset to apply to another

dataset with different statistical distribution. All these works indicate that there is

an increasing interest in the community to focus on models that are less driven by

training priors and are more visually grounded.

Compositionality. Related to the ability to generalize across different answer

distributions is the ability to generalize to novel compositions of known concepts

learned during training. Compositionality has been studied in various forms in the

vision community. Zero-shot object recognition using attributes is based on the idea

of composing attributes to detect novel object categories [256, 206]. [31] have studied

compositionality in the domain of image captioning by focusing on structured rep-

resentations (subject-relation-object triplets). We study compositionality for visual

question answering where the questions and answers are open-ended and in free-form
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natural language. The work closest to us is [211] where they study compositionality in

the domain of VQA. However, their dataset (images as well as questions) is synthetic

and has only limited number of objects and attributes. On the contrary, our C-VQA

splits consist of real images and questions (asked by humans) and hence involve a

variety of objects and attributes, as well as activities, scenes, etc. Andreas et al.

[24, 25] have developed compositional models for VQA that consist of different mod-

ules each specialized for a particular task. These modules can be composed together

based on the question structure to create a model architecture for the given question.

Although, compositional by design, these models have not been evaluated specifically

for compositionality. Our C-VQA splits can be used to evaluate such models to test

the degree of compositionality. In fact, we report the performance of Neural Module

Networks on our C-VQA splits and find that its performance degrades significantly

from the original VQA setting to the proposed C-VQA setting (section ??).

Zero-shot VQA has also been explored in [428]. They study a setting for VQA

where the test questions (the question string itself or the multiple choices) contain

at least one unseen word. [360] propose answering questions about unknown objects

(e.g ., ‘Is the dog black and white?’ where ‘dog’ is never seen in training questions or

answers). These are orthogonal efforts to our work in that our focus is not in studying

if unseen words/concepts can be recognized during testing. We are instead interested

in studying – 1) the extent to which a model is visually grounded by evaluating its

ability to generalize to a different answer distribution for each question type, 2) the

extent to which a model is able to answer questions about unseen compositions of

seen concepts. In both the splits proposed by us (VQA-CP and C-VQA), we ensure

that concepts seen during test time are present during training to the extent possible.

Adversarial Learning. Generative Adversarial Networks (GANs) [164] have

received significant recent interest for their ability to model complex distributions –

finding use in a variety of image and language generation tasks [164, 356, 504, 102,
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307]. Recently, other adversarial training schemes have been proposed to encourage

various forms of invariance in intermediate model representations [257, 277, 442].

Most related to our work on adversarial regularization for VQA (section 5.3),

Lample et al . [257] introduce an autoencoder framework with an adversarial loss for

attribute-based image manipulation. Given an input image and a set of attributes

(e.g . a photo of a person and their gender or age), the task is to manipulate the image

such that it has the desired attributes. Unfortunately, without multiple pairings of

the same image with different attributes, it is challenging to learn disentangled image

representations that generalize to new input-attribute combinations. An adversar-

ial model is introduced that is trained to predict attributes from the input image

encoding alone. In combating this adversary, the image encoder model learns to pro-

duce attribute invariant image encodings. This improves generalization by forcing the

attribute-augmented decoder to meaningfully rely on input attributes to accurately

reproduce input images.

Similarly, the question-only adversary in our work (section 5.3), encourages the

VQA question encoder to remove answer-discriminative features from the question

representation. However, breaking the parallels with [257], the answer themselves are

not added back as inputs to controllably recondition the model on these features.

Rather, the VQA model must rely on the combination of question and image features

to recover the answer information. In this way, the language-level answer information

(e.g . that most grass is green) is removed from the question and instance-specific

information from the image must be used instead. We take this notion further by

leveraging the question-only adversary to estimate and directly maximize the change

in confidence after observing the image, which we show provides substantial benefits

when paired with the question-only adversary.
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CHAPTER III

VISUAL QUESTION ANSWERING (VQA)

3.1 Introduction

We are witnessing a renewed excitement in multi-discipline Artificial Intelligence

(AI) research problems. In particular, research in image and video captioning that

combines Computer Vision (CV), Natural Language Processing (NLP), and Knowl-

edge Representation & Reasoning (KR) has dramatically increased in the past year

[131, 89, 116, 290, 229, 222, 451]. Part of this excitement stems from a belief that

multi-discipline tasks like image captioning are a step towards solving AI. However,

the current state of the art demonstrates that a coarse scene-level understanding of

an image paired with word n-gram statistics suffices to generate reasonable image

captions, which suggests image captioning may not be as “AI-complete” as desired.

What makes for a compelling “AI-complete” task? We believe that in order to

spawn the next generation of AI algorithms, an ideal task should (i) require multi-

modal knowledge beyond a single sub-domain (such as CV) and (ii) have a well-

defined quantitative evaluation metric to track progress. For some tasks, such as

image captioning, automatic evaluation is still a difficult and open research problem

[447, 125, 186].

In this chapter, we introduce the task of free-form and open-ended Visual Question

Answering (VQA). A VQA system takes as input an image and a free-form, open-

ended, natural-language question about the image and produces a natural-language

answer as the output. This goal-driven task is applicable to scenarios encountered

when visually-impaired users [51] or intelligence analysts actively elicit visual infor-

mation. Example questions are shown in Fig. 3.
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Does it appear to be rainy?

Does this person have 20/20 vision?

Is this person expecting company?

What is just under the tree?

How many slices of pizza are there?

Is this a vegetarian pizza?

What color are her eyes?

What is the mustache made of?

Figure 3: Examples of free-form, open-ended questions collected for images via Ama-
zon Mechanical Turk. Note that commonsense knowledge is needed along with a
visual understanding of the scene to answer many questions.

Open-ended questions require a potentially vast set of AI capabilities to answer

– fine-grained recognition (e.g ., “What kind of cheese is on the pizza?”), object de-

tection (e.g ., “How many bikes are there?”), activity recognition (e.g ., “Is this man

crying?”), knowledge base reasoning (e.g ., “Is this a vegetarian pizza?”), and com-

monsense reasoning (e.g ., “Does this person have 20/20 vision?”, “Is this person

expecting company?”). VQA [158, 286, 439, 51] is also amenable to automatic quan-

titative evaluation, making it possible to effectively track progress on this task. While

the answer to many questions is simply “yes” or “no”, the process for determining

a correct answer is typically far from trivial (e.g. in Fig. 3, “Does this person have

20/20 vision?”). Moreover, since questions about images often tend to seek specific

information, simple one-to-three word answers are sufficient for many questions. In

such scenarios, we can easily evaluate a proposed algorithm by the number of ques-

tions it answers correctly. In this work, we present both an open-ended answering
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task and a multiple-choice task [372, 271]. Unlike the open-ended task that requires

a free-form response, the multiple-choice task only requires an algorithm to pick from

a predefined list of possible answers.

We present a large dataset that contains 204,721 images from the MS COCO

dataset [269] and a newly created abstract scene dataset [516, 29] that contains 50,000

scenes. The MS COCO dataset has images depicting diverse and complex scenes

that are effective at eliciting compelling and diverse questions. We collected a new

dataset of “realistic” abstract scenes to enable research focused only on the high-

level reasoning required for VQA by removing the need to parse real images. Three

questions were collected for each image or scene. Each question was answered by ten

subjects along with their confidence. The dataset contains over 760K questions with

around 10M answers.

While the use of open-ended questions offers many benefits, it is still useful to

understand the types of questions that are being asked and which types various algo-

rithms may be good at answering. To this end, we analyze the types of questions asked

and the types of answers provided. Through several visualizations, we demonstrate

the astonishing diversity of the questions asked. We also explore how the information

content of questions and their answers differs from image captions. For baselines,

we offer several approaches that use a combination of both text and state-of-the-

art visual features [243]. As part of the VQA initiative, we have been organizing

annual challenges and associated workshops to discuss state-of-the-art methods and

best practices.

VQA poses a rich set of challenges, many of which have been viewed as the holy

grail of automatic image understanding and AI in general. However, it includes as

building blocks several components that the CV, NLP, and KR [72, 88, 261, 273, 57]

communities have made significant progress on during the past few decades. VQA

provides an attractive balance between pushing the state of the art, while being
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Is something under 
the sink broken? 

yes 
yes 
yes 

no 
no 
no 

What number do 
you see? 

33 
33 
33 

5 
6 
7 

Does this man have 
children? 

yes 
yes 
yes 

yes 
yes 
yes 

Is this man crying? 
no 
no 
no 

no 
yes 
yes 

Has the pizza been 
baked? 

yes 
yes 
yes 

yes 
yes 
yes 

What kind of cheese is 
topped on this pizza? 

feta 
feta 

ricotta 

mozzarella 
mozzarella 
mozzarella 

Do you think the 
boy on the ground 
has broken legs?  

yes 
yes 
yes 

no 
no 
yes 

Why is the boy 
on the right 
freaking out? 

his friend is hurt 
other boy fell down 

someone fell 

ghost 
lightning 

sprayed by hose 

How many pickles 
are on the plate? 

1 
1 
1 

1 
1 
1 

What is the shape 
of the plate? 

circle 
round 
round 

circle 
round 
round 

What kind of store is 
this? 

bakery 
bakery 
pastry 

art supplies 
grocery 
grocery 

Is the display case as 
full as it could be?  

no 
no 
no 

no 
yes 
yes 

How many bikes 
are there? 

2 
2 
2 

3 
4 
12 

What number is 
the bus?  

48 
48 
48 

4 
46 

number 6 

What does 
the sign say? 

stop 
stop 
stop 

stop 
stop 
yield 

What shape is 
this sign? 

octagon 
octagon 
octagon 

diamond 
octagon 
round 

Can you park 
here? 

no 
no 
no 

no 
no 
yes 

What color is 
the hydrant? 

white and orange 
white and orange 
white and orange 

red 
red 

yellow 

How many glasses 
are on the table?  

3 
3 
3 

2 
2 
6 

What is the woman 
reaching for? 

door handle 
glass 
wine 

fruit 
glass 

remote 

Are the kids in the room 
the grandchildren of the 
adults? 

probably 
yes 
yes 

yes 
yes 
yes 

What is on the 
bookshelf? 

nothing 
nothing 
nothing 

books 
books 
books 

How many balls 
are there? 

2 
2 
2 

1 
2 
3 

What side of the 
teeter totter is 
on the ground? 

right 
right 

right side 

left 
left 

right side 

Figure 4: Examples of questions (black), (a subset of the) answers given when look-
ing at the image (green), and answers given when not looking at the image (blue)
for numerous representative examples of the dataset. See the appendix for more
examples.

accessible enough for the communities to start making progress on the task.

3.2 VQA Dataset Collection

We now describe the Visual Question Answering (VQA) dataset. We begin by de-

scribing the real images and abstract scenes used to collect the questions. Next, we

describe our process of collecting questions and their corresponding answers. Analysis

of the questions and answers gathered as well as baselines’ & methods’ results are

provided in following sections.

Real Images. We use the 123,287 training and validation images and 81,434 test

images from the Microsoft Common Objects in Context (MS COCO) [269] dataset.

The MS COCO dataset was gathered to find images containing multiple objects

and rich contextual information. Given the visual complexity of these images, they
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are well-suited for our VQA task. The more diverse our collection of images, the

more diverse, comprehensive, and interesting the resultant set of questions and their

answers.

Abstract Scenes. The VQA task with real images requires the use of complex

and often noisy visual recognizers. To attract researchers interested in exploring the

high-level reasoning required for VQA, but not the low-level vision tasks, we create

a new abstract scenes dataset [29, 516, 517, 518] containing 50K scenes. The dataset

contains 20 “paperdoll” human models [29] spanning genders, races, and ages with 8

different expressions. The limbs are adjustable to allow for continuous pose variations.

The clipart may be used to depict both indoor and outdoor scenes. The set contains

over 100 objects and 31 animals in various poses. The use of this clipart enables

the creation of more realistic scenes (see bottom row of Fig. 4) that more closely

mirror real images than previous papers [516, 517, 518]. See the appendix for the

user interface, additional details, and examples.

Splits. For real images, we follow the same train/val/test split strategy as the MC

COCO dataset [269] (including test-dev, test-standard, test-challenge, test-reserve).

For the VQA challenge (see section ??), test-dev is used for debugging and val-

idation experiments and allows for unlimited submission to the evaluation server.

Test-standard is the ‘default’ test data for the VQA competition. When comparing

to the state of the art (e.g., in papers), results should be reported on test-standard.

Test-standard is also used to maintain a public leaderboard that is updated upon

submission. Test-reserve is used to protect against possible overfitting. If there are

substantial differences between a method’s scores on test-standard and test-reserve,

this raises a red-flag and prompts further investigation. Results on test-reserve are

not publicly revealed. Finally, test-challenge is used to determine the winners of the

challenge.

For abstract scenes, we created splits for standardization, separating the scenes
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into 20K/10K/20K for train/val/test splits, respectively. There are no subsplits (test-

dev, test-standard, test-challenge, test-reserve) for abstract scenes.

Captions. The MS COCO dataset [269, 86] already contains five single-sentence

captions for all images. We also collected five single-captions for all abstract scenes

using the same user interface1 for collection.

Questions. Collecting interesting, diverse, and well-posed questions is a signif-

icant challenge. Many simple questions may only require low-level computer vision

knowledge, such as “What color is the cat?” or “How many chairs are present in

the scene?”. However, we also want questions that require commonsense knowledge

about the scene, such as “What sound does the pictured animal make?”. Importantly,

questions should also require the image to correctly answer and not be answerable us-

ing just commonsense information, e.g ., in Fig. 3, “What is the mustache made of?”.

By having a wide variety of question types and difficulty, we may be able to measure

the continual progress of both visual understanding and commonsense reasoning.

We tested and evaluated a number of user interfaces for collecting such “interest-

ing” questions. Specifically, we ran pilot studies asking human subjects to ask ques-

tions about a given image that they believe a “toddler”, “alien”, or “smart robot”

would have trouble answering. We found the “smart robot” interface to elicit the

most interesting and diverse questions. As shown in the appendix, our final interface

stated:

1https://github.com/tylin/coco-ui
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“We have built a smart robot. It understands a lot about images. It can

recognize and name all the objects, it knows where the objects are, it can

recognize the scene ( e.g., kitchen, beach), people’s expressions and poses,

and properties of objects ( e.g., color of objects, their texture). Your task is

to stump this smart robot!

Ask a question about this scene that this smart robot probably can not answer,

but any human can easily answer while looking at the scene in the image.”

To bias against generic image-independent questions, subjects were instructed to ask

questions that require the image to answer.

The same user interface was used for both the real images and abstract scenes.

In total, three questions from unique workers were gathered for each image/scene.

When writing a question, the subjects were shown the previous questions already

asked for that image to increase the question diversity. In total, the dataset contains

over ∼0.76M questions.

Answers. Open-ended questions result in a diverse set of possible answers. For

many questions, a simple “yes” or “no” response is sufficient. However, other ques-

tions may require a short phrase. Multiple different answers may also be correct. For

instance, the answers “white”, “tan”, or “off-white” may all be correct answers to

the same question. Human subjects may also disagree on the “correct” answer, e.g .,

some saying “yes” while others say “no”. To handle these discrepancies, we gather 10

answers for each question from unique workers, while also ensuring that the worker

answering a question did not ask it. We ask the subjects to provide answers that

are “a brief phrase and not a complete sentence. Respond matter-of-factly and avoid

using conversational language or inserting your opinion.” In addition to answering

the questions, the subjects were asked “Do you think you were able to answer the

question correctly?” and given the choices of “no”, “maybe”, and “yes”. See the

appendix for more details about the user interface to collect answers. See Section 3.3
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for an analysis of the answers provided.

For testing, we offer two modalities for answering the questions: (i) open-ended

and (ii) multiple-choice.

For the open-ended task, the generated answers are evaluated using the following

accuracy metric:

accuracy = min(
# humans that provided that answer

3
, 1)

i.e., an answer is deemed 100% accurate if at least 3 workers provided that exact

answer.2 Before comparison, all responses are made lowercase, numbers converted

to digits, and punctuation & articles removed. We avoid using soft metrics such as

Word2Vec [303], since they often group together words that we wish to distinguish,

such as “left” and “right”. We also avoid using evaluation metrics from machine

translation such as BLEU and ROUGE because such metrics are typically applicable

and reliable for sentences containing multiple words. In VQA, most answers (89.32%)

are single word; thus there no high-order n-gram matches between predicted answers

and ground-truth answers, and low-order n-gram matches degenerate to exact-string

matching. Moreover, these automatic metrics such as BLEU and ROUGE have been

found to poorly correlate with human judgement for tasks such as image caption

evaluation [87].

For multiple-choice task, 18 candidate answers are created for each question. As

with the open-ended task, the accuracy of a chosen option is computed based on

the number of human subjects who provided that answer (divided by 3 and clipped

at 1). We generate a candidate set of correct and incorrect answers from four sets

of answers: Correct: The most common (out of ten) correct answer. Plausible:

To generate incorrect, but still plausible answers we ask three subjects to answer

the questions without seeing the image. See the appendix for more details about

2In order to be consistent with ‘human accuracies’ reported in Section ??, machine accuracies
are averaged over all

(
10
9

)
sets of human annotators
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the user interface to collect these answers. If three unique answers are not found,

we gather additional answers from nearest neighbor questions using a bag-of-words

model. The use of these answers helps ensure the image, and not just commonsense

knowledge, is necessary to answer the question. Popular: These are the 10 most

popular answers. For instance, these are “yes”, “no”, “2”, “1”, “white”, “3”, “red”,

“blue”, “4”, “green” for real images. The inclusion of the most popular answers makes

it more difficult for algorithms to infer the type of question from the set of answers

provided, i.e., learning that it is a “yes or no” question just because “yes” and “no”

are present in the answers. Random: Correct answers from random questions in the

dataset. To generate a total of 18 candidate answers, we first find the union of the

correct, plausible, and popular answers. We include random answers until 18 unique

answers are found. The order of the answers is randomized. Example multiple choice

questions are in the appendix.

Note that all 18 candidate answers are unique. But since 10 different subjects

answered every question, it is possible that more than one of those 10 answers be

present in the 18 choices. In such cases, according to the accuracy metric, multiple

options could have a non-zero accuracy.

3.3 VQA Dataset Analysis

In this section, we provide an analysis of the questions and answers in the VQA

train dataset. To gain an understanding of the types of questions asked and answers

provided, we visualize the distribution of question types and answers. We also explore

how often the questions may be answered without the image using just commonsense

information. Finally, we analyze whether the information contained in an image

caption is sufficient to answer the questions.

The dataset includes 614,163 questions and 7,984,119 answers (including answers

provided by workers with and without looking at the image) for 204,721 images from
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Real Images Abstract Scenes 

Figure 5: Distribution of questions by their first four words for a random sample
of 60K questions for real images (left) and all questions for abstract scenes (right).
The ordering of the words starts towards the center and radiates outwards. The arc
length is proportional to the number of questions containing the word. White areas
are words with contributions too small to show.

the MS COCO dataset [269] and 150,000 questions with 1,950,000 answers for 50, 000

abstract scenes.

3.3.1 Questions

Types of Question. Given the structure of questions generated in the English

language, we can cluster questions into different types based on the words that start

the question. Fig. 5 shows the distribution of questions based on the first four words of

the questions for both the real images (left) and abstract scenes (right). Interestingly,

the distribution of questions is quite similar for both real images and abstract scenes.

This helps demonstrate that the type of questions elicited by the abstract scenes

is similar to those elicited by the real images. There exists a surprising variety of

question types, including “What is. . .”, “Is there. . .”, “How many. . .”, and “Does

the. . .”. Quantitatively, the percentage of questions for different types is shown in

Table ??. Several example questions and answers are shown in Fig. 4. A particularly

interesting type of question is the “What is. . .” questions, since they have a diverse set
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Figure 6: Percentage of questions with different word lengths for real images and
abstract scenes.

of possible answers. See the appendix for visualizations for “What is. . .” questions.

Lengths. Fig. 6 shows the distribution of question lengths. We see that most

questions range from four to ten words.

3.3.2 Answers

Typical Answers. Fig. 7 (top) shows the distribution of answers for several question

types. We can see that a number of question types, such as “Is the. . . ”, “Are. . . ”,

and “Does. . . ” are typically answered using “yes” and “no” as answers. Other ques-

tions such as “What is. . . ” and “What type. . . ” have a rich diversity of responses.

Other question types such as “What color. . . ” or “Which. . . ” have more specialized

responses, such as colors, or “left” and “right”. See the appendix for a list of the

most popular answers.

Lengths. Most answers consist of a single word, with the distribution of answers

containing one, two, or three words, respectively being 89.32%, 6.91%, and 2.74%

for real images and 90.51%, 5.89%, and 2.49% for abstract scenes. The brevity

of answers is not surprising, since the questions tend to elicit specific information

from the images. This is in contrast with image captions that generically describe
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Answers with Images

Answers without Images

Figure 7: Distribution of answers per question type for a random sample of 60K
questions for real images when subjects provide answers when given the image (top)
and when not given the image (bottom).
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the entire image and hence tend to be longer. The brevity of our answers makes

automatic evaluation feasible. While it may be tempting to believe the brevity of the

answers makes the problem easier, recall that they are human-provided open-ended

answers to open-ended questions. The questions typically require complex reasoning

to arrive at these deceptively simple answers (see Fig. 4). There are currently 23,234

unique one-word answers in our dataset for real images and 3,770 for abstract scenes.

‘Yes/No’ and ‘Number’ Answers. Many questions are answered using either

“yes” or “no” (or sometimes “maybe”) – 38.37% and 40.66% of the questions on

real images and abstract scenes respectively. Among these ‘yes/no’ questions, there

is a bias towards “yes” – 58.83% and 55.86% of ‘yes/no’ answers are “yes” for real

images and abstract scenes. Question types such as “How many. . . ” are answered

using numbers – 12.31% and 14.48% of the questions on real images and abstract

scenes are ‘number’ questions. “2” is the most popular answer among the ‘number’

questions, making up 26.04% of the ‘number’ answers for real images and 39.85% for

abstract scenes.

Subject Confidence. When the subjects answered the questions, we asked

“Do you think you were able to answer the question correctly?”. Fig. 8 shows the

distribution of responses. A majority of the answers were labeled as confident for

both real images and abstract scenes.

