Don't Just Assume; Look and Answer Overcoming Priors for Visual Question Answering

Aishwarya Agrawal (Georgia Tech)

Dhruv Batra (Georgia Tech / FAIR)

Devi Parikh (Georgia Tech / FAIR)

Ani Kembhavi (AI2)

Outline

Overview of VQA

Problem with existing setup + models

A novel VQA Split

A novel VQA model

Conclude

Outline

Overview of VQA

Problem with existing setup + models

A novel VQA Split

A novel VQA model

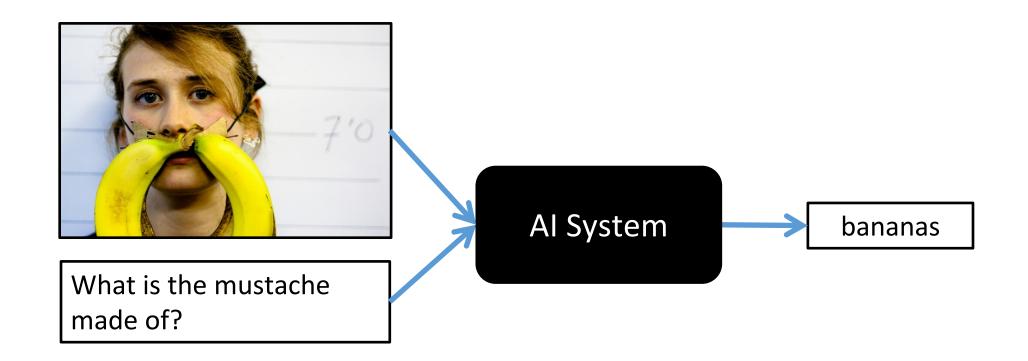
Conclude

What is Visual Question Answering (VQA)?

What is the mustache made of?

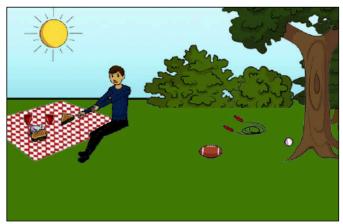
What is the mustache made of?

Al System



VQA v1 Dataset

What color are her eyes? What is the mustache made of?



Is this person expecting company? What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy?
Does this person have 20/20 vision?

Papers using VQA

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Peter Anderson^{1*} Xiaodong He² Chris Buehler³ Damien Tenev⁴ Mark Johnson⁵ Stephen Gould¹ Lei Zhang³ ¹Australian National University ²JD AI Research ³Microsoft Research ⁴University of Adelaide ⁵Macquarie University ¹firstname.lastname@anu.edu.au, ²xiaodong.he@jd.com, ³{chris.buehler,leizhang}@microsoft.com 4damien.teney@adelaide.edu.au, 5mark.johnson@mq.edu.au

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

Akira Fukui*1,2 Dong Huk Park*1 Daylen Yang*1 Anna Rohrbach*1,3 Trevor Darrell¹ Marcus Rohrbach¹ ¹UC Berkeley EECS, CA, United States ²Sony Corp., Tokyo, Japan ³Max Planck Institute for Informatics, Saarbrücken, Germany

Kate Saenko

UMass Lowell

Compositional Memory for Visual Question Answering

Aiwen Jiang^{1,2} Yi Li* 2,3 Fang Wang² Fatih Porikli² Huijuan Xu ¹Jiangxi Normal University ²NICTA and ANU ³Toyota Research Institute North America UMass Lowell ²{fang.wang, fatih.poril ¹aiwen.jiang@nicta.com.au @cs.uml.edu saenko@cs.uml.edu ... and many more

Deep Compositional Question Answering with Neural Module Networks Where To Look: Focus Regions for Visual Question Answering

Jacob Andreas Marcus Rohrbach Trevor Darrell Dan Klein Department of Electrical Engineering and Computer Sciences University of California, Berkeley

{jda,rohrbach,trevor,klein}@{cs,eecs,eecs,cs}.berkeley.edu

Kevin J. Shih, Saurabh Singh, and Derek Hoiem University of Illinois at Urbana-Champaign

Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for

Visual Question Answering

{kjshih2, ssl, dhoiem}@illinois.edu

ABC-CNN: An Attention Based Convolutional Neural Network for Visual Question Answering