Inter-human Agreement. Does the self-judgment of confidence correspond to

the answer agreement between subjects? Fig. 8 shows the percentage of questions

in which (i) 7 or more, (ii) 3 − 7, or (iii) less than 3 subjects agree on the answers

given their average confidence score (0 = not confident, 1 = confident). As expected,

the agreement between subjects increases with confidence. However, even if all of the

subjects are confident the answers may still vary. This is not surprising since some

answers may vary, yet have very similar meaning, such as “happy” and “joyful”.

As shown in Table 3.3.3 (Question + Image), there is significant inter-human
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7 or more same 3-7 same less than 3 same # of Questions

Figure 8: Number of questions per average confidence score (0 = not confident, 1 =
confident) for real images and abstract scenes (black lines). Percentage of questions
where 7 or more answers are same, 3-7 are same, less than 3 are same (color bars).

3-4 (15.3%) 5-8 (39.7%) 9-12 (28.4%) 13-17 (11.2%) 18+ (5.5%)

Is that a bird in the sky? How many pizzas are shown? Where was this picture taken? Is he likely to get mugged if he walked 
down a dark alleyway like this?

What type of architecture is this? 

What color is the shoe? What are the sheep eating? What ceremony does the cake 
commemorate?

Is this a vegetarian meal? Is this a Flemish bricklaying 
pattern?

How many zebras are there? What color is his hair? Are these boats too tall to fit 
under the bridge?

What type of beverage is in the glass? How many calories are in this 
pizza?

Is there food on the table? What sport is being played? What is the name of the white 
shape under the batter?

Can you name the performer in the 
purple costume?

What government document is 
needed to partake in this activity?

Is this man wearing shoes? Name one ingredient in the skillet. Is this at the stadium? Besides these humans, what other 
animals eat here?

What is the make and model of 
this vehicle?

Figure 9: Example questions judged by Mturk workers to be answerable by different age
groups. The percentage of questions falling into each age group is shown in parentheses.

agreement in the answers for both real images (83.30%) and abstract scenes (87.49%).

Note that on average each question has 2.70 unique answers for real images and 2.39

for abstract scenes. The agreement is significantly higher (> 95%) for “yes/no”

questions and lower for other questions (< 76%), possibly due to the fact that we

perform exact string matching and do not account for synonyms, plurality, etc. Note

that the automatic determination of synonyms is a difficult problem, since the level

of answer granularity can vary across questions.
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3.3.3 Commonsense Knowledge

Is the Image Necessary? Clearly, some questions can sometimes be answered

correctly using commonsense knowledge alone without the need for an image, e.g .,

“What is the color of the fire hydrant?”. We explore this issue by asking three subjects

to answer the questions without seeing the image (see the examples in blue in Fig. 4).

In Table 3.3.3 (Question), we show the percentage of questions for which the correct

answer is provided over all questions, “yes/no” questions, and the other questions

that are not “yes/no”. For “yes/no” questions, the human subjects respond better

than chance. For other questions, humans are only correct about 21% of the time.

This demonstrates that understanding the visual information is critical to VQA and

that commonsense information alone is not sufficient.

To show the qualitative difference in answers provided with and without images,

we show the distribution of answers for various question types in Fig. 7 (bottom). The

distribution of colors, numbers, and even “yes/no” responses is surprisingly different

for answers with and without images.

Which Questions Require Common Sense? In order to identify questions

that require commonsense reasoning to answer, we conducted two AMT studies (on

a subset 10K questions from the real images of VQA trainval) asking subjects –

1. Whether or not they believed a question required commonsense to answer the

question, and

2. The youngest age group that they believe a person must be in order to be able

to correctly answer the question – toddler (3-4), younger child (5-8), older child

(9-12), teenager (13-17), adult (18+).

Each question was shown to 10 subjects. We found that for 47.43% of questions 3 or

more subjects voted ‘yes’ to commonsense, (18.14%: 6 or more). In the ‘perceived

human age required to answer question’ study, we found the following distribution of

responses: toddler: 15.3%, younger child: 39.7%, older child: 28.4%, teenager: 11.2%,
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adult: 5.5%. In Figure 9 we show several questions for which a majority of subjects

picked the specified age range. Surprisingly the perceived age needed to answer the

questions is fairly well distributed across the different age ranges. As expected the

questions that were judged answerable by an adult (18+) generally need specialized

knowledge, whereas those answerable by a toddler (3-4) are more generic.

We measure the degree of commonsense required to answer a question as the

percentage of subjects (out of 10) who voted “yes” in our “whether or not a question

requires commonsense” study. A fine-grained breakdown of average age and average

degree of common sense (on a scale of 0 − 100) required to answer a question is

shown in Table ??. The average age and the average degree of commonsense across

all questions is 8.92 and 31.01% respectively.

It is important to distinguish between:

1. How old someone needs to be to be able to answer a question correctly, and

2. How old people think someone needs to be to be able to answer a question

correctly.

Our age annotations capture the latter – perceptions of MTurk workers in an

uncontrolled environment. As such, the relative ordering of question types in Table

?? is more important than absolute age numbers. The two rankings of questions in

terms of common sense required according to the two studies were largely correlated

(Pearson’s rank correlation: 0.58).

3.3.4 Captions vs. Questions

Do generic image captions provide enough information to answer the questions? Ta-

ble 3.3.3 (Question + Caption) shows the percentage of questions answered correctly

when human subjects are given the question and a human-provided caption describ-

ing the image, but not the image. As expected, the results are better than when

humans are shown the questions alone. However, the accuracies are significantly
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Table 1: Test-standard accuracy of human subjects when asked to answer the ques-
tion without seeing the image (Question), seeing just a caption of the image and not
the image itself (Question + Caption), and seeing the image (Question + Image). Re-
sults are shown for all questions, “yes/no” & “number” questions, and other questions
that are neither answered “yes/no” nor number. All answers are free-form and not
multiple-choice. *These accuracies are evaluated on a subset of 3K train questions
(1K images).

Dataset Input All Yes/No Number Other

Question 40.81 67.60 25.77 21.22
Real Question + Caption* 57.47 78.97 39.68 44.41

Question + Image 83.30 95.77 83.39 72.67

Question 43.27 66.65 28.52 23.66
Abstract Question + Caption* 54.34 74.70 41.19 40.18

Question + Image 87.49 95.96 95.04 75.33

lower than when subjects are shown the actual image. This demonstrates that in

order to answer the questions correctly, deeper image understanding (beyond what

image captions typically capture) is necessary. In fact, we find that the distributions

of nouns, verbs, and adjectives mentioned in captions is statistically significantly dif-

ferent from those mentioned in our questions + answers (Kolmogorov-Smirnov test,

p < .001) for both real images and abstract scenes. See the appendix for details.

3.4 VQA Baselines and Methods

In this section, we explore the difficulty of the VQA dataset for the MS COCO images

using several baselines and novel methods. We train on VQA train+val. Unless stated

otherwise, all human accuracies are on test-standard, machine accuracies are on test-

dev, and results involving human captions (in gray font) are trained on train and

tested on val (because captions are not available for test).

3.4.1 Baselines

We implemented the following baselines:

1. random: We randomly choose an answer from the top 1K answers of the VQA
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train/val dataset.

2. prior (“yes”): We always select the most popular answer (“yes”) for both

the open-ended and multiple-choice tasks. Note that “yes” is always one of the

choices for the multiple-choice questions.

3. per Q-type prior: For the open-ended task, we pick the most popular answer

per question type (see the appendix for details). For the multiple-choice task,

we pick the answer (from the provided choices) that is most similar to the picked

answer for the open-ended task using cosine similarity in Word2Vec[303] feature

space.

4. nearest neighbor: Given a test image, question pair, we first find the K

nearest neighbor questions and associated images from the training set. See

appendix for details on how neighbors are found. Next, for the open-ended

task, we pick the most frequent ground truth answer from this set of nearest

neighbor question, image pairs. Similar to the “per Q-type prior” baseline, for

the multiple-choice task, we pick the answer (from the provided choices) that is

most similar to the picked answer for the open-ended task using cosine similarity

in Word2Vec[303] feature space.

3.4.2 Methods

For our methods, we develop a 2-channel vision (image) + language (question) model

that culminates with a softmax over K possible outputs. We choose the top K = 1000

most frequent answers as possible outputs. This set of answers covers 82.67% of the

train+val answers. We describe the different components of our model below:

Image Channel: This channel provides an embedding for the image. We exper-

iment with two embeddings –
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Figure 10: Our best performing model (deeper LSTM Q + norm I). This model uses
a two layer LSTM to encode the questions and the last hidden layer of VGGNet [408]
to encode the images. The image features are then `2 normalized. Both the question
and image features are transformed to a common space and fused via element-wise
multiplication, which is then passed through a fully connected layer followed by a
softmax layer to obtain a distribution over answers.

1. I: The activations from the last hidden layer of VGGNet [408] are used as

4096-dim image embedding.

2. norm I: These are `2 normalized activations from the last hidden layer of

VGGNet [408].

Question Channel: This channel provides an embedding for the question. We

experiment with three embeddings –

1. Bag-of-Words Question (BoW Q): The top 1,000 words in the questions are

used to create a bag-of-words representation. Since there is a strong correlation

between the words that start a question and the answer (see Fig. 7), we find the

top 10 first, second, and third words of the questions and create a 30 dimensional

bag-of-words representation. These features are concatenated to get a 1,030-dim

embedding for the question.

2. LSTM Q: An LSTM with one hidden layer is used to obtain 1024-dim em-

bedding for the question. The embedding obtained from the LSTM is a con-

catenation of last cell state and last hidden state representations (each being

32



512-dim) from the hidden layer of the LSTM. Each question word is encoded

with 300-dim embedding by a fully-connected layer + tanh non-linearity which

is then fed to the LSTM. The input vocabulary to the embedding layer consists

of all the question words seen in the training dataset.

3. deeper LSTM Q: An LSTM with two hidden layers is used to obtain 2048-

dim embedding for the question. The embedding obtained from the LSTM

is a concatenation of last cell state and last hidden state representations (each

being 512-dim) from each of the two hidden layers of the LSTM. Hence 2 (hidden

layers) x 2 (cell state and hidden state) x 512 (dimensionality of each of the cell

states, as well as hidden states) in Fig. 10. This is followed by a fully-connected

layer + tanh non-linearity to transform 2048-dim embedding to 1024-dim. The

question words are encoded in the same way as in LSTM Q.

Multi-Layer Perceptron (MLP): The image and question embeddings are

combined to obtain a single embedding.

1. For BoW Q + I method, we simply concatenate the BoW Q and I embeddings.

2. For LSTM Q + I, and deeper LSTM Q + norm I (Fig. 10) methods, the

image embedding is first transformed to 1024-dim by a fully-connected layer

+ tanh non-linearity to match the LSTM embedding of the question. The

transformed image and LSTM embeddings (being in a common space) are then

fused via element-wise multiplication.

This combined image + question embedding is then passed to an MLP – a fully con-

nected neural network classifier with 2 hidden layers and 1000 hidden units (dropout

0.5) in each layer with tanh non-linearity, followed by a softmax layer to obtain a dis-

tribution over K answers. The entire model is learned end-to-end with a cross-entropy

loss. VGGNet parameters are frozen to those learned for ImageNet classification and

not fine-tuned in the image channel.

We also experimented with providing captions as input to our model. Similar to
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Table 2: Accuracy of our methods for the open-ended and multiple-choice tasks on
the VQA test-dev for real images. Q = Question, I = Image, C = Caption. (Caption
and BoW Q + C results are on val). See text for details.

Open-Ended Multiple-Choice

All Yes/No Number Other All Yes/No Number Other

prior (“yes”) 29.66 70.81 00.39 01.15 29.66 70.81 00.39 01.15
per Q-type prior 37.54 71.03 35.77 09.38 39.45 71.02 35.86 13.34
nearest neighbor 42.70 71.89 24.36 21.94 48.49 71.94 26.00 33.56
BoW Q 48.09 75.66 36.70 27.14 53.68 75.71 37.05 38.64
I 28.13 64.01 00.42 03.77 30.53 69.87 00.45 03.76
BoW Q + I 52.64 75.55 33.67 37.37 58.97 75.59 34.35 50.33
LSTM Q 48.76 78.20 35.68 26.59 54.75 78.22 36.82 38.78
LSTM Q + I 53.74 78.94 35.24 36.42 57.17 78.95 35.80 43.41
deeper LSTM Q 50.39 78.41 34.68 30.03 55.88 78.45 35.91 41.13
deeper LSTM Q + norm I 57.75 80.50 36.77 43.08 62.70 80.52 38.22 53.01

Caption 26.70 65.50 02.03 03.86 28.29 69.79 02.06 03.82
BoW Q + C 54.70 75.82 40.12 42.56 59.85 75.89 41.16 52.53

Table 3.3.3, we assume that a human-generated caption is given as input. We use a

bag-of-words representation containing the 1,000 most popular words in the captions

as the caption embedding (Caption). For BoW Question + Caption (BoW Q

+ C) method, we simply concatenate the BoW Q and C embeddings.

For testing, we report the result on two different tasks: open-ended selects the

answer with highest activation from all possible K answers and multiple-choice picks

the answer that has the highest activation from the potential answers.

3.4.3 Results

Table 2 shows the accuracy of our baselines and methods for both the open-ended

and multiple-choice tasks on the VQA test-dev for real images.

As expected, the vision-alone model (I) that completely ignores the question per-

forms rather poorly (open-ended: 28.13% / multiple-choice: 30.53%). In fact, on

open-ended task, the vision-alone model (I) performs worse than the prior (“yes”)

baseline, which ignores both the image and question (responding to every question

with a “yes”).

Interestingly, the language-alone methods (per Q-type prior, BoW Q, LSTM Q)
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that ignore the image perform surprisingly well, with BoW Q achieving 48.09% on

open-ended (53.68% on multiple-choice) and LSTM Q achieving 48.76% on open-

ended (54.75% on multiple-choice); both outperforming the nearest neighbor baseline

(open-ended: 42.70%, multiple-choice: 48.49%). Our quantitative results and analy-

ses suggest that this might be due to the language-model exploiting subtle statistical

priors about the question types (e.g. “What color is the banana?” can be answered

with “yellow” without looking at the image). For a detailed discussion of the subtle

biases in the questions, please see [505].

The accuracy of our best model (deeper LSTM Q + norm I (Fig. 10), selected us-

ing VQA test-dev accuracies) on VQA test-standard is 58.16% (open-ended) / 63.09%

(multiple-choice). We can see that our model is able to significantly outperform both

the vision-alone and language-alone baselines. As a general trend, results on multiple-

choice are better than open-ended. All methods are significantly worse than human

performance.

Our VQA demo is available on CloudCV [20] – http://vqa.cloudcv.org/. This

will be updated with newer models as we develop them.

To gain further insights into these results, we computed accuracies by question

type in Table 3. Interestingly, for question types that require more reasoning, such as

“Is the” or “How many”, the scene-level image features do not provide any additional

information. However, for questions that can be answered using scene-level informa-

tion, such as “What sport,” we do see an improvement. Similarly, for questions whose

answer may be contained in a generic caption we see improvement, such as “What

animal”. For all question types, the results are worse than human accuracies.

We also analyzed the accuracies of our best model (deeper LSTM Q + norm I) on

a subset of questions with certain specific (ground truth) answers. In Fig. 11, we show

the average accuracy of the model on questions with 50 most frequent ground truth

answers on the VQA validation set (plot is sorted by accuracy, not frequency). We
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can see that the model performs well for answers that are common visual objects such

as “wii”, “tennis”, “bathroom” while the performance is somewhat underwhelming

for counts (e.g ., “2”, “1”, “3”), and particularly poor for higher counts (e.g ., “5”,

“6”, “10”, “8”, “7”).

In Fig. 12, we show the distribution of 50 most frequently predicted answers

when the system is correct on the VQA validation set (plot is sorted by prediction

frequency, not accuracy). In this analysis, “system is correct” implies that it has

VQA accuracy 1.0 (see section 3.2 for accuracy metric). We can see that the frequent

ground truth answers (e.g ., “yes”, “no”, “2”, “white”, “red”, “blue”, “1”, “green”)

are more frequently predicted than others when the model is correct.

Table 3: Open-ended test-dev results for different question types on real images
(Q+C is reported on val). Machine performance is reported using the bag-of-words
representation for questions. Questions types are determined by the one or two words
that start the question. The percentage of questions for each type is shown in paren-
theses. Last and second last columns respectively show the average human age and
average degree of commonsense required to answer the questions (as reported by AMT
workers), respectively. See text for details.

Open-Ended Human Age Commonsense

Question K = 1000 Human To Be Able To Be Able

Type Q Q + I Q + C Q Q + I To Answer To Answer (%)

what is (13.84) 23.57 34.28 43.88 16.86 73.68 09.07 27.52
what color (08.98) 33.37 43.53 48.61 28.71 86.06 06.60 13.22
what kind (02.49) 27.78 42.72 43.88 19.10 70.11 10.55 40.34
what are (02.32) 25.47 39.10 47.27 17.72 69.49 09.03 28.72
what type (01.78) 27.68 42.62 44.32 19.53 70.65 11.04 38.92
is the (10.16) 70.76 69.87 70.50 65.24 95.67 08.51 30.30
is this (08.26) 70.34 70.79 71.54 63.35 95.43 10.13 45.32
how many (10.28) 43.78 40.33 47.52 30.45 86.32 07.67 15.93
are (07.57) 73.96 73.58 72.43 67.10 95.24 08.65 30.63
does (02.75) 76.81 75.81 75.88 69.96 95.70 09.29 38.97
where (02.90) 16.21 23.49 29.47 11.09 43.56 09.54 36.51
is there (03.60) 86.50 86.37 85.88 72.48 96.43 08.25 19.88
why (01.20) 16.24 13.94 14.54 11.80 21.50 11.18 73.56
which (01.21) 29.50 34.83 40.84 25.64 67.44 09.27 30.00
do (01.15) 77.73 79.31 74.63 71.33 95.44 09.23 37.68
what does (01.12) 19.58 20.00 23.19 11.12 75.88 10.02 33.27
what time (00.67) 8.35 14.00 18.28 07.64 58.98 09.81 31.83
who (00.77) 19.75 20.43 27.28 14.69 56.93 09.49 43.82
what sport (00.81) 37.96 81.12 93.87 17.86 95.59 08.07 31.87
what animal (00.53) 23.12 59.70 71.02 17.67 92.51 06.75 18.04
what brand (00.36) 40.13 36.84 32.19 25.34 80.95 12.50 41.33

Finally, evaluating our best model (deeper LSTM Q + norm I) on the validation
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questions for which we have age annotations (how old a human needs to be to answer

the question correctly), we estimate that our model performs as well as a 4.74 year old

child! The average age required on the same set of questions is 8.98. Evaluating the

same model on the validation questions for which we have commonsense annotations

(whether the question requires commonsense to answer it), we estimate that it has

degree of commonsense of 17.35%. The average degree of commonsense required on

same set of questions is 31.23%. Again, these estimates reflect the age and common-

sense perceived by MTurk workers that would be required to answer the question.

See the appendix for details.

We further analyzed the performance of the model for different age groups on the

validation questions for which we have age annotations. In Fig. 13, we computed the

average accuracy of the predictions made by the model for questions belonging to

different age groups. Perhaps as expected, the accuracy of the model decreases as the

age of the question increases (from 61.07% at 3− 4 age group to 47.83% at 18+ age

group).

In Fig. 14, we show the distribution of age of questions for different levels of

accuracies achieved by our system on the validation questions for which we have

age annotations. It is interesting to see that the relative proportions of different age

groups is consistent across all accuracy bins with questions belonging to the age group

5-8 comprising the majority of the predictions which is expected because 5-8 is the

most common age group in the dataset (see Fig. 9).

Table 4 shows the accuracy of different ablated versions of our best model (deeper

LSTM Q + norm I) for both the open-ended and multiple-choice tasks on the VQA

test-dev for real images. The different ablated versions are as follows –

1. Without I Norm: In this model, the activations from the last hidden layer

of VGGNet [408] are not `2-normalized. Comparing the accuracies in Table 4

and Table 2, we can see that `2-normalization of image features boosts the
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Figure 11: Pr (system is correct | answer) for 50 most frequent ground truth answers
on the VQA validation set (plot is sorted by accuracy, not frequency). System refers
to our best model (deeper LSTM Q + norm I).
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Figure 12: Pr (answer | system is correct) for 50 most frequently predicted answers
on the VQA validation set (plot is sorted by prediction frequency, not accuracy).
System refers to our best model (deeper LSTM Q + norm I).

performance by 0.16% for open-ended task and by 0.24% for multiple-choice

task.

2. Concatenation: In this model, the transformed image and LSTM embeddings

are concatenated (instead of element-wise multiplied), resulting in doubling the

number of parameters in the following fully-connected layer. Comparing the

accuracies in Table 4 and Table 2, we can see that element-wise fusion performs

better by 0.95% for open-ended task and by 1.24% for multiple-choice task.

3. K = 500: In this model, we use K = 500 most frequent answers as possible

outputs. Comparing the accuracies in Table 4 and Table 2, we can see that K

= 1000 performs better than K = 500 by 0.82% for open-ended task and by

1.92% for multiple-choice task.

4. K = 2000: In this model, we use K = 2000 most frequent answers as possible

outputs. Comparing the accuracies in Table 4 and Table 2, we can see that K
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Figure 13: Pr (system is correct | age of question) on the VQA validation set. Sys-
tem refers to our best model (deeper LSTM Q + norm I).

= 2000 performs better then K = 1000 by 0.40% for open-ended task and by

1.16% for multiple-choice task.

5. Truncated Q Vocab @ 5: In this model, the input vocabulary to the embed-

ding layer (which encodes the question words) consists of only those question

words which occur atleast 5 times in the training dataset, thus reducing the vo-

cabulary size from 14770 (when all question words are used) to 5134 (65.24% re-

duction). Remaining question words are replaced with UNK (unknown) tokens.

Comparing the accuracies in Table 4 and Table 2, we can see that truncating

the question vocabulary @ 5 performs better than using all questions words by

0.24% for open-ended task and by 0.17% for multiple-choice task.

6. Truncated Q Vocab @ 11: In this model, the input vocabulary to the embed-

ding layer (which encodes the question words) consists of only those question

words which occur atleast 11 times in the training dataset, thus reducing the

vocabulary size from 14770 (when all question words are used) to 3561 (75.89%

39



0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 100D
is

tr
ib

u
ti

o
n

 o
f 

ag
e 

o
f 

q
u

es
ti

o
n

s 
p

er
 

ac
cu

ra
cy

 b
in

Accuracy

3--4 5--8 9--12 13--17 18+

Figure 14: Pr (age of question | system is correct) on the VQA validation set. Sys-
tem refers to our best model (deeper LSTM Q + norm I).

reduction). Remaining question words are replaced with UNK (unknown) to-

kens. Comparing the accuracies in Table 4 and Table 2, we can see that trun-

cating the question vocabulary @ 11 performs better than using all questions

words by 0.06% for open-ended task and by 0.02% for multiple-choice task.

7. Filtered Dataset: We created a filtered version of the VQA train + val dataset

in which we only keep the answers with subject confidence “yes”. Also, we keep

only those questions for which at least 50% (5 out of 10) answers are annotated

with subject confidence “yes”. The resulting filtered dataset consists of 344600

questions, compared to 369861 questions in the original dataset, leading to only

6.83% reduction in the size of the dataset. The filtered dataset has 8.77 answers

per question on average. We did not filter the test set so that accuracies of the

model trained on the filtered dataset can be compared with that of the model

trained on the original dataset. The row “Filtered Dataset” in Table 4 shows

the performance of the deeper LSTM Q + norm I model when trained on the

filtered dataset. Comparing these accuracies with the corresponding accuracies

in Table 2, we can see that the model trained on filtered version performs worse

by 1.13% for open-ended task and by 1.88% for multiple-choice task.
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Table 4: Accuracy of ablated versions of our best model (deeper LSTM Q + norm
I) for the open-ended and multiple-choice tasks on the VQA test-dev for real images.
Q = Question, I = Image. See text for details.

Open-Ended Multiple-Choice

All Yes/No Number Other All Yes/No Number Other

Without I Norm 57.59 80.41 36.63 42.84 62.46 80.43 38.10 52.62
Concatenation 56.80 78.49 35.08 43.19 61.46 78.52 36.43 52.54
K = 500 56.93 80.61 36.24 41.39 60.78 80.64 37.44 49.10
K = 2000 58.15 80.56 37.04 43.79 63.86 80.59 38.97 55.20
Truncated Q Vocab @ 5 57.99 80.67 36.99 43.38 62.87 80.71 38.22 53.20
Truncated Q Vocab @ 11 57.81 80.42 36.97 43.22 62.72 80.45 38.30 53.09
Filtered Dataset 56.62 80.19 37.48 40.95 60.82 80.19 37.48 49.57

3.5 VQA Challenge and Workshop

We have set up an evaluation server3 where results may be uploaded for the test

set and it returns an accuracy breakdown. We are organizing an annual challenge

and workshop to facilitate systematic progress in this area; the first instance of the

workshop was held at CVPR 20164. We suggest that papers reporting results on the

VQA dataset –

1. Report test-standard accuracies, which can be calculated using either of the

non-test-dev phases, i.e., “test2015” or “Challenge test2015” on the following

links: [oe-real | oe-abstract | mc-real | mc-abstract].

2. Compare their test-standard accuracies with those on the corresponding test2015

leaderboards [oe-real-leaderboard | oe-abstract-leaderboard |mc-real-leaderboard

| mc-abstract-leaderboard].

For more details, please see the challenge page5. Screenshots of leaderboards for

open-ended-real and multiple-choice-real are shown in Fig. 15. We also compare the

test-standard accuracies of our best model (deeper LSTM Q + norm I) for both open-

ended and multiple-choice tasks (real images) with other entries (as of October 28,

2016) on the corresponding leaderboards in Table 5.

3http://visualqa.org/challenge_2016.html
4http://www.visualqa.org/workshop_2016.html
5http://visualqa.org/challenge_2016.html
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Table 5: Test-standard accuracy of our best model (deeper LSTM Q + norm I)
compared to test-standard accuracies of other entries for the open-ended and multiple-
choice tasks in the respective VQA Real Image Challenge leaderboards (as of October
28, 2016).

Open-Ended Multiple-Choice

All Yes/No Number Other All Yes/No Number Other

snubi-naverlabs 60.60 82.23 38.22 46.99 64.95 82.25 39.56 55.68
MM PaloAlto 60.36 80.43 36.82 48.33 – – – –
LV-NUS 59.54 81.34 35.67 46.10 64.18 81.25 38.30 55.20
ACVT Adelaide 59.44 81.07 37.12 45.83 – – – –
global vision 58.43 78.24 36.27 46.32 – – – –
deeper LSTM Q + norm I 58.16 80.56 36.53 43.73 63.09 80.59 37.70 53.64
iBOWIMG – – – – 61.97 76.86 37.30 54.60

3.6 Conclusion and Discussion

In conclusion, we introduce the task of Visual Question Answering (VQA). Given an

image and an open-ended, natural language question about the image, the task is

to provide an accurate natural language answer. We provide a dataset containing

over 250K images, 760K questions, and around 10M answers. We demonstrate the

wide variety of questions and answers in our dataset, as well as the diverse set of

AI capabilities in computer vision, natural language processing, and commonsense

reasoning required to answer these questions accurately.

The questions we solicited from our human subjects were open-ended and not

task-specific. For some application domains, it would be useful to collect task-specific

questions. For instance, questions may be gathered from subjects who are visually

impaired [51], or the questions could focused on one specific domain (say sports).

Bigham et al . [51] created an application that allows the visually impaired to capture

images and ask open-ended questions that are answered by human subjects. Inter-

estingly, these questions can rarely be answered using generic captions. Training on

task-specific datasets may help enable practical VQA applications.

We believe VQA has the distinctive advantage of pushing the frontiers on “AI-

complete” problems, while being amenable to automatic evaluation. Given the recent
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Figure 15: Leaderboard showing test-standard accuracies for VQA Real Image Chal-
lenge (Open-Ended) on left and leaderboard showing test-standard accuracies for
VQA Real Image Challenge (Multiple-Choice) on right (snapshot from October 28,
2016).

progress in the community, we believe the time is ripe to take on such an endeavor.
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CHAPTER IV

ANALYZING THE BEHAVIOR OF VISUAL QUESTION

ANSWERING MODELS

4.1 Introduction

After the release of our VQA dataset, a flurry of recent deep-learning based models

have been proposed for VQA [27, 84, 495, 485, 208, 24, 465, 217, 280, 25, 400, 227,

150, 321, 197, 480, 483, 510, 381]. Curiously, the performance of most methods is

clustered around 60-70% (compared to human performance of 83% on open-ended

task and 91% on multiple-choice task) with a mere 5% gap between the top-9 entries

on the VQA challenge 2016.1 It seems clear that as a first step to understand these

models, to meaningfully compare strengths and weaknesses of different models, to

develop insights into their failure modes, and to identify the most fruitful directions

for progress, it is crucial to develop techniques to understand the behavior of VQA

models.

In this chapter, we develop novel techniques for characterizing the behavior of

VQA models. As concrete instantiations, we analyze two VQA models ([279],[280]),

one from each of the two major classes of VQA models – with-attention and without-

attention. We also analyze the winning entry [150] of the VQA Challenge 2016.

4.2 Behavior Analyses

We analyze the behavior of VQA models along the following three dimensions –

Generalization to novel instances: We investigate whether the test instances

that are incorrectly answered are the ones that are “novel” i.e., not similar to training

1http://www.visualqa.org/challenge_2016.html
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instances. The novelty of the test instances may be in two ways – 1) the test question-

image (QI) pair is “novel”, i.e., too different from training QI pairs; and 2) the test

QI pair is “familiar”, but the answer required at test time is “novel”, i.e., answers

seen during training are different from what needs to be produced for the test QI

pairs.

Complete question understanding: To investigate whether a VQA model is

understanding the input question or not, we analyze whether the model ‘listens’ to

only first few words of the question or the entire question, whether it ‘listens’ to only

question (wh) words and nouns or all the words in the question.

Complete image understanding: The absence of a large gap between perfor-

mance of language-alone and language + vision VQA models [27] provides evidence

that current VQA models seem to be heavily reliant on the language model, perhaps

not really understanding the image. In order to analyze this behavior, we investigate

whether the predictions of the model change across images for a given question.

We present our behavioral analyses on the VQA dataset [27]. All the experimental

results are reported on the VQA validation set using the following models trained on

the VQA train set for the open-ended task –

CNN + LSTM based model without-attention (CNN+LSTM): We use

the best performing model of [27] (code provided by [279]), which achieves an accuracy

of 54.13% on the VQA validation set. It is a two channel model – one channel processes

the image (using Convolutional Neural Network (CNN) to extract image features) and

the other channel processes the question (using Long Short-Term Memory (LSTM)

recurrent neural network to obtain question embedding). The image and question

features obtained from the two channels are combined and passed through a fully

connected (FC) layer to obtain a softmax distribution over the space of answers.

CNN + LSTM based model with-attention (ATT): We use the top-entry

on the VQA challenge leaderboard (as of June 03, 2016) [280], which achieves an

45



accuracy of 57.02% on the VQA validation set.2 This model jointly reasons about

image and question attention, in a hierarchical fashion. The attended image and

question features obtained from different levels of the hierarchy are combined and

passed through a FC layer to obtain a softmax distribution over the space of answers.

VQA Challenge 2016 winning entry (MCB): This is the multimodal com-

pact bilinear (mcb) pooling model from [150] which won the real image track of the

VQA Challenge 2016. This model achieves an accuracy of 60.36% on the VQA val-

idation set.3 In this model, multimodal compact bilinear pooling is used to predict

attention over image features and also to combine the attended image features with

the question features. These combined features are passed through a FC layer to

obtain a softmax distribution over the space of answers.

4.2.1 Generalization to novel instances

Do VQA models make mistakes because test instances are too different from training

ones? To analyze the first type of novelty (the test QI pair is novel), we measure

the correlation between test accuracy and distance of test QI pairs from its k nearest

neighbor (k-NN) training QI pairs. For each test QI pair we find its k-NNs in the

training set and compute the average distance between the test QI pair and its k-NNs.

The k-NNs are computed in the space of combined image + question embedding (just

before passing through FC layer) for all the three models (using euclidean distance

metric for the CNN+LSTM model and cosine distance metric for the ATT and

MCB models).

The correlation between accuracy and average distance is significant (-0.41 at

k=504 for the CNN+LSTM model and -0.42 at k=155 for the ATT model). A high

negative correlation value tells that the model is less likely to predict correct answers

2Code available at https://github.com/jiasenlu/HieCoAttenVQA
3Code available at https://github.com/akirafukui/vqa-mcb
4k=50 leads to highest correlation
5k=15 leads to highest correlation
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for test QI pairs which are not very similar to training QI pairs, suggesting that the

model is not very good at generalizing to novel test QI pairs. The correlation between

accuracy and average distance is not significant for the MCB model (-0.14 at k=16)

suggesting that MCB is better at generalizing to novel test QI pairs.

We also found that 67.5% of mistakes made by the CNN+LSTM model can be

successfully predicted by checking distance of test QI pair from its k-NN training QI

pairs (66.7% for the ATT model, 55.08% for the MCB model). Thus, this analysis

not only exposes a reason for mistakes made by VQA models, but also allows us to

build human-like models that can predict their own oncoming failures, and potentially

refuse to answer questions that are ‘too different’ from ones seen in past.

To analyze the second type of novelty (the answer required at test time is not

familiar), we compute the correlation between test accuracy and the average distance

of the test ground truth (GT) answer with GT answers of its k-NN training QI

pairs. The distance between answers is computed in the space of average Word2Vec

[301] vectors of answers. This correlation turns out to be quite high (-0.62) for both

CNN+LSTM and ATT models and significant (-0.47) for the MCB model. A

high negative correlation value tells that the model tends to regurgitate answers seen

during training.

These distance features are also good at predicting failures – 74.19% of failures

can be predicted by checking distance of test GT answer with GT answers of its k-NN

training QI pairs for CNN+LSTM model (75.41% for the ATT model, 70.17% for

the MCB model). Note that unlike the previous analysis, this analysis only explains

failures but cannot be used to predict failures (since it uses GT labels). See Fig. 16

for qualitative examples.

From Fig. 16 (row1) we can see that the test QI pair is semantically quite different

from its k-NN training QI pairs ({1st, 2nd, 3rd}-NN distances are {15.05, 15.13,

6k=1 leads to highest correlation
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Figure 16: Examples from test set where the CNN+LSTM model makes mistakes
and their corresponding nearest neighbor training instances. See appendix for more
examples.

15.17}, which are higher than the corresponding distances averaged across all success

cases: {8.74, 9.23, 9.50.}), explaining the mistake. Row2 shows an example where

the model has seen the same question in the training set (test QI pair is semantically

similar to training QI pairs) but, since it has not seen “green cone” for training

instances (answers seen during training are different from what needs to be produced

for the test QI pair), it is unable to answer the test QI pair correctly. This shows that

current models lack compositionality: the ability to combine the concepts of “cone”

and “green” (both of which have been seen in training set) to answer “green cone”

for the test QI pair. This compositionality is desirable and central to intelligence.

4.2.2 Complete question understanding

We feed partial questions of increasing lengths (from 0-100% of question from left to

right). We then compute what percentage of responses do not change when more and

more words are fed.
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Figure 17: X-axis shows length of partial question (in %) fed as input. Y-axis shows
percentage of questions for which responses of these partial questions are the same as
full questions and VQA accuracy of partial questions.

Fig. 17 shows the test accuracy and percentage of questions for which responses

remain same (compared to entire question) as a function of partial question length.

We can see that for 40% of the questions, the CNN+LSTM model seems to have

converged on a predicted answer after ‘listening’ to just half the question. This shows

that the model is listening to first few words of the question more than the words

towards the end. Also, the model has 68% of the final accuracy (54%) when making

predictions based on half the original question. When making predictions just based

on the image, the accuracy of the model is 24%. The ATT model seems to have

converged on a predicted answer after listening to just half the question more often

(49% of the time), achieving 74% of the final accuracy (57%). The MCB model

converges on a predicted answer after listening to just half the question 45% of the

time, achieving 67% of the final accuracy (60%). See Fig. 18 for qualitative examples.

We also analyze the change in responses of the model’s predictions (see Fig. 19),
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Figure 18: Examples where the CNN+LSTM model does not change its answer
after first few question words. On doing so, it is correct for some cases (the extreme left
example) and incorrect for other cases (the remaining three examples). See appendix
for more examples.

when words of a particular part-of-the-speech (POS) tag are dropped from the ques-

tion. The experimental results indicate that wh-words effect the model’s decisions the

most (most of the responses get changed on dropping these words from the question),

and that pronouns effect the model’s decisions the least.

4.2.3 Complete image understanding

Does a VQA model really ‘look’ at the image? To analyze this, we compute the

percentage of the time (say X) the response does not change across images (e.g.,,

answer for all images is “2”) for a given question (e.g., “How many zebras?”) and

plot histogram of X across questions (see Fig. 20). We do this analysis for questions

occurring for atleast 25 images in the VQA validation set, resulting in total 263

questions. The cumulative plot indicates that for 56% questions, the CNN+LSTM

model outputs the same answer for at least half the images. This is fairly high,

suggesting that the model is picking the same answer no matter what the image is.

Promisingly, the ATT and MCB models (that do not work with a holistic entire-

image representation and purportedly pay attention to specific spatial regions in an
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Figure 19: Percentage of questions for which responses remain same (compared to
entire question) as a function of POS tags dropped from the question.

image) produce the same response for at least half the images for fewer questions

(42% for the ATT model, 40% for the MCB model).

Interestingly, the average accuracy (see the VQA accuracy plots in Fig. 20) for

questions for which the models produce same response for >50% and <55% of the

images is 56% for the CNN+LSTM model (60% for the ATT model, 73% for the

MCB model) which is more than the respective average accuracy on the entire VQA

validation set (54.13% for the CNN+LSTM model, 57.02% for the ATT model,

60.36% for the MCB model). Thus, producing the same response across images

seems to be statistically favorable. Fig. 21 shows examples where the CNN+LSTM

model predicts the same response across images for a given question. The first row

shows examples where the model makes errors on several images by predicting the

same answer for all images. The second row shows examples where the model is

always correct even if it predicts the same answer across images. This is so because

questions such as “What covers the ground?” are asked for an image in the VQA

dataset only when ground is covered with snow (because subjects were looking at the

image while asking questions about it). Thus, this analysis exposes label biases in the
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Figure 20: Histogram of percentage of images for which model produces same answer
for a given question and its comparison with test accuracy. The cumulative plot shows
the % of questions for which model produces same answer for atleast x % of images.

dataset. Label biases (in particular, for “yes/no” questions) have also been reported

in [505].

Figure 21: Examples where the predicted answers do not change across images for a
given question. See appendix for more examples.

4.3 Conclusion

We develop novel techniques to characterize the behavior of VQA models, as a first

step towards understanding these models, meaningfully comparing the strengths and
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weaknesses of different models, developing insights into their failure modes, and iden-

tifying the most fruitful directions for progress. Our behavior analysis reveals that

despite recent progress, today’s VQA models are “myopic” (tend to fail on sufficiently

novel instances), often “jump to conclusions” (converge on a predicted answer after

‘listening’ to just half the question), and are “stubborn” (do not change their answers

across images), with attention based models being less “stubborn” than non-attention

based models.

As a final thought, we note that the somewhat pathological behaviors exposed in

the paper are in some sense “correct” given the model architectures and the dataset

being trained on. Ignoring optimization error, the maximum-likelihood training ob-

jective is clearly intended to capture statistics of the dataset. Our motive is simply

to better understand current generation models via their behaviors, and use these

observations to guide future choices – do we need novel model classes? or dataset

with different biases? etc. Finally, it should be clear that our use of anthropomorphic

adjectives such as “stubborn”, “myopic” etc. is purely for pedagogical reasons – to

easily communicate our observations to our readers. No claims are being made about

today’s VQA models being human-like.
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CHAPTER V

OVERCOMING PRIORS IN VISUAL QUESTION

ANSWERING

5.1 Visual Question Answering under Changing Priors
(VQA-CP)

5.1.1 Introduction

In Chapter 4 we saw that today’s VQA models are heavily driven by superficial

correlations in the training data and lack sufficient visual grounding. Similar findings

have been reported in other works as well [9, 505, 168, 211]. It seems that when faced

with a difficult learning problem, models typically resort to latching onto the language

priors in the training data to the point of ignoring the image – e.g ., overwhelmingly

replying to ‘how many X?’ questions with ‘2’ (irrespective of X), ‘what color is . . . ?’

with ‘white’, ‘is the . . . ?’ with ‘yes’.

One reason for this emergent dissatisfactory behavior is the fundamentally prob-

lematic nature of IID train-test splits in the presence of strong priors. As a result,

models that intrinsically memorize biases in the training data demonstrate accept-

able performance on the test set. This is problematic for benchmarking progress in

VQA because it becomes unclear what the source of the improvements is – if models

have learned to ground concepts in images or they are driven by memorizing priors

in training data.

To help disentangle these factors, we present new splits of the VQA v1 [27] and

VQA v2 [168] datasets, called Visual Question Answering under Changing Pri-

ors (VQA-CP v1 and VQA-CP v2 respectively). These new splits are created by

re-organizing the train and val splits of the respective VQA datasets in such a way
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that the distribution of answers per question type (‘how many’, ‘what color is’, etc.)

is by design different in the test split compared to the train split (Section 5.1.2). One

important thing to note: we do not change the distribution of the underlying per-

ceptual signals – the images – between train and test. Generalization across different

domains of images (e.g . COCO images vs . web cam images) is an active research

area and not the focus of this work. We change the distribution of answers for each

question type between train and test. Our hypothesis is that it is reasonable to ex-

pect models that are answering questions for the ‘right reasons’ (image grounding)

to recognize, for instance, ‘black’ color at test time even though ‘white’ is the most

popular answer for ‘What color is the . . . ?’ questions in the train set.

To demonstrate the difficulty of our VQA-CP splits, we report the performance

of several existing VQA models [279, 24, 495, 150] on these splits. Our key finding

is that the performance of all tested existing models drops significantly when trained

and evaluated on the new splits compared to the original splits (Section 5.1.3). This

finding provides further confirmation and a novel insight to the growing evidence in

literature on the behavior of VQA models [9, 505, 168, 211].

5.1.2 VQA-CP : Dataset Creation and Analysis

The VQA-CP v1 and VQA-CP v2 splits are created such that the distribution of an-

swers per question type (‘how many’, ‘what color is’, etc.) is different in the test data

compared to the training data. These splits are created by re-organizing the training

and validation splits of the VQA v1 [27] and VQA v2 [168] datasets respectively 1,

using the following procedure:

Question Grouping: Questions having the same question type (first few words

of the question – ‘What color is the’, ‘What room is’, etc.) and the same ground

truth answer are grouped together. For instance, {‘What color is the dog?’, ‘white’}

1We can not use the test splits from VQA datasets because creation of VQA-CP splits requires
access to answer annotations, which are not publicly available on the test sets.
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and {‘What color is the plate?’, ‘white’} are grouped together whereas {‘What color

is the dog?’, ‘black’} is put in a different group. This grouping is done after merging

the QA pairs from the VQA train and val splits. We use the question types provided

in the VQA datasets.

Greedily Re-splitting: A greedy approach is used to redistribute data points

(image, question, answer) to the VQA-CP train and test splits so as to maximize

the coverage of the VQA-CP test concepts in the VQA-CP train split while making

sure that questions with the same question type and the same ground truth answer

are not repeated between test and train splits. In this procedure, we loop through

all the groups created above, and in every iteration, we add the current group to

the VQA-CP test split unless the group has already been assigned to the VQA-CP

train split. We always maintain a set of concepts2 belonging to the groups in the

VQA-CP test split that have not yet been covered by the groups in the VQA-CP

train split. We then pick the group that covers majority of the concepts in the set,

from the groups that have not yet been assigned to either split and add that group

to the VQA-CP train split. We stop when the test split has about 1/3rd the dataset

and add the remaining groups (not yet assigned to either split) to the train split.