Baidu Research - IDL

Kan Chen University of Southern California kanchen@usc.edu

Haoyuan Gao

Baidu Research - IDL

gaohaovuan@baidu.com

wangjiang03@baidu.com Wei Xu Baidu Research - IDL wei.xu@baidu.com

Ram Nevatia University of Southern California nevatia@usc.edu

Liang-Chieh Chen UCLA lcchen@cs.ucla.edu

Stacked Attention Networks for Image Question Answering

Zichao Yang¹, Xiaodong He², Jianfeng Gao², Li Deng², Alex Smola¹ ¹Carnegie Mellon University, ²Microsoft Research, Redmond, WA 98052, USA zichaoy@cs.cmu.edu, {xiaohe, jfgao, deng}@microsoft.com, alex@smola.org

VQA Challenges 2017

	R	By Answer Type		
	Yes/No -	Number -	Other -	Overall
UC Berkeley & Sony ^[14]	83.24	39.47	58	66.47
Naver Labs ^[10]	83.31	38.7	54.62	64.79
DLAIT ^[5]	83.25	40.07	52.09	63.68
snubi-naverlabs ^[25]	83.16	39.14	51.33	63.18
POSTECH ^[11]	81.67	38.16	52.79	63.17
Brandeis ^[3]	82.11	37.73	51.91	62.88
VTComputerVison ^[19]	79.95	38.22	51.95	62.06
MIL-UT ^[7]	81.98	37.56	49.75	61.77
klab ^[23]	81.53	39.27	49.61	61.69
SHB_1026 ^[13]	82.07	36.81	47.77	60.76
MMCX ^[8]			48.33	60.36
VT_CV_Jiasen ^[20] 25 to	am	2	47.87	60.33
LV-NUS[6]	Carr	13	46.1	59.54
ACVT_Adelaide ^[1]	81.07	37.12	45.83	59.44
UC Berkeley (DNMN) ^[15]	80.98	37.48	45.81	59.44
CNNAtt ^[4]	81.04	36.44	45.76	59.33
san ^[24]	79.11	36.41	46.42	58.85
UC Berkeley (NMN) ^[16]	81.16	37.7	44.01	58.66
global_vision ^[22]	78.24	36.27	46.32	58.43
vqateam-deeperLSTM_NormlizeCNN ^[27]	80.56	36.53	43.73	58.16
Mujtaba hasan ^[9]	80.28	36.92	42.24	57.36
RIT ^[12]	78.82	35.97	42.13	56.61
Bolei ^[2]	76.76	34.98	42.62	55.89
UPV_UB ^[18]	78.88	36.33	40.27	55.77
att ^[21]	78.1	35.3	40.27	55.34
vqateam-lstm_cnn ^[28]	79.01	35.55	36.8	54.06
UPC ^[17]	78.05	35.53	36.7	53.62
vqateam-nearest_neighbor ^[29]	71.73	24.31	22	42.73
vqateam-prior_per_qtype ^[30]	71.17	35.63	9.32	37.55
vqateam-all_yes ^[26]	70.53	0.43	1.26	29.72

	-	Answer 1 Number		Overall
Adelaide-Teney ACRV MSR ^[2]	85.54	47.45	59.82	69.13
DLAIT ^[6]	83.17	46.66	60.15	68.22
HDU-USYD-UNCC ^[7]	84.5	45.39	59.01	68.09
LV_NUS ^[9]	81.92	48.38	59.63	67.64
Athena ^[3]	82.88	43.17	57.95	66.67
lonely_shepherd ^[18]	82.32	43.06	56.71	65.84
UPMC-LIP6 ^[14]	82.07	41.06	57.12	65.71
JuneflowerlvaNlpr ^[8]	81.09	41.56	57.83	65.7
yudf2001 ^[28]	82.1	45.56	55.43	65.41
Adelaide-Tene	00 07	41.00	55.86	65.3
coral2017 ^[17] 24 tea	a re	10	55.3	65.05
	ווג	13	55.82	64.79
POSTECH ^[12]	79.32	40.67	55.3	63.66
yahia zakaria ^[27]	79.77	40.53	54.75	63.57
anon_team ^[16]	76.52	39.29	57.31	63.31
VQAMachine ^[15]	79.82	40.91	53.35	62.97
vqa_hack3r ^[21]	79.88	38.95	53.58	62.89
vqahhi_drau ^[22]	78.86	39.91	53.76	62.66
DCD_ZJU ^[5]	79.85	38.64	52.95	62.54
vqateam_mcb_benchmark ^[25]	78.82	38.28	53.36	62.27
CRCV_REU ^[4]	74.08	36.43	54.84	60.81
neural-vqa-attention ^[19]	69.77	35.65	47.18	55.28
vqateam_deeper_LSTM_Q_norm_I ^[23]	73.46	35.18	41.83	54.22
MIC_TJ ^[10]	69.22	34.16	35.97	49.56
vqateam_language_only ^[24]	67.01	31.55	27.37	44.26
UPC ^[13]	66.97	31.38	25.81	43.48
MultiLab ^[11]	62.98	29.97	16.68	37.33
vqateam_prior ^[26]	61.2	0.36	1.17	25.98