The above approach results in 98.04% coverage of test question concepts (set

of all unique words in questions after removing stop words – ‘is’, ‘are’, ‘the’, etc.)

in the train split for VQA-CP v1 (99.01% for VQA-CP v2), and 95.07% coverage

of test answers by the train split’s top 1000 answers for VQA-CP v1 (95.72% for

VQA-CP v2). VQA-CP v1 train consists of ∼118K images, ∼245K questions and

∼2.5M answers (∼121K images, ∼438K questions and ∼4.4M answers for VQA-CP

v2 train). VQA-CP v1 test consists of ∼87K images, ∼125K questions and ∼1.3M

answers (∼98K images, ∼220K questions and ∼2.2M answers for VQA-CP v2 test).

2For a given group, concepts are the set of all unique words present in the question type and the
ground truth answer belonging to that group.
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VQA-CP Train Split VQA-CP Test Split

Figure 22: Distribution of answers per question type vary significantly between VQA-
CP v1 train (left) and test (right) splits. For instance, ‘white’ and ‘red’ are commonly
seen answers in train for ‘What color’, where as ‘black’ is the most frequent answer
in test. These have been computed for a random sample of 60K questions.

Fig. 22 shows the distribution of answers for several question types such as ‘what

color’, ‘what sport’, ‘how many’, etc. for the train (left) and test (right) splits of

the VQA-CP v1 dataset (see appendix for this analysis of the VQA-CP v2 dataset).

We can see that the distributions of answers for a given question type is significantly

different. For instance, ‘tennis’ is the most frequent answer for the question type

‘what sport’ in VQA-CP v1 train split whereas ‘skiing’ is the most frequent answer

for the same question type in VQA-CP v1 test split. However, for VQA v1 dataset,

the distribution for a given question type is similar across train and val splits [27]

(for instance, ‘tennis’ is the most frequent answer for both the train and val splits).

In the VQA-CP v1 splits, similar differences can be seen for other question types as
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Table 6: We compare the performance of existing VQA models on VQA-CP v1 test
splits (when trained on VQA-CP v1 train splits) to their performance on VQA v1
val splits (when trained on VQA v1 train splits). We find that the performance of
all tested existing models degrades significantly in the new Changing Priors setting
compared to the original VQA setting.

Model Dataset Overall Yes/No Number Other

per Q-type prior [27] VQA v1 35.13 71.31 31.93 08.86
VQA-CP v1 08.39 14.70 08.34 02.14

d-LSTM Q [27] VQA v1 48.23 79.05 33.70 28.81
VQA-CP v1 20.16 35.72 11.07 08.34

d-LSTM Q + norm I [279] VQA v1 54.40 79.82 33.87 40.54
VQA-CP v1 23.51 34.53 11.40 17.42

NMN [24] VQA v1 54.83 80.39 33.45 41.07
VQA-CP v1 29.64 38.85 11.23 27.88

SAN [495] VQA v1 55.86 78.54 33.46 44.51
VQA-CP v1 26.88 35.34 11.34 24.70

MCB [150] VQA v1 60.97 81.62 34.56 52.16
VQA-CP v1 34.39 37.96 11.80 39.90

well – ‘are’, ‘which’.

5.1.3 Benchmarking VQA Models on VQA-CP

To demonstrate the difficulty of our VQA-CP splits, we report the performance of

the following baselines and existing VQA models when trained on VQA-CP v1 and

VQA-CP v2 train splits and evaluated on the corresponding test splits. We compare

this with their performance when trained on VQA v1 and VQA v2 train splits and

evaluated on the corresponding val splits. Results are presented in Tables 5.1.2 and

5.1.2.

per Q-type prior [27]: Predicting the most popular training answer for the corre-

sponding question type (e.g., ‘tennis’ for ‘What sport . . . ?’ questions) 3.

Deeper LSTM Question (d-LSTM Q) [27]: Predicting the answer using question

3Note that, ideally the performance of this baseline on VQA-CP test set should be zero because
the answers, given the question type, are different in test and train. But, due to some inter-human
disagreement in the datasets, the performance is slightly higher (Tables 5.1.2 and 5.1.2).
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Table 7: We compare the performance of existing VQA models on VQA-CP v2 test
splits (when trained on VQA-CP v2 train splits) to their performance on VQA v2
val splits (when trained on VQA v2 train splits). We find that the performance of
all tested existing models degrades significantly in the new Changing Priors setting
compared to the original VQA setting.

Model Dataset Overall Yes/No Number Other

per Q-type prior [27] VQA v2 32.06 64.42 26.95 08.76
VQA-CP v2 08.76 19.36 11.70 02.39

d-LSTM Q [27] VQA v2 43.01 67.95 30.97 27.20
VQA-CP v2 15.95 35.09 11.63 07.11

d-LSTM Q + norm I [279] VQA v2 51.61 73.06 34.41 39.85
VQA-CP v2 19.73 34.25 11.39 14.41

NMN [24] VQA v2 51.62 73.38 33.23 39.93
VQA-CP v2 27.47 38.94 11.92 25.72

SAN [495] VQA v2 52.02 68.89 34.55 43.80
VQA-CP v2 24.96 38.35 11.14 21.74

MCB [150] VQA v2 59.71 77.91 37.47 51.76
VQA-CP v2 36.33 41.01 11.96 40.57

alone (“blind” model).

Deeper LSTM Question + normalized Image (d-LSTM Q + norm I) [27]:

The baseline VQA model.

Neural Module Networks (NMN) [24]: The model designed to be compositional

in nature.

Stacked Attention Networks (SAN) [495]: One of the widely used models for

VQA.

Multimodal Compact Bilinear Pooling (MCB) [150]: The winner of the VQA

Challenge (on real image) 2016.

Brief descriptions of all of these models are in appendix.

From Tables 5.1.2 and 5.1.2, we can see that the performance of all tested existing

VQA models drops significantly in the VQA-CP setting compared to the original

VQA setting. Note that even though the NMN architecture is compositional by

design, their performance degrades on the VQA-CP datasets. We posit this may
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be because they use an additional LSTM encoding of the question to encode priors

in the dataset. Also note that the d-LSTM Q + norm I model suffers the largest

drop in overall performance compared to other VQA models, perhaps because other

models have more powerful visual processing (for instance, attention on images).

Another interesting observation from Tables 5.1.2 and 5.1.2 is that the ranking of the

models based on overall performance changes from VQA to VQA-CP . For VQA ,

SAN outperforms NMN, whereas for VQA-CP , NMN outperforms SAN. For a brief

discussion on trends for different question types, please see appendix.

5.1.4 Conclusion

In conclusion, we propose a new setting for VQA (VQA under Changing Priors (VQA-

CP)) where, for every question type, train and test sets have different prior distri-

butions of answers. We introduce novel splits of the existing VQA v1 and VQA

v2 datasets to stress test models under changing priors. Quatitative evaluation of

several existing VQA models on these new splits shows that the performance of all

tested existing models drops significantly in the proposed Changing Priors setting

compared to the existing setting where the train and test distributions of answers

given the question type are similar. This finding provides further confirmation that

today’s VQA models are largely driven by language priors in the training data and

lack sufficient image grounding. Thus, the proposed splits can serve as benchmarks

to evaluate the degree of visual groundedness in VQA models.

5.2 Grounded Visual Question Answering (GVQA)

5.2.1 Introduction

In this section, we propose a novel Grounded Visual Question Answering (GVQA)

model that contains inductive biases and restrictions in the architecture specifically

designed to prevent it from ‘cheating’ by primarily relying on priors in the training

data (Section 5.2.2). GVQA is motivated by the intuition that questions in VQA
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provide two key pieces of information:

(1) What should be recognized? Or what visual concepts in the image need to be

reasoned about to answer the question (e.g ., ‘What color is the plate?’ requires look-

ing at the plate in the image),

(2) What should be said? Or what is the space of plausible answers (e.g ., ‘What color

. . . ?’ questions need to be answered with names of colors).

Our hypothesis is that models that do not explicitly differentiate between these

two roles – which is the case for most existing models in literature – tend to confuse

these two signals. They end up learning from question-answer pairs that a plausible

color of a plate is white, and at test time, rely on this correlation more so than the

specific plate in the image the question is about. GVQA explicitly disentangles the

visual concept recognition from the answer space prediction.

GVQA is built off of an existing VQA model – Stacked Attention Networks (SAN)

[495]. Our experiments demonstrate that GVQA significantly outperforms SAN on

both VQA-CP v1 and VQA-CP v2 datasets (Section 5.2.3). Interestingly, it also

outperforms more powerful VQA models such as Multimodal Compact Bilinear Pool-

ing (MCB) [150] in several cases (Section 5.2.3). We also show that GVQA offers

strengths complementary to SAN when trained and evaluated on the original VQA

v1 and VQA v2 datasets (Section 5.2.5). Finally, GVQA is more transparent than

existing VQA models, in that it produces interpretable intermediate outputs unlike

most existing VQA models (Section 5.2.6).

5.2.2 GVQA model

We now introduce our Grounded Visual Question Answering model (GVQA). While

previous VQA approaches directly map Image-Question tuples (I,Q) to Answers (A),

GVQA breaks down the task of VQA into two steps: Look - locate the object / image

patch needed to answer the question and recognize the visual concepts in the patch,
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Figure 23: The proposed Grounded Visual Question Answering (GVQA) model.

and Answer - identify the space of plausible answers from the question and return

the appropriate visual concept from the set of recognized visual concepts by taking

into account which concepts are plausible. For instance, when GVQA is asked ‘What

color is the dog?’, it identifies that the answer should be a color name, locates the

patch in the image corresponding to dog, recognizes various visual concepts such as

‘black’, ‘dog’, ‘furry’, and finally outputs the concept ‘black’ because it is the rec-

ognized concept corresponding to color. Another novelty in GVQA is that it treats

answering yes/no questions as a visual verification task, i.e., it verifies the visual pres-

ence/absence of the concept mentioned in the question. For instance, when GVQA is

asked ‘Is the person wearing shorts?’, it identifies that the concept whose visual pres-

ence needs to be verified is ‘shorts’ and answers ‘yes’ or ‘no’ depending on whether

it recognizes shorts or not in the image (specifically, on the patch corresponding to

‘person’ ).

GVQA is depicted in Figure 23. Given a question and an image, the question first

goes through the Question Classifier and gets classified into yes/no or non yes/no.

For non yes/no questions, the GVQA components that get activated are – 1) Visual
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Concept Classifier (VCC) which takes as input the image features extracted from

CNN and Qmain given by the question Extractor, 2) Answer Cluster Predictor (ACP)

whose input is the entire question. The outputs of VCC and ACP are fed to the

Answer Predictor (AP) which produces the answer. For yes/no questions, the GVQA

components that get activated are – 1) VCC (similarly to non yes/no), 2) Concept

Extractor (CE) whose input is the entire question. The outputs of VCC and CE are

fed to the Visual Verifier (VV) which predicts ‘yes’ or ‘no’. We present the details

of each component below.

Visual Concept Classifier (VCC) is responsible for locating the image patch

that is needed to answer the question, as well as producing a set of visual concepts

relevant to the located patch. E.g., given ‘What is the color of the bus next to the

car?’, the VCC is responsible for attending on the bus region and then outputting a

set of concepts such as ‘bus’ and attributes such as its color, count, etc. It consists

of a 2-hop attention module based off of Stacked Attention Networks ([495]) followed

by a stack of binary concept classifiers. The image is fed to the attention module

in the form of activations of the last pooling layer of VGG-Net [410]. To prevent

the memorization of answer priors per question type, the question is first passed

through a language Extractor, a simple rule that outputs the string (called Qmain)

after removing the question type substring (eg. ‘What kind of’ ). Qmain is embedded

using an LSTM and then fed into the attention module. The multi hop attention

produces a weighted linear combination of the image region features from VGG-Net,

with weights corresponding to the degree of attention for that region. This is followed

by a set of fully connected (FC) layers and a stack of ∼2000 binary concept classifiers

that cover ∼95% of the concepts seen in train. VCC is trained with a binary logistic

loss for every concept.

The set of VCC concepts is constructed by extracting objects and attributes,

pertinent to the answer, from training QA pairs and retaining the most frequent ones.
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Object concepts are then grouped into a single group where as attribute concepts are

clustered into multiple small groups using K-means clustering in Glove embedding

space [346], for a total of C clusters.4 Concept clustering is required for the purpose

of generating negative samples required to train the concept classifiers (for a concept

classifier, positive samples are those which contain that concept either in the question

or the answer). Since the question does not indicate objects and attributes absent

in the image, negative data is generated using the following assumptions: (1) the

attended image patch required to answer a question has at most one dominant object

in it (2) every object has at most one dominant attribute from each attribute category

(e.g., if the color of a bus is red, it can be used as a negative example for all other

colors). Given these assumptions, when a concept in a cluster is treated as positive,

all other concepts in that cluster are treated as negatives. Note that only a subset

of all concept clusters are activated for each question during training, and only these

activated clusters contribute to the loss.

Question Classifier classifies the input question Q into 2 categories: Yes-No

and non Yes-No using a Glove embedding layer, an LSTM and FC layers. Yes-No

questions feed into the CE and the rest feed into the ACP.

Answer Cluster Predictor (ACP) identifies the type of the expected answer

(e.g . object name, color, number, etc.). It is only activated for non yes/no questions.

It consists of a Glove embedding layer and an LSTM, followed by FC layers that

classify questions into one of the C clusters. The clusters for ACP are created by

K-means clustering on (1000) answer classes by embedding each answer in Glove

space.5

Concept Extractor (CE) extracts question concepts from yes/no questions

4We use C = 50 because it gives better clusters than other values. Also, agglomerative clustering
results in similar performance as K-means. More details in appendix.

5We first create the clusters for ACP using the answer classes. We then create the clusters for
VCC by assigning each VCC concept to one of these ACP clusters using Euclidean distance in Glove
embedding space.
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whose visual presence needs to be verified in the image, using a POS tag based

extraction system6. E.g., for ‘Is the cone green?’, we extract ‘green’. The extracted

concept is embedded in Glove space followed by FC layers to transform this embedding

to the same space as the VCC concepts so that they can be combined by VV. Please

see the description of VV below.

Answer Predictor (AP): Given a set of visual concepts predicted by the VCC,

and a concept category predicted by the ACP, the AP’s role is to predict the answer.

ACP categories correspond to VCC concept clusters (see ACP’s and VCC’s output

classes in Fig. 23. The colors denote the correspondence). Given this alignment, the

output of the ACP can be easily mapped into a vector with the same dimensions as

the VCC output by simply copying ACP dimensions into positions pertaining to the

respective VCC cluster dimensions. The resulting ACP embedding is added element-

wise to the VCC embedding followed by FC layers and a softmax activation, yielding

a distribution over 998 VQA answer categories (top 1000 training answers minus ‘yes’

and ‘no’ ).

Visual Verifier (VV): Given a set of visual concepts predicted by the VCC and

the embedding of the concept whose visual presence needs to be verified (given by CE),

the VV’s role is to verify the presence/absence of the concept in VCC’s predictions.

Specifically, the CE embedding is added element-wise to the VCC embedding followed

by FC layers and a softmax activation, yielding a distribution over two categories –

‘yes’ and ‘no’.

Model Training and Testing: We first train VCC and ACP on the train split

using the cluster labels (for ACP) and visual concept labels (for VCC)7. The inputs to

Answer Predictor (and Visual Verifier) are the predictions from VCC and ACP (CE

6We use NLTK POS tagger. Spacy POS tagger results in similar performance. More details in
appendix.

7Note that we do not need additional image labels to train VCC, our labels are extracted auto-
matically from the QA pairs. Same for ACP.
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Table 8: Performance of GVQA (our model) compared to SAN on VQA-CP datasets.
GVQA consistently outperforms SAN.

Dataset Model Overall Yes/No Number Other

VQA-CP v1 GVQA (Ours) 39.23 64.72 11.87 24.86
SAN [495] 26.88 35.34 11.34 24.70

VQA-CP v2 GVQA (Ours) 31.30 57.99 13.68 22.14
SAN [495] 24.96 38.35 11.14 21.74

in the case of yes/no questions) on the training data. During training, we use ground

truth labels for yes/no and non yes/no questions for the Question Classifier. During

testing, we first run the Question Classifier to classify questions into yes/no and non

yes/no. And feed the questions into their respective modules to obtain predictions

on the test set. Please refer to appendix for implementation details.

5.2.3 Experiments on VQA-CP v1 and VQA-CP v2

Model accuracies: Table 5.2.3 shows the performance of our GVQA model in

comparison to SAN (the model which GVQA is built off of) on VQA-CP v1 and

VQA-CP v2 datasets using the VQA evaluation metric [27]. Accuracies are presented

broken down into Yes/No, Number and Other categories. As it can be seen from

Table 5.2.3, the proposed architectural improvements (in GVQA) over SAN show

a significant boost in the overall performance for both the VQA-CP v1 (12.35%)

and VQA-CP v2 (6.34%) datasets. It is worth noting that owing to the modular

nature of the GVQA architecture, one may easily swap in other attention modules

into the VCC. Interestingly, on the VQA-CP v1 dataset, GVQA also outperforms

MCB [150] and NMN [24] (Tables 5.1.2 and 5.1.2) on the overall metric (mainly for

yes/no questions), in spite of being built off of a relatively simpler attention module

from SAN, and using relatively less powerful image features (VGG-16) as compared

to ResNet-152 being used in MCB. On the VQA-CP v2 dataset, GVQA outperforms

NMN in overall metric (as well as for number questions) and MCB for yes/no and

number questions.
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To check if our particular VQA-CP split was causing some irregularities in perfor-

mance, we created four sets of VQA-CP v2 splits with different random seeds. This

also led to a large portion of the dataset (84%) being covered across the test splits.

The results show that GVQA consistently outperforms SAN across all four splits

with average improvement being 7.14% (standard error: 1.36). Please see appendix

for performance on each split.

Performance of Model Components Question Classifier : On the VQA-CP v1

test set, the LSTM based question classifier obtains 99.84% accuracy. ACP : The

Top-1 test accuracy is 54.06%, with 84.25% for questions whose answers are in at-

tribute clusters and 43.17% for questions whose answers are in object clusters. The

Top-3 accuracy rises to 65.33%. Note that these accuracies are computed using the

automatically created clusters. VCC : The weighted mean test F1 score across all

classifiers is 0.53. The individual concepts are weighted as per the number of posi-

tive samples, reflecting the coverage of that concept in the test set. Please refer to

appendix for accuracies on the VQA-CP v2 dataset.

5.2.4 Role of GVQA Components

In order to evaluate the role of various GVQA components, we report the experimental

results (on VQA-CP v1) by replacing each component in GVQA (denoted by “-

<component>”) with its traditional counterpart, i.e., modules used in traditional

VQA models (denoted by “ + <traditional counterpart>”). For instance, GVQA

- CE + LSTM represents a model where CE in GVQA has been replaced with an

LSTM. The results are presented in Table 5.2.4 along with the result of the full GVQA

model for reference.

GVQA - Qmain + Qfull: GVQA’s performance when the entire question (Qfull)

is fed into VCC (as opposed to after removing the question type (Qmain)) is 33.55%

(overall), which is 5.68% (absolute) less than that with Qmain. Note that even with
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feeding the entire question, GVQA outperforms SAN, thus demonstrating that re-

moving question type information helps but isnt the main factor behind the better

performance of GVQA. As an additional check, we trained a version of SAN where

the input is Qmain instead of Qfull. Results on VQA-CP v2 show that this version of

SAN performs 1.36% better than the original SAN, however still 4.98% worse than

GVQA (with Qmain). Please see appendix for detailed performance of this version of

SAN.

GVQA - CE + LSTM: We replace CE with an LSTM (which is trained end-to-

end with the Visual Verifier (VV) using VQA loss). The overall performance drops

by 11.95%, with a drop of 28.76% for yes/no questions. This is an expected result,

given that Table 5.2.3 shows that GVQA significantly outperforms SAN on yes/no

questions and the CE is a crucial component of the yes/no pipeline.

GVQA - ACP + LSTM: We replace ACP with an LSTM (which is trained

end-to-end with the Answer Predictor (AP) using VQA loss). The overall perfor-

mance is similar to GVQA. But, the presence of ACP makes GVQA transparent and

interpretable (see Section 5.2.6).

GVQA - VCCloss: We remove the VCC loss and treat the output layer of VCC

as an intermediate layer whose activations are passed to the Answer Predictor (AP)

and trained end-to-end with AP using VQA loss. The overall performance improves

by 1.72% with biggest improvement in the performance on other questions (3.19%).

This suggests that introducing the visual concept (semantic) loss in between the model

pipeline hurts. Although removing VCC loss and training end-to-end with VQA loss

achieves better performance, the model is no longer transparent (see Section 5.2.6).

Using VCC loss or not is a design choice one would make based on the desired accuracy

vs. interpretability trade off.

GVQA - VCCloss - ACP + LSTM: Replacing ACP with an LSTM on top

of GVQA - VCCloss hurts the overall performance by 2.09% with biggest drop
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Table 9: Experimental results when each component in GVQA (denoted by “-
<component>”) is replaced with its corresponding traditional counterpart (denoted
by “ + <traditional counterpart>”).

Model Overall Yes/No Number Other

GVQA - Qmain + Qfull 33.55 51.64 11.51 24.43
GVQA - CE + LSTM 27.28 35.96 11.88 24.85
GVQA - ACP + LSTM 39.40 64.72 11.73 25.33
GVQA - VCCloss 40.95 65.50 12.32 28.05
GVQA - VCCloss - ACP + LSTM 38.86 65.73 11.58 23.11
GVQA 39.23 64.72 11.87 24.86

Table 10: Results of GVQA and SAN on VQA v1 and VQA v2 when trained on the
corresponding train splits.

Model VQA v1 VQA v2

Oracle (GVQA, SAN) 63.77 61.96
Oracle (SAN, SAN) 60.85 56.68

Ensemble (GVQA, SAN) 56.91 52.96
Ensemble (SAN, SAN) 56.56 52.45

SAN 55.86 52.02
GVQA 51.12 48.24

(4.94%) for “other” questions (see GVQA - VCCloss and GVQA - VCCloss -

ACP + LSTM rows in Table 5.2.4). This suggests that ACP helps significantly

(as compared to an LSTM) in the absence of VCC loss (and it performs similar

to an LSTM in the presence of VCC loss, as seen above). In addition, ACP adds

interpretability to GVQA.

5.2.5 Experiments on VQA v1 and VQA v2

We also trained and evaluated GVQA on train and val splits of the VQA v1 [27]

and VQA v2 [168] datasets (results in Table 5.2.58). On VQA v1, GVQA achieves

51.12% overall accuracy, which is 4.74% (absolute) less than SAN. This gap is not

surprising because VQA v1 has well-established heavy language priors that existing

8We present overall and yes/no accuracies only. Please refer to appendix for performance on
number and other categories.
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models (including SAN) can “memorize” from train set and exploit on the test set

(since test set contains same priors as train set), whereas GVQA is designed not to.

As vision improves, grounded models like GVQA may show improved performance

over models that leverage priors from training data. Moreover, it is important to

note that the gain (GVQA acc - SAN acc) on VQA-CP v1 (12.35% absolute) is much

higher than the loss (SAN acc - GVQA acc) on VQA v1 (4.74% absolute).

On VQA v2, GVQA under performs SAN by 3.78% overall, which is less than SAN

acc - GVQA acc on VQA v1. And it outperforms SAN by 3.14% for yes/no questions.

This shows that when the priors are weaker (in VQA v2 compared to those in VQA

v1), the gap between GVQA and SAN’s performance decreases. We also trained and

evaluated GVQA- VCCloss on both the VQA v1 and VQA v2 datasets and found that

it performs worse than GVQA on VQA v1 and similar to GVQA on VQA v2. So in

addition to interpretability, GVQA is overall better than GVQA- VCCloss on these

original VQA splits.

In order to check whether GVQA has strengths complementary to SAN, we com-

puted the oracle of SAN’s and GVQA’s performance – Oracle (GVQA, SAN), i.e.,

we pick the predictions of the model with higher accuracy for each test instance. As

it can be seen from Table 5.2.5, the Oracle (GVQA, SAN)’s overall performance is

7.91% higher than that of SAN for VQA v1 (9.94% for VQA v2) suggesting that

GVQA and SAN have complementary strengths. Also, note that Oracle (GVQA,

SAN) is higher than Oracle (SAN, SAN) for both VQA v1 and VQA v2, suggesting

that GVQA’s complementary strengths are more than that of another SAN model

(with a different random initialization).

Inspired by this, we report the performance of the ensemble of GVQA and SAN

Ensemble (GVQA, SAN) in Table 5.2.5, where the ensemble combines the outputs

from the two models using product of confidences of each model. We can see that

Ensemble (GVQA, SAN) outperforms Ensemble (SAN, SAN) by 0.35% overall for
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VQA v1 (and by 0.51% for VQA v2). It is especially better for yes/no questions.

We also found that the ensemble of GVQA- VCCloss with SAN performs worse than

Ensemble (SAN, SAN) for both the VQA datasets (refer to appendix for accuracies).

Hence, GVQA is a better complement of SAN than GVQA- VCCloss, in addition to

being more transparent.

5.2.6 Transparency

What sport are they playing ?

Top ACP 
Cluster

Predictions

# 3 #16

Top VCC
(per cluster)

baseball 
(0.962)

(0.9884)
tennis
frisbee

baseball

#19
(0.0046)
surfing

skateboarding
parasailing

(0.0040)
skiing

snowboarding
downhill

skateboarding
(0.001)

skiing
(0.0009)

Prediction baseball

Image

Question Is the person smiling ?

smiling
(0.555)

woman
(0.417)

man
(0.190)

yes

Q-classifier non yes/no yes/no
ACP is deactivated. CE is activated. 
Extracted concept: smiling

Top VCC predictions for the cluster 
containing ‘smiling’

Figure 24: Qualitative examples from GVQA. Left: We show top three answer
cluster predictions (along with random concepts from each cluster) by ACP. Corre-
sponding to each cluster predicted by ACP, we show the top visual concept predicted
by VCC. Given these ACP and VCC predictions, the Answer Predictor (AP) pre-
dicts the correct answer ‘baseball’. Right: Smiling is the concept extracted by the
CE whose visual presence in VCC’s predictions is verified by the Visual Verifier,
resulting in ‘yes’ as the final answer.

The architecture design of GVQA makes it more transparent than existing VQA

models because it produces interpretable intermediate outputs (the outputs of VCC,

ACP and the concept string extracted by the CE) unlike most existing VQA models.
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What color are the bananas ?

ACP says answer should be a color

What color are his pants ?

VCC says: bananas, green, many,
food, 50

GVQA answers green
ACP says answer should be a color

VCC says: dirt, black, pants, 1,
baseball, park

GVQA answers black
SAN answers yellow SAN answers blue

Figure 25: Left: GVQA’s prediction (‘green’ ) can be explained as follows – ACP
predicts that the answer should be a color. Of the various visual concepts predicted by
VCC, the only concept that is about color is green. Hence, GVQA’s output is ‘green’.
SAN incorrectly predicts ‘yellow’. SAN’s architecture doesn’t facilitate producing an
explanation of why it predicted what it predicted, unlike GVQA. Right: Both GVQA
and SAN incorrectly answer the question. GVQA is incorrect perhaps because VCC
predicts ‘black’, instead of ‘gray’. In order to dig further into why VCC’s prediction
is incorrect, we can look at the attention map (in appendix), which shows that the
attention is on the pants for the person’s left leg, but on the socks (black in color)
for the person’s right leg. So, perhaps, VCC’s “black” prediction is based on the
attention on the person’s right leg.

We show some example predictions from GVQA in Fig. 24. We can see that the inter-

mediate outputs provide insights into why GVQA is predicting what it is predicting

and hence enable a system designer to identify the causes of error. This is not easy

to do in existing VQA models. Fig. 25 shows two other examples (one success and

one failure) comparing and contrasting how GVQA’s intermediate outputs can help

explain successes and failures (and thus, enabling targeted improvements) which is

not possible to do for SAN and most other existing VQA models. See appendix for

more such examples.
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5.2.7 Conclusion

In this work, we proposed a novel Grounded Visual Question Answering model

(GVQA) that contains inductive biases and restrictions in the architecture specifi-

cally designed to prevent the model from ‘cheating’ by primarily relying on priors

in the training data. Specifically, GVQA explicitly disentangles the recognition of

visual concepts present in the image from the identification of plausible answer space

for a given question, enabling the model to more robustly generalize across differ-

ent distributions of answers. GVQA is built off an existing VQA model – Stacked

Attention Networks (SAN). Our experiments demonstrate that GVQA significantly

outperforms SAN on both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it

also outperforms more powerful VQA models such as Multimodal Compact Bilinear

Pooling (MCB) in several cases. GVQA offers strengths complementary to SAN when

trained and evaluated on the original VQA v1 and VQA v2 datasets. Finally, GVQA

is more transparent and interpretable than existing VQA models.

GVQA is a first step towards building models which are visually grounded by

design. Future work involves developing models that can utilize the best of both

worlds (visual grounding and priors), such as, answering a question based on the

knowledge about the priors of the world (sky is usually blue, grass is usually green)

when the model’s confidence in the answer predicted as result of visual grounding is

low.

5.3 Adversarial Regularization for Visual Question Answer-
ing

5.3.1 Introduction

In Section 5.2, we saw that GVQA is more robust to changing priors than existing

VQA models. Although GVQA can be built on top of any existing VQA model,

it does require non-trivial changes in the architecture. In this section, we propose
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a simple drop-in regularizer for achieving robustness against changing priors. This

regularizer can be added to any existing VQA model’s objective function, without

requiring significant changes in the underlying VQA model’s architecture. Below we

discuss the motivation and the intuition behind the proposed regularization scheme.

One intuitive measure of the strength of language priors in VQA is the perfor-

mance of a ‘blind’ model that produces answers given only the question and not the

associated image. In fact, this question-only model has become a standard and pow-

erful baseline presented alongside VQA datasets [27, 167, 106, 218]. In this work, we

codify this intuition, introducing a novel regularization scheme that sets a base VQA

model against a question-only adversary to reduce the impact of language biases.

We consider unwanted language bias in VQA to be overly-specific relationships

between questions and their likely answers learned from the training dataset – i.e.

those that could enable a question-only model to achieve relatively high performance

without ever seeing an image – and we explicitly optimize the question represen-

tation within a base VQA model to be uninformative to a question-only adversary

model. In this adversarial regime, the question-only model is trained to answer as

accurately as possible given the question encoding provided by the base VQA model;

and simultaneously, the base VQA model is trained to adjust its question encoder (of-

ten implemented as a recurrent language model) to minimize the performance of the

question-only model while maintaining its own VQA accuracy. Moreover, we leverage

the question-only model to provide a differentiable notion of image grounding – the

change in model confidence after considering the image – which we maximize explic-

itly for the VQA model. Thus, our objective consists of a question-only adversarial

term and a difference of entropies term.

Our approach is largely model agnostic, end-to-end trainable, and simple to im-

plement, consisting of a small, additional classification network built on the question

representation of the base VQA model. We experiment on the VQA-CP dataset with
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Figure 26: Given an arbitrary base VQA model (A), we introduce two regularizers.
First, we build a question-only adversary (B) that takes the question embedding qi

from the VQA model and is trained to output the correct answer from this informa-
tion alone. For this network to succeed, qi must capture language biases from the
dataset – the same biases that lead the base VQA model to ignore visual content.
To reduce these biases, we set the base VQA model and the question-only adversary
against each other, with the base VQA network modifying its question embedding to
reduce question-only performance (shown here as gradient negation of the question-
only model loss) Further, the question-only model allows estimation of the change in
answer confidence given image (C), which we maximize explicitly.

multiple base VQA models, and find – 1) our approach provides consistent improve-

ments over all baseline VQA models, 2) our approach outperforms the GVQA model

significantly, 3) both question-only adversary and the difference of entropies com-

ponents improve performance and their combination pushes this even further. On

standard benchmarks [27, 167] where strong priors from training can be exploited

on test set, our approach shows significantly smaller drops in accuracy compared to

GVQA, with some settings facing only insignificant changes.

5.3.2 Reducing Language Bias Through Adversarial Regularization

Setting aside architectural specifics, the vast majority of VQA models operate on a

set of similar design principles – first producing vector representations for the image

and question and then combining them to predict the answer (often through complex

attention mechanisms). However, when language biases are quite strong, the question

feature may already be sufficiently discriminative and the model can learn to ignore
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the visual signal without facing significant losses during training (e.g . “What color

is the sky?” always mapping to “blue”). Such a model which fails to ground its

answers in the image might be passable for benchmark datasets that carry similar

biases; however, in the real-world, where brown grass and gray skies abound, its

usefulness would be severely limited. In this section, we address this problem by

explicitly reducing the discriminative power of the question feature – introducing

a pair of adversarial regularizers that penalize the ability of a separate adversary

network to confidently predict the answer from the question encoding alone.

Preliminaries. Given a dataset D = {Ii, Qi, ai}Ni=1 consisting of triplets of images

Ii ∈ I, questions Qi ∈ Q and answers ai ∈ A, the VQA task is to learn a mapping

F : Q × I→[0, 1]|A| which produces an accurate distribution over the answer space

given an input question-image pair.

Without loss of generality, we consider differentiable mappings that can be decom-

posed as an operation f over question and image encodings g: Q→Rd and h: I→Rk

(as shown in Figure 26A). We write the prediction for instance i for this class of

models as

vi = h(Ii), qi = g(Qi)

P (A | Qi, Ii) = f (vi,qi) (1)

where we denote the image and question embeddings as vi and qi respectively.

Nearly all existing VQA models follow this pattern. The image encoder h(·) is

typically a fixed CNN pretrained on either classification or detection and the question

encoder g(·) is usually some form of word or character level RNN learned during

training. Typically these models are trained with standard cross-entropy, optimizing

parameters to minimize (2) over the ground truth data.

LV QA(f, g, h) = EI,Q,A [− logPf (ai|Qi, Ii)] ≈ −
1

N

N∑
i=1

log f(vi,qi)[ai] (2)

Question-Only Model. One intuitive measure of the power of language priors in
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VQA is the ability of a model to make low-error answer predictions from the question

alone – in fact, some form of this ‘blind’ model has been frequently presented alongside

VQA datasets for exactly this purpose [27, 167, 106, 218]. We formalize this question-

only model as a mapping fQ. As above, we assume fQ is differentiable and operates

on learned question encodings such that fQ makes predictions

PfQ(A | Qi) = fQ(qi), qi = g(Qi). (3)

We parameterize this model as a simple two-layer neural network but note that

arbitrary choices can be made in this regard. As above, this model can be trained

with cross-entropy, minimizing

LQA(fQ, g) = EQ,A
[
− logPfQ(ai|Qi)

]
≈ − 1

N

N∑
i=1

log fQ(qi)[ai]. (4)

5.3.2.1 Adversarial Regularization with a Question-Only Adversary

For any model of the form presented in (1), we can now introduce a simple adver-

sarial regularizer that explicitly reduces the effect of language biases by modifying

the question encoder to minimize the performance of this question-only adversary.

Specifically, given a VQA model decomposed as f, g, h, we splice on the question-only

model fQ such that fQ takes as input the encodings produced by g(·) (as in Figure

26), and establish opposing losses for the two networks which we detail below.

Learning the Question-Only Adversary. The question-only model fQ is trained

to minimize the cross-entropy loss LQ in (4); however, parameters in g(·) are not

updated with respect to this loss – in effect, this forces fQ to perform as well as

possible given the question encodings produced by the question encoder g(·) from the

base VQA model.

Adversarial Regularization for VQA. As performance of the question-only model

acts as a proxy for the language biases represented in the question encodings qi =
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g(Qi), one approach to reduce bias representation is to adjust g(·) such that the

question-only model does poorly. As such, we can write this adversarial relationship

between the question-only (fQ) and base VQA models (f, g, h) as

min
f,g,h

max
fQ
LV QA(f, g, h)− λQLQA(fQ, g) (5)

We note that in practice, training with this adversarial regularizer can be realized

with a simple gradient negation of the question-only adversary’s loss as shown in

Figure 26. Specifically, we back-propagate the negative of the gradient of LQ(fQ, g)

accumulated at qi through the question encoder – updating the question encoder in

a way that maximizes LQ(fQ, g).

The regularization coefficient λQ ≥ 0 in (5) controls the trade-off between VQA

performance and language bias reduction. For low values of λQ, little regularization

occurs and the base model continues to learn language priors. On the other hand, large

values of λQ force the model to remove all discriminative language biases, resulting in

poor VQA performance for both the base VQA model and the question-only adversary

– essentially stripping the question encoding of even basic question-type information

(e.g . failing to learn that “What color ... ?” questions require color answers).

5.3.2.2 An Adversarial Difference of Entropies Regularizer

As the effect of this over-regularization for high-values of λQ highlights, the question-

only adversary does not capture the full nuance of language bias in VQA. Given the

question “What color is the sky?” it is reasonable to have a prior that the answer

may be “blue”, but critically this belief should update depending on observations –

i.e. the answer distribution should sharpen after viewing the image.

To capture this intuition, we add an additional term that aims to maximize the

information gained about the answer from looking at the image. Specifically, we

introduce another adversarial regularizer corresponding to the difference in entropies
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between the base model prediction given the image and the question-only model which

we write as

LH(f, g, h, fQ) = EI,Q [H(A | Q)−H(A | I,Q)] (6)

= Eq∼P (Q) [H(A | q)]− Eq,v∼P (Q,I) [H(A | q, v)] (7)

≈ 1

N

N∑
i=1

( H (fQ(qi))−H (f(vi,qi)) ) (8)

We note that this regularizer resembles the conditional mutual information (CMI)

between the answer and image given the question I(A; I|Q); however, fQ(q) is not

constrained to be the marginal of f(v, q) such that estimating the CMI in this way is

ill-defined.

We can then update the adversarial relationship between f and fQ from (5) with

LMI , writing

min
f,g,h

max
fQ

LV QA(f, g, h)− λQLQA(fQ, g)− λHLH(f, g, h, fQ) (9)

where λH ≥ 0 controls the strength of the difference of entropies regularizer. Note

that while LH is a function of f , g, h, and fQ, we only update the parameters of the

question encoding g based on this loss. Otherwise, fQ could learn to produce sharp

output distributions from arbitrary question features to minimize LH . Likewise, f or

h can easily adjust to produce arbitrarily peaky outputs, which we observe can lead

to significant over-fitting.

As before, the question-only adversary fQ in this setting must still perform as

well as possible given the question embedding from g(·), but this embedding is now

additionally adjusted to maximize the entropy of fQ’s output, while minimizing that

of the VQA model. In the experiments that follow, we show that both of these adver-

sarial regularizers improve performance on a language bias sensitive task. Further,

we note that their benefits compound, with models combining both terms performing

better across a wider range of regularization coefficients.
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5.3.3 Experiments

Implementation. Our question-only adversary model is implemented as a 2-layer

multi-layer perceptron with 256 hidden units and a ReLU activation that takes as

input the question encoding from a base VQA network. The network’s output is a

distribution over the candidate answers. We train the entire system (base VQA and

question-only model) end-to-end with parameters initialized from scratch. We set

batch size to 150, learning rate to 0.001, weight decay of 0.999 and use the Adam

optimizer. The model takes ∼8 hours to train on a TITAN X for SAN (Torch, ∼60

epochs) and < 1 hour for UpDown (PyTorch, ∼40 epochs). We use public codebases

for both.

As discussed in Section 5.3.2, we update the parameters of the question encoding

with respect to the VQA loss, the difference of entropies loss, and the negative of the

question-only loss. The remaining VQA model parameters are trained with just the

VQA loss. The question-only model is updated only by its VQA loss cross entropy

loss term despite contributing to the difference of entropies loss.

Models. We evaluate the effect of our proposed regularization on the following base

models:

– Stacked Attention Network (SAN) [493] – SAN encodes questions with a long

short-term memory (LSTM) encoder and the image is encoded with a pretrained

VGGNet [411]. The model performs two-hop question-based image attention and

the final joint feature is passed to a 1000-way answer classifier. This model is

trained with standard cross-entropy.

– Bottom-Up and Top-Down Attention (UpDn) [21] – Up-Down encodes

questions with a gated recurrent unit (GRU) encoder and represents images as a

set of bounding box features extracted from Faster R-CNN [371]. Soft-attention
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over these regions is computed based on the question features and the attention-

pooled feature is combined with the question as input to the classification layer.

This model is trained directly on VQA score under a multi-label binary cross-

entropy loss (see [21] for more details). We also apply this loss for the question-

only model in our experiments, but compute a softmax over these outputs when

computing entropies.

For both SAN9 and Up-Down10, we build on top of publicly available reimplementa-

tions. In the following results, we indicate the addition of our question-only adver-

sarial regularization with Q-Adv and the difference of entropies term as DoE.

We also compare to the GVQA model built atop SAN. As we saw in Section 5.2,

GVQA explicitly separates perception from question answering by introducing a Vi-

sual Concept Classifier (VCC) and an Answer Cluster Predictor (ACP). By design,

this model isolates the answering module from the input question, mitigating the

effect of language biases, but at a cost of relatively low standard VQA performance

and multi-stage training.

Datasets and Evaluation. We train our models on the VQA-CP [13] train split

and evaluate on the test set using the standard VQA evaluation metric [27]. For

each model, we also report results when trained and evaluated on the standard VQA

train and validation splits [27, 167] with the same regularization coefficients used for

VQA-CP to compare with [13].

VQA-CP does not have a validation set and generating such a split is complicated

by the need for it to contain priors different from both the training and test sets

in order to be an accurate estimate of generalization under changing priors – an ill-

defined notion for binary questions. As such, we set initial regularizer coefficients

such that gradients at the question encoding are roughly equal in magnitude for all

9SAN Codebase: https://github.com/abhshkdz/neural-vqa-attention
10Up-Down Codebase: https://github.com/hengyuan-hu/bottom-up-attention-vqa
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Table 11: Performance on VQA-CP v2 test and VQA v2 val. We significantly
improve the accuracy of base models and achieve state-of-the-art performance on the
VQA-CP dataset.

Model
VQA-CP v2 test VQA v2 val

λQ λH Overall Yes/No Number Other Overall Yes/No Number Other

GVQA [13] - - 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65

SAN [493] - - 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84

O
u

rs

SAN + Q-Adv 0.15 - 27.24 54.50 14.91 16.33 52.18 69.81 39.21 47.52

SAN + DoE - 25 25.75 42.21 12.08 20.87 52.38 70.05 39.64 47.41

SAN + Q-Adv + DoE 0.15 25 33.29 56.65 15.22 26.02 52.31 69.98 39.33 47.63

UpDn [21] - - 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66

O
u

rs

UpDn + Q-Adv 0.005 - 40.08 42.34 13.02 46.33 60.53 77.70 41.00 52.65

UpDn + DoE - 0.05 40.43 42.62 12.19 47.03 63.43 81.15 42.64 55.45

UpDn + Q-Adv + DoE 0.005 0.05 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16

loss terms at the beginning of training and then explore a small region around this

point. We report the best performing coefficients alongside our results and provide

further analysis of the effect of these parameters in Section 5.3.4. Notably, we find

these coefficients to be highly model dependent but generalize well between datasets

and regularizer ablations. All models are trained until convergence as we have no

validation set on which to base early-stopping.

5.3.4 Results

Table 11 presents our primary results on both the VQA-CP v2 and the VQA v2

datasets. Table 12 also shows limited results on the much more biased VQA v1

dataset [27] and its CP counterpart – VQA-CP v1 [13]. We make a number of

observations below.

The proposed regularizers help, resulting in state-of-art performance on

VQA-CP. For both SAN and UpDn models, adding the question-only adversary (Q-

Adv) improves the performance of the respective base models (2.28% for SAN and

0.34% for UpDn) on the VQA-CP v2 dataset. Similarly, the difference of entropies

(DoE) regularizer boosts the performance of both SAN and UpDn models, gaining

improvements of 0.79% and 0.69% respectively. The combination of the Q-Adv and
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Table 12: Performance on VQA-CP v1 test and VQA v1 val.

Model
VQA-CP v1 test VQA v1 val

λQ λH Overall Yes/No Number Other Overall Yes/No Number Other

GVQA [13] - - 39.23 64.72 11.87 24.86 51.12 76.90 32.79 36.43

SAN [493] - - 26.88 35.34 11.34 24.70 55.86 78.54 33.46 44.51

O
u
rs

SAN + Q-Adv 0.15 - 28.02 35.70 11.70 19.99 52.01 70.68 32.39 42.91

SAN + DoE - 25 27.83 36.33 11.15 24.03 54.08 78.19 32.59 41.44

SAN + Q-Adv + DoE 0.15 25 43.43 74.16 12.44 25.32 52.15 71.06 32.59 42.91

DoE regularizers further boosts the performance, resulting in 8.33% improvement

over SAN and 1.43% over UpDn. Comparing our SAN + Q-Adv + DoE model to

GVQA which is also built on top of SAN, we outperform GVQA significantly (1.99%).