		Answer 1 Number		Overall
FAIR-A*[38]	87.82	51.59	63.43	72.25
HDU-UCAS-USYD[8]	87.61	51.92	63.19	72.09
SNU-BI ^[12]	87.22	54.37	62.45	71.84
casia_iva ^[27]	86.98	51.05	62.31	71.31
MIL-UT ^[9]	87	52.6	61.62	71.16
Tohoku CV Lab ^[13]	87.29	53.25	61.13	71.12
graph-attention-msm ^[33]	86.54	51.65	61.42	70.77
ut-swk ^[36]	86.34	54.26	60.8	70.68
vqabyte ^[39]	86.93	49.93	61.11	70.6
fs[31]	86.18	50.36	61.37	70.46
DCD_ZJU ^[5]	06.04	40.00	£1.58	70.4
Adelaide-Tei	~	~ ~	0.57	70.34
Adelaide-Tei 40 te	d	115	0.64	70.23
VQA-ReasonTensor ^{L-1}	00.01	70.17	J0.76	70.17
wyvernbai ^[45]	86.3	48.9	60.49	69.93
UPMC-LIP6 ^[15]	85.71	48.25	61.05	69.88
VQA_NTU ^[22]	86.03	48.65	60.4	69.74
nagizero ^[34]	85.89	48.54	60.45	69.7
CFM-UESTC ^[3]	85.71	47.96	60.72	69.69
caption_vqa ^[26]	86.2	47.26	60.41	69.67
cvqa ^[29]	86.1	47.42	60.38	69.63
yudf2010 ^[47]	85.42	50.24	59.66	69.31
nmlab612 ^[35]	85.61	47.74	59.85	69.21
TsinghuaCVLab ^[14]	85.42	48.92	59.65	69.16
CIST-VQA ^[4]	85.76	48.4	59.43	69.14
VLC Southampton ^[18]	83.56	51.39	59.11	68.41
University of Guelph MLRG ^[17]	84.64	47.65	58.07	67.95
RelVQA ^[11]	83.98	46.77	58.79	67.92
zhi-smile ^[48]	82.52	50.28	57.86	67.26
NTU_ROSE_USTC ^[10]	83.66	45.16	57.95	67.22
VQA-Machine+[20]	82.42	48.66	57.48	66.86

Outline

Overview of VQA

Problem with existing setup + models

A novel VQA Split

A novel VQA model

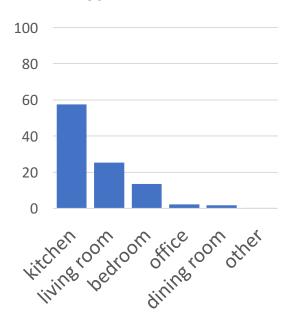
Conclude

Today's VQA models –

- are driven by superficial correlations in training data
- lack sufficient image grounding

Training Prior

Q-type: What room is



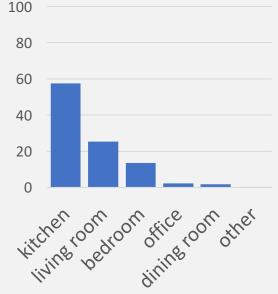
Train

Q: What room is this?

A: Kitchen

Training Prior

Q-type: What room is



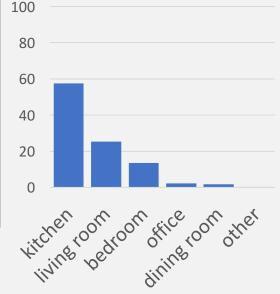
Train

Q: What room is this?

A: Kitchen

Training Prior

Q-type: What room is



Test

Q: What room is this?

A: Bathroom

Train

Q: What room is this?

A: Kitchen

Training Prior

Q-type: What room is

Test

Q: What room is this?