Our UpDn + Q-Only + DoE model also sets a new state-of-the-art on VQA-CP v2,

improving over GVQA by 9.87% (although it is important to note the more powerful

base architecture already outperforms GVQA by 8.44%).

Similar trends repeat for VQA-CP v1 as well. With the question-only regularizer

improving SAN by 1.14%, DoE by 0.95%, and their combination by over 16.55% –

outperforming GVQA by 4.2% and again setting state-of-the-art. We note that these

larger gains are in part due to the increased language biases present in the VQA-CP

v1 dataset.

Moreover, we find the question-only network performs increasingly poorly as our

models perform better on VQA-CP – indicating that optimization is going well and

that the intuition behind our regularizers seems well-founded.

The proposed regularizers do not hurt significantly on VQA v2. When

trained and tested on the VQA v2 dataset (right side of Table 11), the addition of

the proposed regularizers results in a insignificant drop in the performance for SAN

(0.1%) and a minor drop in performance for UpDn (0.73%) compared to prior work.

This is in contrast to GVQA, whose performance drops by 4.17% for SAN on VQA

v2 (note that GVQA is built off of SAN).

The more the biases, the higher the gain on VQA-CP, and the higher the
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loss on VQA. VQA v1 has significantly more bias than VQA v2 and consequentially

VQA-CP v1 has a sharper change between training and test. As such, we observe the

proposed regularizers improve over the base model significantly more in VQA-CP v1

(16.55% for SAN) than in VQA-CP v2 (8.33% for SAN). For the same reasons, the

proposed regularizers hurt a bit more on VQA v1 (3.71% for SAN compared to 0.1%

on VQA v2), where strong language biases can be leveraged to boost performance.

However, this drop in the performance on VQA v1 is still significantly less than that

with GVQA (4.74%).

UpDn [21] is less driven by biases than SAN. The drop in the performance of

UpDn from VQA v2 to VQA-CP v2 is 23.74% which is significantly less than that

of SAN (27.45%). This shows that UpDn may be less driven by biases than SAN.

And hence, the gains in UpDn (1.43%) due to the proposed regularizers are less than

those in SAN (8.33%).

Our approach results in less biased output distributions. Figure 28 shows

answer frequency distributions for VQA v2 train, SAN, our SAN+Q-Adv+DoE model

(marked Ours), and VQA v2 test for three questions:“What color is the dress she/he

is wearing?”, “What sport ...?” “What color is the fire hydrant?”. It is quite clear

that while neither of the SAN based models completely match the test distribution,

the base SAN model aligns significantly more with the training distribution – even

amplifying the bias for ‘blue’ in the first question despite very few answers being

‘blue’ in test.

Difference of entropies (DoE) stabilizes training with the question-only

adversary. Figure 27 shows VQA-CP v2 test performance of the SAN model, for a

range of question-only regularizer coefficients λQ. We can see that when the DoE term

is not used (orange line), performance begins to drop after approximately 0.2 and by

0.35 has deteriorated significantly. At these higher values, nearly all discriminative

information in the question encoding is lost – with the VQA model sacrificing its own
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Figure 27: Maximizing difference of entropies (DoE) along with the question-only
adversarial regularization for the SAN model, not only improves results on changing
priors, but also stabilizes training.

Figure 28: Answer distribution for SAN+Q-Adv+DoE mimic the prior less for ques-
tions with high language bias.
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performance to lower that of the question-only model. However, we observe that for

reasonable values of λH , the strength of the question-only adversary can be varied over

a much wider range with less dramatic losses (blue curve in Figure 27). We observe

a similar trend when keeping λQ constant and sweeping over λH , wherein a dramatic

improvement is observed when moving to non-zero λH and then a slow decay for large

values of λH . Unlike the question-only adversary, the DoE regularizer simultaneously

seeks to sharpen the VQA models posterior while weakening the question-only prior.

Question-only performance: We study the performance of the question-only

model after being trained on VQA-CP v2 using our regularizers. We compare to

a question-only model trained without these regularizers, i.e. a model trained to

predict the correct answer given the question-encoding learned by the base VQA

model. We find this Q-only(SAN) model achieves 24.84% on the VQA-CP v2 train-

ing set compared to 13.85% for our SAN+Q-only+DoE model, demonstrating that

our approach has effectively restricted the discriminative information in the question

encoding.

Proposed model shows complementary strengths with the base model: To

study whether our models learn complementary strengths to the base VQA models,

we experiment with ensembles of both models. First, we consider oracle ensembles

where the best model output for each data point is considered for evaluation. This

is an upper bound on ensemble performance that relies on knowing ground truth.

We find that the Oracle(Ours, SAN) ensemble outperforms two separately trained

SAN models Oracle(SAN, SAN), by 1.48% for VQA v1 and by 3.46% for VQA v2–

significantly lower gains than with Oracle(GVQA, SAN) which improves by 5.28%.

It is notable however that the architecture of GVQA is significantly different from

the base SAN model and hence is expected to exhibit different error patterns and a

higher Oracle accuracy. To take a more attainable view, we also computed a standard

ensemble Ensemble(Ours, SAN) and compared to an Ensemble(SAN, SAN) model,
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outperforming it by 1.24% for VQA v2 but falling short by 0.15% for VQA v1. In

contrast, Ensemble(GVQA, SAN) improves VQA v2 performance by only 0.54%.

5.3.5 Conclusion

We propose a novel adversarial regularization scheme for reducing the memorization of

dataset biases in VQA based on a question-only adversary and the difference of model

confidences after processing the image. Experiments on the VQA-CP dataset, show

that this technique allows existing VQA models to significantly improve performance

in the midst of changing priors. Consequently, we achieve state-of-the-art performance

on VQA-CP. Our approach can be implemented as a simple, drop-in module on top

of existing VQA models and easily trained end-to-end from scratch.
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CHAPTER VI

CONCLUSION

In this dissertation, I introduce and study a multi-modal Artificial Intelligence (AI)

task called Visual Question Answering (VQA) – given an image and a natural lan-

guage question about the image (e.g., ‘What kind of store is this?’, ‘Is it safe to cross

the street?’ ), the machine’s task is to automatically produce an accurate natural lan-

guage answer (‘bakery’, ‘yes’ ). Specifically, my colleagues and I introduced the task

of free-form and open-ended Visual Question Answering (VQA). We collected a large

scale dataset (>0.25M images, >0.76M questions, ∼10M answers) and made it pub-

licly available (www.visualqa.org). This dataset, together with the development of

baseline models and organization of annual challenges and workshops by us, led to re-

markable improvements in the state-of-art on VQA. As part of my dissertation, I also

developed novel techniques to characterize the behavior of VQA models. And finally,

I addressed the issue of VQA models being driven by superficial correlations in train-

ing data and lacking sufficient image grounding by – 1) proposing a new evaluation

protocol to evaluate the degree of visual groundedness in VQA models, 2) proposing

a novel Grounded VQA (GVQA) model that contains inductive biases and restric-

tions in the architecture specifically designed to prevent the model from ‘cheating’ by

primarily relying on priors in the training data, 3) proposing a novel adversarial regu-

larization scheme that can be added to any existing VQA model’s objective function,

without significantly changing the underlying VQA model’s architecture.

Future Work Directions: VQA and Beyond

VQA. Despite tremendous progress in VQA, there are some specific types of questions

in VQA where the community has not made enough progress (mentioned below).
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Some of these are highlighted below:

• Counting: The performance of state-of-art VQA models on counting questions

(e.g., ‘How many people are standing in the queue?’, ‘How many slices of pizza

are there?’ ) is only ∼45% (compared to the human performance of ∼83%

and overall (across all questions) performance of state-of-art models of ∼71%).

Clearly, the act of counting itself is not challenging – what is challenging is to

parse the language, identify the referring expressions, grounding the referring

expressions into visual concepts (e.g., detecting each individual slice of pizza,

detecting each person who is standing and in the queue) – all of these are studied

today as separate tasks in the computer vision and NLP community. I think

studying unified VQA models that include these components as modules could

be a step towards improving counting performance of VQA models.

• Optical Character Recognition (OCR): Another class of questions where

the community has not made enough progress is all questions that require read-

ing text photographed in images (e.g., ‘What does the street sign say?’, ‘What

is the name of the building?’ ). Answering such questions requires the ability to

do Optical Character Recognition (OCR), which I believe current VQA mod-

els lack because they do not get enough training signal from the downstream

VQA loss to be able to learn OCR. Also, most of the existing VQA models

predict answers by doing classification over a fixed set of K (typically 1000 -

3000) answers. Hence these models will not be able to correctly answer such

OCR type of questions if the correct word / phrase does not lie in the list of

those K answers. I believe building VQA models that use existing OCR tech-

niques as modules and that have the ability to predict answers not seen during

training could be a good first step towards making progress in this direction.

Recently, with the release of the TextVQA dataset [412] and the organization

of the TextVQA challenge (https://textvqa.org/challenge), the community
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has already started making progress in this direction, but there is still a lot of

room for improvement.

• Knowledge Based Reasoning: We have not made much progress on ques-

tions that require knowledge based reasoning and common sense (e.g., ‘Does

this person have 20/20 vision?’, ‘Is this food healthy?’ ). Such questions require

an agent to understand what ‘20/20’ vision means and what types of food items

are healthy, in addition to understanding the visual content – recognizing that

the person is wearing spectacles and that it is a fast food item. I believe a

limiting factor in this area is lack of existence of a large-scale and open-ended

Knowledge Based (KB) VQA dataset. Creating a much larger and open-ended

KB-VQA dataset has the potential to push the progress in this direction.

Beyond: From Vision and Language to Actions. Most of my past work has

been towards building agents that can ‘see’ and ‘talk’. However, for a lot of practical

applications (e.g., physical agents navigating inside our houses executing natural lan-

guage commands) we need agents that can not only ‘see’ and ‘talk’ but can also take

actions. Below are some directions towards generalizing vision and language agents

to be able to take actions.

In this space of building agents that can ‘see’, ‘talk’ and ‘act’, one bold initiative

which was well ahead of its time was the SHRDLU [477] project, studied by Terry

Winograd in 1972 – an agent that operates on a table top scene consisting of several

blocks such as cuboid, cone, containers etc.; there is a teacher which instructs the

agent what to do (e.g., ‘pick up a red block’ ) and the agent either executes an action

or asks a question (if the instruction is not clear) (e.g., ‘By “It”, I assume you mean

the block which is taller than the one I am holding.’ ) (Fig. 29).

However, SHRDLU was a hand-engineered rule-based system. I think building a

learning based SHRDLU agent can be a first step towards building agents that can

‘see’, ‘talk’ and ‘act’.
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Figure 29: The table-top setup and an example dialog from the SHRDLU [477]
project (studied by Terry Winograd in 1972).

As a baby step in this direction, in a recent work [19], I worked on the following -

how can we train agents to follow language instructions grounded in visual data (e.g.,

‘Add a red sphere’, ‘Add a large cylinder’ ) and execute actions to generate scenes

that are consistent with the given instruction (Fig. 30). Using reinforced adversarial

learning framework [154], we have taken the first step towards training agents that

can follow simple instructions (as mentioned above).

More generally, in the long term, I look forward to interactive agents that can,

for instance, edit images based on natural language queries such as ‘Change the back-

ground to winter.’, AI assistants such as Alexa that can not only process language

commands but can also situate itself in the its surrounding environment and can an-

swer questions such as ‘Alexa, is my laptop in my bedroom?’, and finally agents that

can move around our houses and execute natural language commands such as ‘Could

you please get my laptop from upstairs?’.
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Figure 30: Given an instruction (‘There is a small sphere’ ), the the task for an agent
is to execute actions to create scenes that are consistent with the given instruction
(i.e., each such scene consists of a small sphere).
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APPENDIX A

APPENDIX FOR VISUAL QUESTION ANSWERING

In this appendix, we provide:

1. - Additional analysis comparing captions and Q&A data

2. - Qualitative visualizations for “What is” questions

3. - Human accuracy on multiple-choice questions

4. - Details on VQA baselines

5. - “Age” and “Commonsense” of our model

6. - Details on the abstract scene dataset

7. - User interfaces used to collect the dataset

8. - List of the top answers in the dataset

9. - Additional examples from the VQA dataset

A.1 Captions vs. Questions

Do questions and answers provide further information about the visual world beyond

that captured by captions? One method for determining whether the information cap-

tured by questions & answers is different from the information captured by captions is

to measure some of the differences in the word distributions from the two datasets. We

cast this comparison in terms of nouns, verbs, and adjectives by extracting all words

from the caption data (MS COCO captions for real images and captions collected by

us for abstract scenes) using the Stanford part-of-speech (POS)1 tagger [437]. We

normalize the word frequencies from captions, questions, and answers per image, and

1Noun tags begin with NN, verb tags begin with VB, adjective tags begin with JJ, and preposi-
tions are tagged as IN.
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compare captions vs . questions and answers combined. Using a Kolmogorov-Smirnov

test to determine whether the underlying distributions of the two datasets differ, we

find a significant difference for all three parts of speech (p < .001) for both real images

and abstract scenes. This helps motivate the VQA task as a way to learn information

about visual scenes; although both captions and questions & answers provide infor-

mation about the visual world, they do it from different perspectives, with different

underlying biases [165], and can function as complementary to one another.

We illustrate the similarities and differences between the word distributions in

captions vs. questions & answers as Venn-style word clouds [100] with size indicating

the normalized count – Fig. 32 (nouns), Fig. 33 (verbs), and Fig. 34 (adjectives) for

real images and Fig. 35 (nouns), Fig. 36 (verbs), and Fig. 37 (adjectives) for abstract

scenes.2 The left side shows the top words in questions & answers, the right the top

words in captions, and the center the words common to both, with size indicating the

harmonic mean of the counts.

We see that adjectives in captions capture some clearly visual properties discussed

in previous work on vision to language [311], such as material and pattern, while the

questions & answers have more adjectives that capture what is usual (e.g ., “domi-

nant”, “approximate”, “higher”) and other kinds of commonsense properties (e.g .,

“edible”, “possible”, “unsafe”, “acceptable”). Interestingly, we see that question

& answer nouns capture information about “ethnicity” and “hairstyle”, while cap-

tion nouns capture information about pluralized visible objects (e.g ., “cellphones”,

“daughters”) and groups (e.g ., “trio”, “some”), among other differences. “Man” and

“people” are common in both captions and questions & answers.

One key piece to understanding the visual world is understanding spatial relation-

ships, and so we additionally extract spatial prepositions and plot their proportions

in the captions vs . the questions & answers data in Fig. 31 (left) for real images and

2Visualization created using http://worditout.com/.

94

http://worditout.com/


Figure 31: Proportions of spatial prepositions in the captions and question & answers
for real images (left) and abstract scenes (right).

Figure 32: Venn-style word clouds [100] for nouns with size indicating the normalized
count for real images.

Fig. 31 (right) for abstract scenes. We see that questions & answers have a higher

proportion of specific spatial relations (i.e., “in”, “on”) compared to captions, which

have a higher proportion of general spatial relations (i.e., “with”, “near”).
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Figure 33: Venn-style word clouds [100] for verbs with size indicating the normalized
count for real images.

Figure 34: Venn-style word clouds [100] for adjectives with size indicating the nor-
malized count for real images.
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Figure 35: Venn-style word clouds [100] for nouns with size indicating the normalized
count for abstract scenes.

Figure 36: Venn-style word clouds [100] for verbs with size indicating the normalized
count for abstract scenes.

Figure 37: Venn-style word clouds [100] for adjectives with size indicating the nor-
malized count for abstract scenes.
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Real Images Abstract Scenes

What is What is

Figure 38: Distribution of questions starting with “What is” by their first five words
for a random sample of 60K questions for real images (left) and all questions for ab-
stract scenes (right). The ordering of the words starts towards the center and radiates
outwards. The arc length is proportional to the number of questions containing the
word. White areas are words with contributions too small to show.

A.2 “What is” Analysis

In Fig. 38, we show the distribution of questions starting with “What is” by their

first five words for both real images and abstract scenes. Note the diversity of objects

referenced in the questions, as well as, the relations between objects, such as “holding”

and “sitting on”. In Fig. 39, we show the distribution of answers for “What is”

questions ending in different words. For instance, questions ending in “eating” have

answers such as “pizza”, “watermelon” and “hot dog”. Notice the diversity in answers

for some questions, such as those that end with “for?” or “picture?”. Other questions

result in intuitive responses, such as “holding?” and the response “umbrella”.

A.3 Multiple-Choice Human Accuracy

To compute human accuracy for multiple-choice questions, we collected three human

answers per question on a random subset of 3,000 questions for both real images and

abstract scenes. In Table A.3, we show the human accuracies for multiple choice
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Real Images

Abstract Scenes

Figure 39: Distribution of answers for questions starting with “What is” for a random
sample of 60K questions for real images (top) and all questions for abstract scenes
(bottom). Each column corresponds to questions ending in different words, such as
“doing?”, “on?”, etc.
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Table 13: For each of the two datasets, real and abstract, first two rows are the human
accuracies for multiple-choice questions when subjects were shown both the image and
the question. Majority vote means we consider the answer picked by majority of the
three subjects to be the predicted answer by humans and compute accuracy of that
answer for each question. Average means we compute the accuracy of each of the
answers picked by the subjects and record their average for each question. The last
row is the inter-human agreement for open-ended answers task when subjects were
shown both the image and the question. All accuracies are evaluated on a random
subset of 3000 questions.

Dataset Accuracy Metric All Yes/No Number Other

MC majority vote 91.54 97.40 86.97 87.91
Real MC average 88.53 94.40 84.99 84.64

Open-Ended 80.62 94.78 78.46 69.69

MC majority vote 93.57 97.78 96.71 88.73
Abstract MC average 90.40 94.59 94.36 85.32

Open-Ended 85.66 95.32 94.17 74.12

questions. Table A.3 also shows the inter-human agreement for open-ended answer

task. In comparison to open-ended answer, the multiple-choice accuracies are more

or less same for “yes/no” questions and significantly better (≈ 15% increase for real

images and ≈ 11% increase for abstract scenes) for “other” questions. Since “other”

questions may be ambiguous, the increase in accuracy using multiple choice is not

surprising.

A.4 Details on VQA baselines

“per Q-type prior” baseline. We decide on different question types based on first

few words of questions in the real images training set and ensure that each question

type has at least 30 questions in the training dataset. The most popular answer for

each question type is also computed on real images training set.

“nearest neighbor” baseline. For every question in the VQA test-standard

set, we find its k nearest neighbor questions in the training set using cosine similarity

in Skip-Thought [230] feature space. We also experimented with bag of words and
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Word2Vec [303] feature spaces but we obtained the best performance with Skip-

Thought. In this set of k questions and their associated images, we find the image

which is most similar to the query image using cosine similarity in fc7 feature space.

We use the fc7 features from the caffenet model in BVLC Caffe [207]. The most

common ground truth answer of this most similar image and question pair is the

predicted answer for the query image and question pair. We pick k = 4 on the

test-dev set.

A.5 “Age” and “Commonsense” of our model

We estimate the age and degree of commonsense of our best model (deeper LSTM Q

+ norm I), selected using VQA test-dev accuracies). To estimate the age, we compute

a weighted average of the average age per question, weighted by the accuracy of the

model’s predicted answer for that question, on the subset of questions in the VQA

validation set for which we have age annotations (how old a human needs to be to

answer the question correctly). To estimate the degree of commonsense, we compute a

weighted average of the average degree of commonsense per question, weighted by the

accuracy of the model’s predicted answer for that question, on the subset of questions

in the VQA validation set for which we have commonsense annotations (whether the

question requires commonsense to answer it).

A.6 Abstract Scenes Dataset

In Fig. 40 (left), we show a subset of the objects that are present in the abstract

scenes dataset. For more examples of the scenes generated, please see Fig. 45. The

user interface used to create the scenes is shown in Fig. 40 (right). Subjects used a

drag-and-drop interface to create the scenes. Each object could be flipped horizontally

and scaled. The scale of the object determined the rendering order of the objects.

Many objects have different attributes corresponding to different poses or types. Most

animals have five different discrete poses. Humans have eight discrete expressions and
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their poses may be continuously adjusted using a “paperdoll” model [29].

Figure 40: Left: A small subset of the objects present in the abstract scene dataset.
Right: The AMT interface for collecting abstract scenes. The light green circles
indicate where users can select to manipulate a person’s pose. Different objects may
be added to the scene using the folders to the right.

A.7 User Interfaces

In Fig. 41, we show the AMT interface that we used to collect questions for images.

Note that we tell the workers that the robot already knows the answer to the pre-

viously asked question(s), inspiring them to ask different kinds of questions, thereby

increasing the diversity of our dataset.

Fig. 42 shows the AMT interface used for collecting answers to the previously

collected questions when subjects were shown the corresponding images. Fig. 43

shows the interface that was used to collect answers to questions when subjects were

not shown the corresponding image (i.e., to help in gathering incorrect, but plausible,

answers for the multiple-choice task and to assess how accurately the questions can

be answered using common sense knowledge alone).
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Figure 41: Our AMT interface for collecting the third question for an image, when
subjects were shown previous questions that were collected and were asked to ask a
question different from previous questions.
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Figure 42: The AMT interface used to collect answers to a question when subjects
were shown the image while answering the question.

Figure 43: The AMT interface used to collect answers to a question when subjects
were not shown the image while answering the question using only commonsense to
collect the plausible, but incorrect, multiple-choice answers.
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A.8 Answer Distribution

The top 250 answers in our real images dataset along with their counts and percentage

counts are given below. The answers have been presented in different colors to show

the different Part-of-Speech (POS) tagging of the answers with the following color

code: yes/no, noun, verb, adjective, adverb, and numeral.