A: Bathroom

PredictionKitchen

- IID splits \rightarrow similar priors in train and test
- Memorization of priors does not hurt as much
- Problematic for benchmarking progress

Outline

Overview of VQA

Problem with existing setup + models

A novel VQA Split

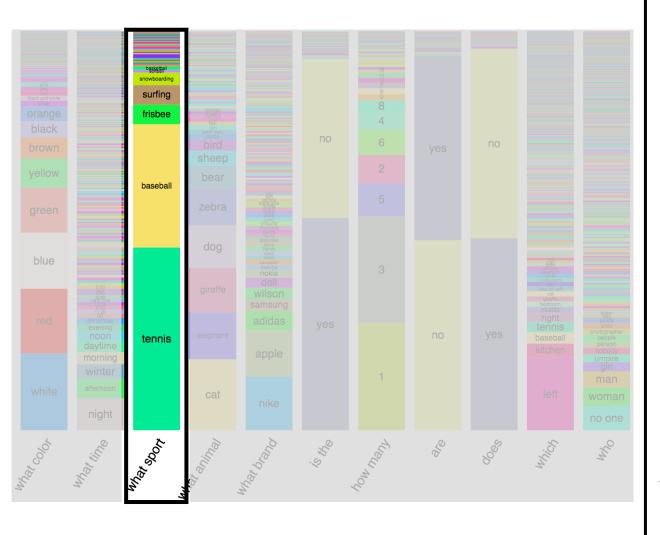
A novel VQA model

Conclude

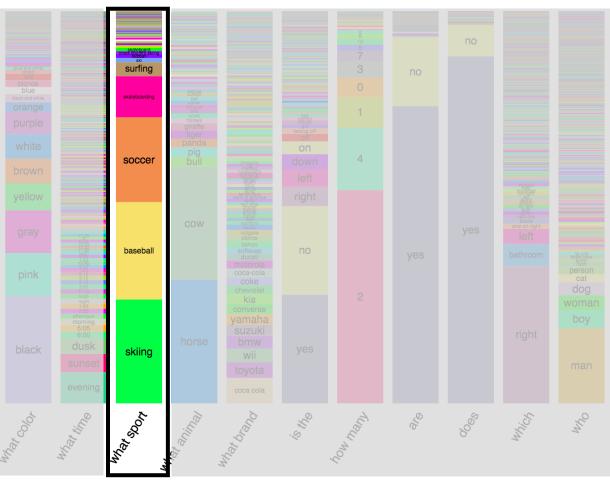
Meet VQA-CP!

- New splits of the VQA v1 and VQA v2 datasets
- Visual Question Answering under Changing Priors (VQA-CP v1/v2)

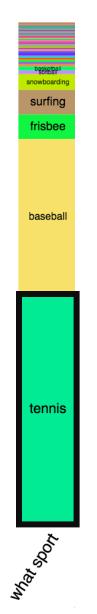
VQA-CP Train Split



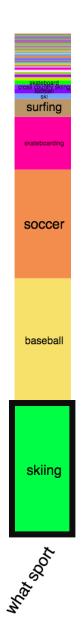
VQA-CP Test Split



VQA-CP Train Split



VQA-CP Test Split



VQA-CP creation

Train

```
("What color is the dog?", "white")
("What color is the cat?", "black")
```

Test

```
("What color is the plate?", "white") ("What color is the bag?", "black")
```

VQA-CP creation

Train

```
("What color is the dog?", "white")
("What color is the cat?", "black")
("What color is the plate?", "white")

Testhat color is the bag?", "black")
```

Performance of VQA models on VQA-CP

Model	Dataset	Overall	
d-LSTM Q + norm I (Antol et al. ICCV15)	VQA v1 VQA-CP v1	54.40 23.51	-31%
NMN	VQA v1	54.83	-25%
(Andreas et al. CVPR16)	VQA-CP v1	29.64	
SAN	VQA v1	55.86	-29%
(Yang et al. CVPR16)	VQA-CP v1	26.88	
MCB	VQA v1	60.97	-27%
(Fukui et al. EMNLP16)	VQA-CP v1	34.39	

Outline

Overview of VQA

Problem with existing setup + models

A novel VQA Split

A novel VQA model

Conclude

Inductive biases in model architecture to prevent relying on priors

- Designed to disentangle:
 - What can be said?