“yes” (566613, 22.82%), “no” (381307, 15.35%), “2” (80031, 3.22%), “1” (46537,

1.87%), “white” (41753, 1.68%), “3” (41334, 1.66%), “red” (33834, 1.36%), “blue”

(28881, 1.16%), “4” (27174, 1.09%), “green” (22453, 0.9%), “black” (21852, 0.88%),

“yellow” (17312, 0.7%), “brown” (14488, 0.58%), “5” (14373, 0.58%), “tennis” (10941,

0.44%),“baseball” (10299, 0.41%), “6” (10103, 0.41%), “orange” (9136, 0.37%), “0”

(8812, 0.35%), “bathroom” (8473, 0.34%), “wood” (8219, 0.33%), “right” (8209,

0.33%), “left” (8058, 0.32%), “frisbee” (7671, 0.31%), “pink” (7519, 0.3%), “gray”

(7385, 0.3%), “pizza” (6892, 0.28%), “7” (6005, 0.24%), “kitchen” (5926, 0.24%),

“8” (5592, 0.23%), “cat” (5514, 0.22%), “skiing” (5189, 0.21%), “skateboarding”

(5122, 0.21%), “dog” (5092, 0.21%), “snow” (4867, 0.2%), “black and white” (4852,

0.2%), “skateboard” (4697, 0.19%), “surfing” (4544, 0.18%), “water” (4513, 0.18%),

“giraffe” (4027, 0.16%), “grass” (3979, 0.16%), “surfboard” (3934, 0.16%), “wii”

(3898, 0.16%), “kite” (3852, 0.16%), “10” (3756, 0.15%), “purple” (3722, 0.15%),

“elephant” (3646, 0.15%), “broccoli” (3604, 0.15%), “man” (3590, 0.14%), “winter”

(3490, 0.14%), “stop” (3413, 0.14%), “train” (3226, 0.13%), “9” (3217, 0.13%), “ap-

ple” (3189, 0.13%), “silver” (3186, 0.13%), “horse” (3159, 0.13%), “banana” (3151,

0.13%), “umbrella” (3139, 0.13%), “eating” (3117, 0.13%), “sheep” (2927, 0.12%),

“bear” (2803, 0.11%), “phone” (2772, 0.11%), “12” (2633, 0.11%), “motorcycle”

(2608, 0.11%), “cake” (2602, 0.1%), “wine” (2574, 0.1%), “beach” (2536, 0.1%),

“soccer” (2504, 0.1%), “sunny” (2475, 0.1%), “zebra” (2403, 0.1%), “tan” (2402,

0.1%), “brick” (2395, 0.1%), “female” (2372, 0.1%), “bananas” (2350, 0.09%), “ta-

ble” (2331, 0.09%), “laptop” (2316, 0.09%), “hat” (2277, 0.09%), “bench” (2259,
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0.09%), “flowers” (2219, 0.09%), “woman” (2197, 0.09%), “male” (2170, 0.09%),

“cow” (2084, 0.08%), “food” (2083, 0.08%), “living room” (2022, 0.08%), “bus”

(2011, 0.08%), “snowboarding” (1990, 0.08%), “kites” (1979, 0.08%), “cell phone”

(1943, 0.08%), “helmet” (1885, 0.08%), “maybe” (1853, 0.07%), “outside” (1846,

0.07%), “hot dog” (1809, 0.07%), “night” (1805, 0.07%), “trees” (1785, 0.07%),

“11” (1753, 0.07%), “bird” (1739, 0.07%), “down” (1732, 0.07%), “bed” (1587,

0.06%), “camera” (1560, 0.06%), “tree” (1547, 0.06%), “christmas” (1544, 0.06%),

“fence” (1543, 0.06%), “nothing” (1538, 0.06%), “unknown” (1532, 0.06%), “tennis

racket” (1525, 0.06%), “red and white” (1518, 0.06%), “bedroom” (1500, 0.06%),

“bat” (1494, 0.06%), “glasses” (1491, 0.06%), “tile” (1487, 0.06%), “metal” (1470,

0.06%), “blue and white” (1440, 0.06%), “fork” (1439, 0.06%), “plane” (1439, 0.06%),

“airport” (1422, 0.06%), “cloudy” (1413, 0.06%), “15” (1407, 0.06%), “up” (1399,

0.06%), “blonde” (1398, 0.06%), “day” (1396, 0.06%), “teddy bear” (1386, 0.06%),

“glass” (1379, 0.06%), “20” (1365, 0.05%), “beer” (1345, 0.05%), “car” (1331, 0.05%),

“sitting” (1328, 0.05%), “boat” (1326, 0.05%), “standing” (1326, 0.05%), “clear”

(1318, 0.05%), “13” (1318, 0.05%), “nike” (1293, 0.05%), “sand” (1282, 0.05%),

“open” (1279, 0.05%), “cows” (1271, 0.05%), “bike” (1267, 0.05%), “chocolate” (1266,

0.05%), “donut” (1263, 0.05%), “airplane” (1247, 0.05%), “birthday” (1241, 0.05%),

“carrots” (1239, 0.05%), “skis” (1220, 0.05%), “girl” (1220, 0.05%), “many” (1211,

0.05%), “zoo” (1204, 0.05%), “suitcase” (1199, 0.05%), “old” (1180, 0.05%), “chair”

(1174, 0.05%), “beige” (1170, 0.05%), “ball” (1169, 0.05%), “ocean” (1168, 0.05%),

“sandwich” (1168, 0.05%), “tie” (1166, 0.05%), “horses” (1163, 0.05%), “palm”

(1163, 0.05%), “stripes” (1155, 0.05%), “fall” (1146, 0.05%), “cheese” (1142, 0.05%),

“scissors” (1134, 0.05%), “round” (1125, 0.05%), “chinese” (1123, 0.05%), “knife”

(1120, 0.05%), “14” (1110, 0.04%), “toilet” (1099, 0.04%), “don’t know” (1085,

0.04%), “snowboard” (1083, 0.04%), “truck” (1076, 0.04%), “boy” (1070, 0.04%),

“coffee” (1070, 0.04%), “cold” (1064, 0.04%), “fruit” (1064, 0.04%), “walking” (1053,
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0.04%), “wedding” (1051, 0.04%), “lot” (1050, 0.04%), “sunglasses” (1047, 0.04%),

“mountains” (1030, 0.04%), “wall” (1009, 0.04%), “elephants” (1006, 0.04%), “wet-

suit” (998, 0.04%), “square” (994, 0.04%), “toothbrush” (989, 0.04%), “sleeping”

(986, 0.04%), “fire hydrant” (977, 0.04%), “bicycle” (973, 0.04%), “overcast” (968,

0.04%), “donuts” (961, 0.04%), “plastic” (961, 0.04%), “breakfast” (955, 0.04%),

“tv” (953, 0.04%), “paper” (952, 0.04%), “ground” (949, 0.04%), “asian” (938,

0.04%), “plaid” (936, 0.04%), “dirt” (933, 0.04%), “mirror” (928, 0.04%), “usa” (928,

0.04%), “chicken” (925, 0.04%), “plate” (920, 0.04%), “clock” (912, 0.04%), “luggage”

(908, 0.04%), “none” (908, 0.04%), “street” (905, 0.04%), “on table” (904, 0.04%),

“spoon” (899, 0.04%), “cooking” (898, 0.04%), “daytime” (896, 0.04%), “16” (893,

0.04%), “africa” (890, 0.04%), “stone” (884, 0.04%), “not sure” (873, 0.04%), “win-

dow” (868, 0.03%), “sun” (865, 0.03%), “gold” (860, 0.03%), “people” (856, 0.03%),

“racket” (847, 0.03%), “zebras” (845, 0.03%), “carrot” (841, 0.03%), “person” (835,

0.03%), “fish” (835, 0.03%), “happy” (824, 0.03%), “circle” (822, 0.03%), “oranges”

(817, 0.03%), “backpack” (812, 0.03%), “25” (810, 0.03%), “leaves” (809, 0.03%),

“watch” (804, 0.03%), “mountain” (800, 0.03%), “no one” (798, 0.03%), “ski poles”

(792, 0.03%), “city” (791, 0.03%), “couch” (790, 0.03%), “afternoon” (782, 0.03%),

“jeans” (781, 0.03%), “brown and white” (779, 0.03%), “summer” (774, 0.03%), “gi-

raffes” (772, 0.03%), “computer” (771, 0.03%), “refrigerator” (768, 0.03%), “birds”

(762, 0.03%), “child” (761, 0.03%), “park” (759, 0.03%), “flying kite” (756, 0.03%),

“restaurant” (747, 0.03%), “evening” (738, 0.03%), “graffiti” (736, 0.03%), “30” (730,

0.03%), “grazing” (727, 0.03%), “flower” (723, 0.03%), “remote” (720, 0.03%), “hay”

(719, 0.03%), “50” (716, 0.03%).

A.9 Additional Examples

To provide insight into the dataset, we provide additional dataset examples (random

selection) in Fig. 44, Fig. 45, and Fig. 46.
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What part of the body 
are these worn around? 

neck 
neck 
neck 

legs 
neck 
wrist 

How many ties are 
there? 

2 
10 

many 

3 
4 
4 

Does this look like a 
group of nerds? 

no 
no 
no 

no 
yes 
yes 

What are the 
people throwing? 

frisbee 
frisbee 
frisbee 

balls 
rice 

frsibee 

Which player on the field 
head-butted the ball? 

18 
18 

player on left 

1 in front of goal 
number 13 
number 22 

What number is on the girl 
in black? 

18 
18 
18 

1 
4 
8 

How many people are 
wearing an orange shirt? 

3 
3 
3 

1 
3 
3 

Is this a trained 
elephant? 

yes 
yes 
yes 

yes 
yes 
yes 

What is the type of meat 
under the bread? 

beef 
roast beef 
roast beef 

bologna 
ham 
tan 

How much fluid is in the 
bottom of the bowl? 

0 
1 oz 
little 

3 ounces 
a lot 
some 

How many stories is this 
home? 

1 
1 
2 

2 
3 
3 

Is the table large enough for 
10 average people to eat at? 

no 
no 
no 

no 
yes 
yes 

How many boats are 
visible? 

3 
4 
5 

2 
3 
4 

How many umbrellas are 
in the image? 

4 
4 
4 

2 
2 

9734 

Why does this male 
have his arms in this 
position? 

balance 
for balance 
for balance 

angry 
he’s carrying bags 

hug 

Are the clouds 
high in the sky? 

yes 
yes 
yes 

no 
no 
yes 

Is it raining? 
no 
no 
no 

yes 
yes 
Yes 

Are there any people 
sitting on the bench? 

No 
No 
No 

No 
No 
Yes 

What is the woman 
carrying? 

umbrella 
umbrella 
umbrella 

phone 
purse 

suitcase 

What is the most 
colorful object in 
the picture? 

umbrella 
umbrella 
umbrella 

art 
flower 
flowers 

What is in the child’s 
mouth? 

her thumb 
it’s thumg 

thumb 

candy 
cookie 
lollipop 

What is the child 
harnessed to? 

her thumb 
high chair 

seat 

bike 
child seat 

seat 

What color are 
the shoe laces? 

Blue 
Blue 

Light blue 

Black 
Red 

White 

What is he 
sitting on? 

Skateboard 
Skateboard 
Skateboard 

Bench 
Chair 
Chair 

What is the horse 
missing to be able 
to ride it? 

saddle 
saddle 
saddle 

saddle 
saddle 
saddle 

What shape is the 
building on the 
right? 

pyramid 
steeple 
triangle 

rectangular 
square 
square 

What red objects in 
front are almost 
covered by snow? 

meters 
parking meters 
parking meters 

car 
cars 

shoes 

Is it winter? 
yes 
yes 
yes 

no 
yes 
yes 

Does the car have a 
license plate? 

yes 
yes 
yes 

yes 
yes 
yes 

Could the truck have a 
camper? 

yes 
yes 
yes 

yes 
yes 
yes 

Is the picture hanging 
straight? 

no 
yes 
yes 

no 
yes 
yes 

How many cabinets are 
on the piece of 
furniture? 

4 
4 
4 

3 
3 
6 

Is this person trying 
to hit a ball? 

yes 
yes 
yes 

yes 
yes 
yes 

What is the person 
hitting the ball with? 

frisbie 
racket 

round paddle 

bat 
bat 

racket 

What type of trees 
are here? 

palm 
palm 
palm 

ash 
oak 
pine 

Is the skateboard 
airborne? 

yes 
yes 
yes 

no 
yes 
yes 

What is the animal in 
the water? 

dog 
dog 
dog 

duck 
duck 

guppy 

How many people are 
present? 

15 
15 
15 

2 
3 
3 

What is on the 
ground? 

snow 
snow 
snow 

dirt 
dirt 
mud 

Does the man 
have a backpack? 

yes 
yes 
yes 

no 
yes 
yes 

What is the guy 
doing as he sits 
on the bench? 

phone 
taking picture 

taking picture with phone 

reading 
reading 
smokes 

What color are 
his shoes? 

blue 
blue 
blue 

black 
black 
brown 

Is this photo taken 
in Antarctica? 

no 
no 
no 

no 
yes 
yes 

Overcast or sunny? 
overcast 
overcast 
overcast 

overcast 
overcast 
sunny 

Is the woman on the back 
of the bicycle pedaling? 

no 
no 
yes 

no 
no 
yes 

Why is the woman 
holding an umbrella? 

sunny 
to block sun 

uncertain 

it’s raining 
it’s raining 
to stay dry 

Is it sunny in 
this picture? 

yes 
yes 
yes 

yes 
yes 
yes 

How many bikes 
on the floor? 

2 
2 
2 

3 
3 bikes 

4 

Figure 44: Random examples of questions (black), (a subset of the) answers given
when looking at the image (green), and answers given when not looking at the image
(blue) for numerous representative examples of the real image dataset.
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Who is holding the 
football? 

man 
man 
man 

boy 
girl 
man 

How is the weather? 
cool and sunny 
mostly sunny 
partly cloudy 

nice 
sunny 
sunny 

What is the dog 
looking at? 

ball 
ball 

soccerball 

cat 
cat 
tree 

Will the boy play 
with the dog? 

yes 
yes 
yes 

yes 
yes 
yes 

What is the little girl playing 
with? 

jump rope 
jump rope 
jumprope 

doll 
dolls 

teddy bear 

What is in the pond? 
frog 

lillypad 
lily pad 

fish 
fish 

turtle 

What part of the chair is 
the lady sitting on? 

arm 
arm 
arm 

arm 
seat 
seat 

Is the woman sad? 
her cat died 

yes 
yes 

no 
no 
no 

What color is the book 
the woman is reading? 

blue 
blue 
book 

blue 
green 
red 

Is the lady reading? 
no 
yes 
yes 

no 
yes 
yes 

What are the boy 
and girl sitting on? 

seesaw 
see saw 

teeter-totter 

bench 
bench 
couch 

What geometric 
shape is the base of 
the seesaw? 

triangle 
triangle 
triangle 

triangle 
triangle 
triangle 

What color is the bike? 
orange 
orange 
orange 

blue 
pink 
red 

Is the man injured? 
no 
no 
no 

no 
no 
yes 

What color is the 
scooter? 

red 
red 
red 

red 
red 

yellow 

How many turtles? 
2 
2 
2 

2 
3 

15 

What is the woman 
doing? 

sitting 
sitting 
sitting 

reading 
reading 

watching tv 

Who is having tea? 
lady 

woman 
woman 

woman 
woman 
women 

Are there leaves in 
the tree? 

no 
no 
no 

yes 
yes 
yes 

What is under the 
mans left foot? 

ball 
soccer ball 
tablecloth 

dollar 
grass 

ground 

Is the sun shining? 
yes 
yes 
yes 

no 
yes 
yes 

What is in the pond? 
duck 
duck 
duck 

ducks 
fish 
fish 

How many bushes are 
in the background? 

3 
3 
3 

4 
7 
8 

What is the girl 
doing? 

playing 
playing 
playing 

crying 
eating 

talking on phone 

How many cats are 
sleeping on the rug? 

1 
2 
4 

1 
1 
2 

What color is the 
dog on the left? 

brown 
brown and white 

tan and white 

brown 
brown 
brown 

How many different 
kinds of fruits are 
available? 

2 
2 
2 

3 
4 
7 

Which objects needs 2 
people in order to 
work? 

hands 
seesaw 

teeter-totter 

bandsaw, firehose 
jumprope 

seesaw 

Is the cat chasing the 
mouse? 

yes 
yes 
yes 

yes 
yes 
yes 

Is the man sad? 
no 
yes 
yes 

yes 
yes 
yes 

Is the woman standing? 
no 
no 
no 

yes 
yes 
yes 

What is beside the 
chair? 

dog 
dog 
plant 

cat 
table 
table 

How many books are 
in the shelf? 

3 
3 
3 

3 
9 

23 

What is the person 
holding? 

book 
book 

notebook 

phone 
phone 
tablet 

What color is the 
plant on the left? 

green 
green 
green 

green 
green 
red 

Why is the woman 
eating a salad rather 
than pizza? 

dieting 
on diet 

she likes salad 

dieting 
overweight 

she’s losing weight 

Does the man have a good 
heart? 

no 
yes 
yes 

yes 
yes 
yes 

How many rabbits are there? 
4 
4 
4 

3 
4 
4 

Is it a warm night? 
no 
no 
no 

no 
yes 
yes 

Is the man happy? 
my best guess is happy 

yes 
yes 

no 
yes 
yes 

Is the man happy? 
yes 
yes 
yes 

yes 
yes 
yes 

Is there an animal 
in the picture? 

yes 
yes 
yes 

yes 
yes 
yes 

How many windows 
are in this room? 

2 
2 
2 

2 
4 
8 

Is she waiting on 
someone? 

yes 
yes 
yes 

no 
no 
yes 

Is the man young or old? 
old 
old 

oldish 

old 
old 
old 

Which grill is the man 
using? 

1 on left 
left 
left 

barbeque 
gas 

left 1 

What is the girl 
sitting on? 

floor 
floor 
floor 

bench 
chair 
rock 

What is the girl 
doing? 

sitting 
sitting on floor 

sit ups 

dancing 
singing 
sleeping 

Figure 45: Random examples of questions (black), (a subset of the) answers given
when looking at the image (green), and answers given when not looking at the image
(blue) for numerous representative examples of the abstract scene dataset.
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Q: What is the color of freebee?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) brick (l) peach (m) hill (n) vitamin c

(o) brown (p) christleton (q) bonsai tree (r) black

Q: How old is the child?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 6 (l) 12 (m) 10 (n) mechanics 

(o) 5 (p) wait here (q) mad (r) recording studio

Q: Where is the kid pointing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white           (h) red (i) blue (j) green

(k) park (l) up (m) floor mat  (n) so people don't get wet

(o) down           (p) mom      (q) pharos (r) ketchup pickle relish mustard

Q: How many people are in the picture on side of refrigerator?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white           (h) red (i) blue (j) green

(k) 108 mph      (l) banana, apple  (m) 7 (n) 10 many

(o) fruit salad    (p) full swing         (q) 5   (r) vattenfall strom fur gewinner

Q: How many of the deer are sleeping?

(a) yes (b) no

(c) 1 (d) 2 (e) 3              (f) 4

(g) white (h) red (i) blue (j) yellow

(k) 5 (l) left of pond (m) 13          (n) plants and cat

(o) tree base (p) cement (q) 0 (r) green, blue and yellow

Q: What type of wildlife is this park overrun with?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) eating (l) deer (m) mosquitoes (n) soup

(o) birds (p) ants (q) girl’s (r) woman on right

Q: Is the girl standing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) yes! (l) standing (m) hiding (n) sitting

(o) to sleep (p) bird nest (q) slide (r) park ranger

Q: Does the girl have a lot of toys?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) fork (l) deer (m) rock (n) y

(o) slide (p) yes 3 of them (q) no image (r) children and toys

Q: What sport are they playing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) tennis (l) bodily functions  (m) scissors (n) mississippi and meade

(o) baseball (p) frisbee (q) soccer (r) its advertising object        

Q: What is the man in gray pant's job?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) cop (l) umpire (m) snowflake (n) banker

(o) chef (p) speedboat (q) 10: 32 (r) males

Q: Is this person's face painted?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 4498 (l) not (m) camera film          (n) keyboard, mouse, booklet

(o) stairs (p) n200       (q) public storage       (r) pasta, sauce, meat

Q: How many umbrellas are in the photo?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 20 (l) 54 (m) max payne (n) 62

(o) 12 (p) dresses (q) 3 to 5 (r) two way traffic

Q: Where is the blanket?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) fat (l) lying down (m) bed (n) utensils

(o) on bed (p) grass (q) ground (r) watching child

Q: What is for dessert?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) cake (l) pie (m) a (n) doll and dollhouse

(o) ice cream (p) yellow book (q) cheesecake (r) there are no fish

Q: Why does the little girl not look happy?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white        (h) red (i) blue (j) yellow

(k) indian (l) upset (m) dog left (n) smiling at it

(o) corner      (p) to be pet (q) she fell (r) boy is playing with her toys

Q: Why is the boy playing with his sister's toys?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) he likes them (l) parking it (m) dogs (n) shelf

(o) he feeds them (p) lonely (q) bored (r) likes them

Q: Why are they standing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) playing game (l) sheepskin (m) waiting (n) no where to sit

(o) firestone (p) rugby (q) forks                (r) waiting for train

Q: Is the TV on?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) shag (l) jeopardy (m) sports (n) between big elephants

(o) edinburgh (p) strawberries (q) tv show (r) white streak on face

Q: How many legs does the dog have?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white        (h) red (i) blue (j) yellow

(k) outdoors  (l) hiding (m) 45 (n) sitting in grass

(o) owls         (p) 8 (q) 12 (r) arm of sofa

Q: Is the boy at the top of the ladder?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) yellow

(k) not sure (l) yellow dog (m) bottom (n) behind trees

(o) a (p) girl on right (q) top (r) she's in middle

Figure 46: Random examples of multiple-choice questions for numerous representa-
tive examples of the real and abstract scene dataset.
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APPENDIX B

APPENDIX FOR ANALYZING THE BEHAVIOR OF VQA

MODELS

In this appendix, we provide:

1. - Behavioral analysis for question-only and image-only VQA models.

2. - Scatter plot of average distance of test instances from nearest neighbor training

instances w.r.t. VQA accuracy.

3. - Additional qualitative examples for “generalization to novel test instances”.

4. - The analyses on “complete question understanding” for different question

types.

5. - Additional qualitative examples for “complete question understanding”.

6. - The analyses on “complete image understanding” for different question types.

7. - Additional qualitative examples for “complete image understanding”.

B.1 Behavioral analysis for question-only and image-only
VQA models

We evaluated the performance of both CNN+LSTM and ATT models by just feed-

ing in the question (and mean image embedding) and by just feeding in the image

(and mean question embedding). We computed the percentage of responses that

change on feeding the question as well, compared to only feeding in the image and

the percentage of responses that change on feeding the image as well, compared to

only feeding in the question. We found that that the responses changed much more

(about 40% more) on addition of the question than they did on addition of the image.

So this suggests that the VQA models are heavily driven by question rather than the
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image.

B.2 Scatter plot of average distance of test instances from
nearest neighbor training instances w.r.t. VQA accu-
racy

Figure 47: Test accuracy vs. average distance of the test points from k-NN training
points for the CNN+LSTM model.

Fig. 47 shows the variation of accuracy of test point w.r.t their average distance

from k-NN training points for the CNN+LSTM model. Each point in the plot rep-

resents average statistics (accuracy and average distance) for a random subset of 25

test points. We can see that for the test points with low accuracy, the average dis-

tance is higher compared to test points with high accuracy. The correlation between

accuracy and average distance is significant (-0.41 at k = 50.1)

1k = 50 leads to highest correlation
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B.3 Additional qualitative examples for “generalization to
novel test instances”

Fig. 48 shows test QI pairs for which the CNN+LSTM model produces the correct

response and their nearest neighbor QI pairs from training set. It can be seen that

the nearest neighbor QI pairs from the training set are similar to the test QI pair. In

addition, the GT labels in the training set are similar to the test GT label.

Fig. 49 shows test QI pairs for which the CNN+LSTM model produces incorrect

response and their nearest neighbor QI pairs from training set. Some of the mistakes

are probably because the test QI pair does not have similar QI pairs in the training

set (rows 2, 4 and 5) while other mistakes are probably because the GT labels in the

training set are not similar to the GT test label (rows 1 and 3).

B.4 Analyses on “complete question understanding” for
different question types

We show the breakdown of our analyses from chapter 4 – (i) whether the model

‘listens’ to the entire question; and (ii) which POS tags matter the most – over the

three major categories of questions – “yes/no”, “number” and “other” as categorized

in [27]. “yes/no” are questions whose answers are either “yes” or “no”, “number” are

questions whose answers are numbers (e.g., “Q: How many zebras are there?”, “A:

2”), “other” are rest of the questions.

For “yes/no” questions, the ATT model seems particularly ‘jumpy’ – converging

on a predicted answer listening to only the first few words of the question (see Fig. 50).

Surprisingly, the accuracy is also as much as the final accuracy (after listening to

entire question) when making predictions based on first few words of the question.

In contrast, the CNN+LSTM model converges on a predicted answer later, after

listening to atleast 35% of the question, achieving as much as the final accuracy after

convergence. For “number” and “other” questions, both ATT and CNN+LSTM
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model show similar trends (see Fig. 51 for “number” and Fig. 52 for “other”).

It is interesting to note that VQA models are most sensitive to adjectives for

“yes/no” questions (compared to wh-words for all questions) (see Fig. 53). This is

probably because often the “yes/no” questions are about attributes of objects (e.g.,

“Is the cup empty?”). For “number” questions, the CNN+LSTM model is most

sensitive to adjectives whereas the ATT model is most sensitive to wh-words (see

Fig. 54). For “other” questions, both the models are most sensitive to “nouns” (see

Fig. 55).

B.5 Additional qualitative examples for “complete question
understanding”

Fig. 56 shows examples where the CNN+LSTM model converges on a predicted

answer without listening to the entire question. On doing so, the model gets the

answer correct for some QI pairs (first three rows) and incorrect for others (last two

rows).

B.6 Analyses on “complete image understanding” for dif-
ferent question types

Fig. 57, Fig. 58 and Fig. 59 show the breakdown of percentage of questions for which

the model produces same answer across images for “yes/no”, “number” and “other”

respectively. The ATT model seems to be more “stubborn” (does not change its

answers across images) for “yes/no” questions compared to the CNN+LSTM model,

and less “stubborn” for “number” questions compared to the CNN+LSTM model.

B.7 Additional qualitative examples for “complete image
understanding”

Fig. 60 shows examples where the CNN+LSTM model produces the same answer

for atleast half the images for a given question and the accuracy achieved by the

model for such QI pairs.
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Figure 48: Test QI pairs for which the CNN+LSTM model produces the correct
response and their nearest neighbor QI pairs from training set.
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Figure 49: Test QI pairs for which the CNN+LSTM model produces incorrect
response and their nearest neighbor QI pairs from training set.
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Figure 50: X-axis shows length of partial “yes/no” question (in %) fed as input.
Y-axis shows percentage of “yes/no” questions for which responses of these partial
“yes/no” questions are the same as full “yes/no” questions and VQA accuracy of
partial “yes/no” questions.

Figure 51: X-axis shows length of partial “number” question (in %) fed as input.
Y-axis shows percentage of “number” questions for which responses of these partial
“number” questions are the same as full “number” questions and VQA accuracy of
partial “number” questions.
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Figure 52: X-axis shows length of partial “other” question (in %) fed as input. Y-axis
shows percentage of “other” questions for which responses of these partial “other”
questions are the same as full “other” questions and VQA accuracy of partial “other”
questions.

Figure 53: Percentage of “yes/no” questions for which responses remain same (com-
pared to entire “yes/no’ question) as a function of POS tags dropped from the “yes/no’
question.

118



Figure 54: Percentage of “number” questions for which responses remain same (com-
pared to entire “number” question) as a function of POS tags dropped from the
“number” question.

Figure 55: Percentage of “other” questions for which responses remain same (com-
pared to entire “other” question) as a function of POS tags dropped from the “other”
question.
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Figure 56: Examples where the CNN+LSTM model converges on a predicted an-
swer without listening to the entire question.
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Figure 57: Histogram of percentage of images for which model produces same answer
for a given “yes/no” question. The cumulative plot shows the % of “yes/no” questions
for which model produces same answer for atleast x % of images.

Figure 58: Histogram of percentage of images for which model produces same an-
swer for a given “number” question. The cumulative plot shows the % of “number”
questions for which model produces same answer for atleast x % of images.
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Figure 59: Histogram of percentage of images for which model produces same answer
for a given “other” question. The cumulative plot shows the % of “other” questions
for which model produces same answer for atleast x % of images.
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Figure 60: Examples where the CNN+LSTM model produces the same answer
for atleast half the images for each of the questions shown above. “Q” denotes the
question for which model produces same response for atleast half the images, “A”
denotes the answer predicted by the model (which is same for atleast half the images),
“Number of Images” denotes the number of images for which the question is repeated
in the VQA validation set and “Average Accuracy” is the VQA accuracy for these
QI pairs (with same question but different images).
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APPENDIX C

APPENDIX FOR OVERCOMING PRIORS IN VQA

C.1 Visual Question Answering under Changing Priors
(VQA-CP)

In this appendix, we provide:

1. - Additional analysis of VQA-CP splits

2. - Details of benchmarking VQA models on VQA-CP

C.1.1 Additional analysis of VQA-CP splits

Fig. 61 shows the distribution of answers for several question types such as ‘what

color’, ‘what sport’, ‘how many’, etc. for the train (left) and test (right) splits of

the VQA-CP v2 dataset (the distribution of answers for VQA-CP v1 is presented in

Section 5.1.2). We can see that the distributions of answers for a given question type

is significantly different for train and test. For instance, ‘tennis’ is the most frequent

answer for the question type ‘what sport’ in VQA-CP v2 train split whereas ‘baseball’

is the most frequent answer for the same question type in VQA-CP v2 test split.

Similar differences can be seen for other question types as well – ‘does’, ‘which’.

C.1.2 Details of benchmarking VQA models on VQA-CP

Below we provide brief descriptions of all the existing VQA models used for bench-

marking on VQA-CP splits:

Deeper LSTM Question (d-LSTM Q) [27]: Predicting the answer using ques-

tion alone (“blind” model). It encodes the question using an LSTM and passes the

encoding through a Multi-Layered Perceptron (MLP) to classify into answers.
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VQA-CP Train Split VQA-CP Test Split

Figure 61: Distribution of answers per question type vary significantly between
VQA-CP v2 train (left) and test (right) splits. For instance, ‘white’ and ‘black’ are
commonly seen answers in train for ‘What color’, where as ‘red’ is the most frequent
answer in test. These have been computed for a random sample of 60K questions.

Deeper LSTM Question + normalized Image (d-LSTM Q + norm I) [27]:

The baseline VQA model. This model consists of a Multi-Layered Perceptron (MLP)

fed in by normalized image embeddings (produced by VGG-Net [410]) and question

embeddings (produced by a 2 layered LSTM). The MLP produces a distribution over

top 1000 answers.

Neural Module Networks (NMN) [24]: The model designed to be composi-

tional in nature. The model consists of composable modules where each module has

a specific role (such as detecting a dog in the image, counting the number of dogs
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in the image, etc.). Given an image and the natural language question about the

image, NMN decomposes the question into its linguistic substructures using a parser

to determine the structure of the network required to answer the question.

Stacked Attention Networks (SAN) [495]: One of the widely used models for

VQA. Given an image and question, SAN uses the question to attend over the image,

using a multi-hop architecture.1

Multimodal Compact Bilinear Pooling (MCB) [150]: The winner of the

VQA Challenge (on real images) 2016. MCB uses multimodal compact bilinear pool-

ing to predict attention over image features and also to combine the attended image

features with the question features.

Question-type trends of model performance on VQA-CP : Examining

the accuracies of the above VQA models for different question types shows that the

performance drop from VQA to VQA-CP is larger for some question types than the

others. For VQA-CP v1, all the models show a significant drop (∼70%) for ‘is there

a’ questions (such as ‘Is there a flowering tree in the scene?’ ). For such questions in

the VQA-CP v1 test split, the correct answer is ‘yes’ whereas the prior answer for

questions starting with ‘Is there a’ in VQA-CP v1 train split is ‘no’. So, models tend

to answer the VQA-CP v1 test questions with ‘no’ driven by the prior in the training

data. Some other examples of question types in VQA-CP v1 resulting in significant

drop in performance (more than 10%) for all the models are – ‘is this an’, ‘do you’,

‘are there’, ‘how many people are’, ‘what color is the’, ‘what sport is’, ‘what room is’,

etc. Examples of question types in VQA-CP v2 resulting in more than 10% drop in

performance for all the models are – ‘is it’, ‘is he’, ‘are there’, ‘how many people are

in’, ‘what color is the’, ‘what animal is’, ‘what is in the’, etc.

1We use a torch implementation of SAN, available at https://github.com/abhshkdz/

neural-vqa-attention, for our experiments.
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C.2 Grounded Visual Question Answering (GVQA)

In this appendix, we provide:

1. - Implementation details of GVQA

2. - Additional splits of VQA-CP v2

3. - Performance of model components on VQA-CP v2

4. - Performance of SAN with Qmain

5. - Performance of GVQA - VCCloss on VQA v1 and VQA v2

6. - Additional qualitative examples

C.2.1 Implementation details of GVQA

For the Question Classifier, we use a single layer LSTM with 512d hidden state and

train it using the binary cross-entropy loss. For the Answer Cluster Predictor (ACP),

we use a single layer LSTM with 256d hidden state and train it using the cross-

entropy loss (cross-entropy over 50 classes, corresponding to 50 answer clusters). For

the Visual Concept Classifier (VCC), we use a single layer LSTM with 512d hidden

state to encode Qmain, the VGG-Net [410] to extract the activations of the last pooling

layer (514 x 14 x 14) and the 2-hop attention architecture from SAN [495]. We use

the binary cross-entropy loss to train each classifier in the VCC. For a given training

instance, only a subset of all concept clusters are activated, and only these activated

clusters contribute to the loss.

For the Question classifier, the ACP and the VCC, we use the rmsprop optimizer

with a base learning rate of 3e-4. For the Answer Predictor (AP) and the Visual

Verifier (VV), we use the Adam optimizer with a base learning rate of 3e-3 and 3e-4

respectively. All the implementation is using the torch deep learning framework [97].

Effect of number of clusters, clustering algorithm, POS tagger: As men-

tioned in Section 5.2.2, we used 50 clusters and K-means clustering algorithm for

clustering the answer classes for the Answer Cluster Predictor (ACP). We tried 25
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and 100 clusters as well and found that changing the number of clusters in K-means

from 50 to 25 results in 1.05% drop, from 50 to 100 results in 0.76% drop in the

overall VQA accuracy for the VQA-CP v2 dataset. We also tried Agglomerative clus-

tering (instead of K-means) and found that it results in 0.42% drop in the overall

VQA accuracy on the VQA-CP v2 dataset. Finally, we tried using Spacy POS tagger

(instead of NLTK) for the Concept Extractor (CE) and found that it results in 0.02%

improvement in the overall VQA accuracy on the VQA-CP v2 dataset.

C.2.2 Additional splits of VQA-CP v2

Figure 62: Performance of SAN and GVQA for different VQA-CP v2 splits. GVQA
consistently outperforms SAN across all splits.

As mentioned in Section 5.2.3, to check if our particular VQA-CP split was causing

some irregularities in performance, we created three additional sets of VQA-CP v2

splits with different random seeds. We evaluated both SAN and GVQA on all four

splits (please see Fig. 62). We can see that GVQA consistently outperforms SAN

across all four splits with average improvement being 7.14% (standard error: 1.36).

C.2.3 Performance of model components on VQA-CP v2

Question Classifier : On the VQA-CP v2 test set, the LSTM based question classifier

obtains 99.30% accuracy. ACP : The Top-1 test accuracy is 51.33%, with 80.12% for

questions whose answers are in attribute clusters and 39.21% for questions whose an-

swers are in object clusters. The Top-3 accuracy rises to 63.22%. Note that these ac-

curacies are computed using the automatically created clusters. VCC : The weighted

mean test F1 score across all classifiers is 0.53. The individual concepts are weighted

as per the number of positive samples, reflecting the coverage of that concept in the

test set.
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C.2.4 Performance of SAN with Qmain

Table 14: Performance of SAN - Qfull + Qmain compared to SAN and GVQA (our
model) on VQA-CP v2 dataset. GVQA outperforms both SAN and SAN - Qfull +
Qmain.

Model Overall Yes/No Number Other

SAN [495] 24.96 38.35 11.14 21.74
SAN - Qfull + Qmain 26.32 44.73 09.46 21.29
GVQA (Ours) 31.30 57.99 13.68 22.14

As mentioned in Section 5.2.4, as an additional check, we trained a version of SAN

where the input is Qmain instead of Qfull. Table C.2.4 shows the results of this version

of SAN (SAN - Qfull + Qmain) along with those of SAN and GVQA on VQA-CP v2.

We can see that this version of SAN performs 1.36% (overall) better than the original

SAN, however still 4.98% (overall) worse than GVQA (with Qmain).

C.2.5 Performance of GVQA - VCCloss on VQA v1 and VQA v2

Table 15: Results of GVQA, GVQA - VCCloss and SAN on VQA v1 val split when
trained on the VQA v1 train split. Please see text for more details.

VQA v1
Model Overall Yes/No Number Other

SAN 55.86 78.54 33.46 44.51
GVQA - VCCloss 48.51 65.59 32.67 39.71
GVQA 51.12 76.90 32.79 36.43

Ensemble (SAN, SAN) 56.56 79.03 34.05 45.39
Ensemble ((GVQA - VCCloss), SAN) 56.44 78.27 34.45 45.62
Ensemble (GVQA, SAN) 56.91 80.42 34.40 44.96

Oracle (SAN, SAN) 60.85 83.92 39.43 48.96
Oracle ((GVQA - VCCloss), SAN) 64.47 90.17 42.92 50.64
Oracle (GVQA, SAN) 63.77 88.98 43.37 50.03

Table C.2.5 and Table C.2.5 present the full results (i.e., broken down into Yes/No,

Number and Other) of three models – GVQA, GVQA- VCCloss and SAN, along with

their ensembles and Oracle performances. We can see that GVQA- VCCloss performs
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Table 16: Results of GVQA, GVQA - VCCloss and SAN on VQA v2 val split when
trained on the VQA v2 train split. Please see text for more details.

VQA v2
Model Overall Yes/No Number Other

SAN 52.02 68.89 34.55 43.80
GVQA - VCCloss 48.34 66.38 31.61 39.05
GVQA 48.24 72.03 31.17 34.65

Ensemble (SAN, SAN) 52.45 69.17 34.78 44.41
Ensemble ((GVQA - VCCloss), SAN) 51.79 68.59 34.44 43.61
Ensemble (GVQA, SAN) 52.96 72.72 34.19 42.90

Oracle (SAN, SAN) 56.68 74.37 40.08 47.61
Oracle ((GVQA - VCCloss), SAN) 61.93 85.13 43.51 49.16
Oracle (GVQA, SAN) 61.96 85.65 43.76 48.75

worse than GVQA on VQA v1 and similar to GVQA on VQA v2. So in addition

to interpretability, GVQA is overall better than GVQA- VCCloss on these original

VQA splits. Another observation about GVQA- VCCloss is that the Oracle ((GVQA-

VCCloss), SAN)’s overall performance is 8.61% higher than that of SAN for VQA v1

(9.91% for VQA v2), suggesting that GVQA- VCCloss has strengths complementary

to SAN (just like GVQA). Note that Oracle ((GVQA- VCCloss), SAN) is higher

than Oracle (SAN, SAN) for both VQA v1 and VQA v2, suggesting that GVQA-

VCCloss’s complementary strengths are more than that of another SAN model (with

a different random initialization). Inspired by this, we report the performance of the

ensemble of GVQA- VCCloss and SAN ((GVQA- VCCloss) + SAN) in Table C.2.5

and Table C.2.5, where the ensemble combines the outputs from the two models using

product of confidences of each model. Unlike GVQA + SAN, (GVQA- VCCloss) +

SAN does not outperform SAN + SAN (worse by 0.12% overall for VQA v1 and

by 0.66% overall for VQA v2). Hence, GVQA is a better complement of SAN than

GVQA- VCCloss, in addition to being more transparent.
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Figure 63: VCC’s attention map for the example shown in Fig. 25 (right)

C.2.6 Additional qualitative examples

Fig. 63 shows the VCC’s attention map for the example shown in Fig. 25 (right).

Please refer to Fig. 25 for more details.

Fig. 64 and Fig. 65 show some qualitative examples from the VQA-CP v2 test set

along with GVQA’s and SAN’s predicted answers. Also shown are the intermediate

outputs from GVQA which provide insights into why GVQA is predicting what it is

predicting and hence enable a system designer to identify the causes of error. This is

not easy to do in existing VQA models such as SAN.
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What	room	is	this?

ACP says answer should be a place

VCC says: 
white
tiles

lights
bathroom

GVQA answers bathroom
SAN answers kitchen

Is	this	kid	really	happy?

CE says happy

VCC says: 
happy

boy
round
eating 

GVQA answers yes
SAN answers no

SAN’s	attention	map GVQA’s	attention	map

What	season	is	it?

ACP says answer should be a season

VCC says: 
white
skiing
winter

mountains

GVQA answers winter
SAN answers summer

SAN’s	attention	map GVQA’s	attention	map

SAN’s	attention	map GVQA’s	attention	map

What	color	is	the	skiers	jacket?

ACP says answer should be a color

VCC says: 
blue

person
skiing
jacket

GVQA answers blue
SAN answers orange

SAN’s	attention	map GVQA’s	attention	map

Figure 64: Transparency of GVQA. For each of the above examples, GVQA’s
intermediate predictions can help explain why it predicted what it predicted. Top-
left: VCC predicts the following visual concepts – blue, person, skiing and jacket.
ACP predicts the cluster corresponding to colors. Finally, GVQA predicts ‘blue’ as
the answer. So, we can see why GVQA predicts ‘blue’ – because, of all the visual
concepts predicted by VCC, only ‘blue’ represents a color. Looking at the attention
maps can further indicate why GVQA is “seeing” blue (because it is “looking” at the
jacket as well, unlike SAN which is only “looking” at the pants). SAN’s prediction
is ‘orange’ and unlike GVQA, SAN’s architecture does not facilitate producing such
an explanation, which makes it difficult to understand why it is saying what it is
saying. Top-right: Both GVQA and SAN are “looking” at the regions covered
with snow, but GVQA correctly predicts ‘winter’, whereas SAN incorrectly predicts
‘summer’ which is unclear why. Bottom-left: The Concept Extractor (CE) predicts
‘happy’ whose visual presence is verified by VCC which is “looking” at the region
corresponding to the kid’s face. Bottom-right: GVQA focuses on a larger part of
the scene and correctly recognizes it as ‘bathroom’.
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What	sport	is	this?

ACP says answer should be a sport

VCC says: 
green
field

grass
fence

GVQA answers tennis
SAN answers soccer

What	is	the	most	prominent	ingredient?

ACP says answer should be a vegetable

VCC says: 
carrots
pasta
green
plate 

GVQA answers carrots
SAN answers carrots
Correct answer: pastaCorrect answer: baseball

SAN’s	attention	map GVQA’s	attention	map SAN’s	attention	map GVQA’s	attention	map

Is	this	a	smartphone?

CE says smartphone

VCC says: 
electronic

black
phone
right

GVQA answers no
SAN answers no

Correct answer: yes

SAN’s	attention	map GVQA’s	attention	map

Figure 65: Transparency of GVQA. For the above examples, both GVQA and
SAN incorrectly answer the question. However, GVQA’s intermediate predictions can
help explain why it is incorrect. Top-left: For GVQA, VCC’s predictions indicate
that it is perhaps “looking” at the field, which can be further verified by the attention
map. SAN’s attention map suggests that it is “looking” at the ball but still does not
explain why it is predicting ‘soccer’. Perhaps, it is confusing the ball with a soccer
ball. Top-right: The attention maps from GVQA and SAN look similar to each
other. However, looking at ACP’s and VCC’s prediction (for GVQA) suggest that it
is indeed “seeing” ‘pasta’ (the correct answer), but still predicting ‘carrots’ because
the ACP is incorrectly predicting the cluster corresponding to vegetables instead of
the cluster corresponding to pasta. Bottom: GVQA is “looking” at the smartphone
(unlike SAN), but yet incorrectly answers ‘no’, because the VCC does not recognize
the phone as a smartphone. It however correctly predicts ‘phone’, ‘electronic’, ‘black’
and ‘right’.
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