Inductive biases in model architecture to prevent relying on priors

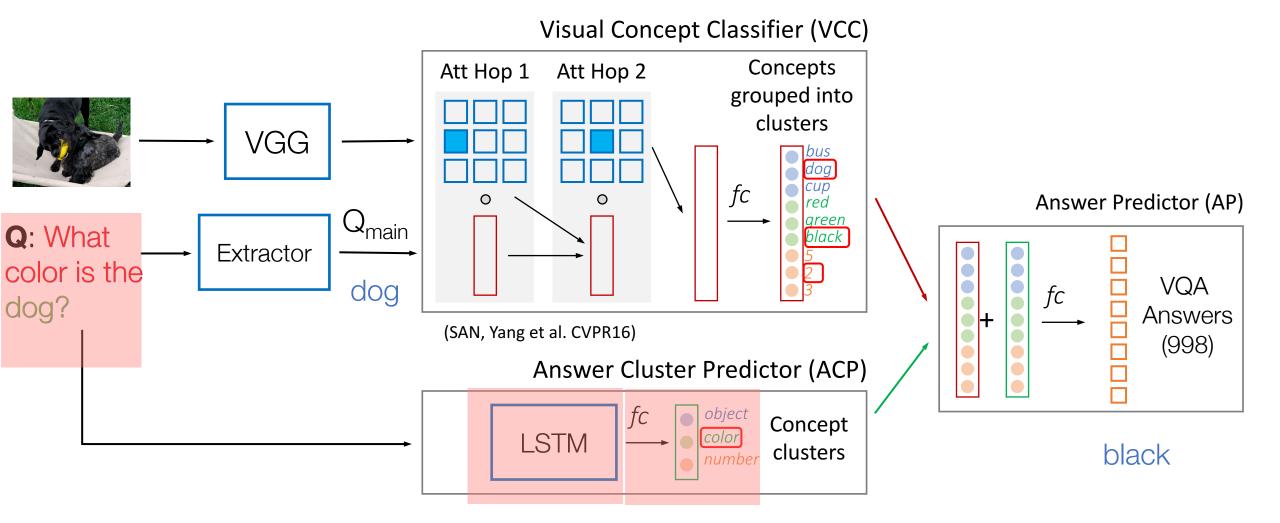
- Designed to disentangle:
 - What can be said?

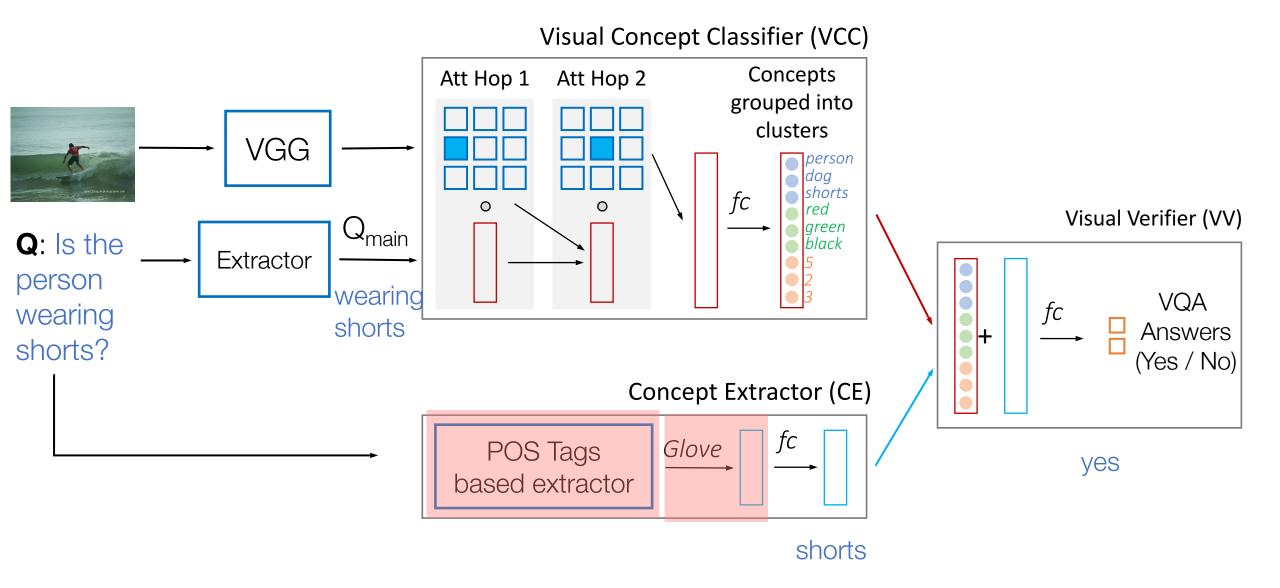
Inductive biases in model architecture to prevent relying on priors

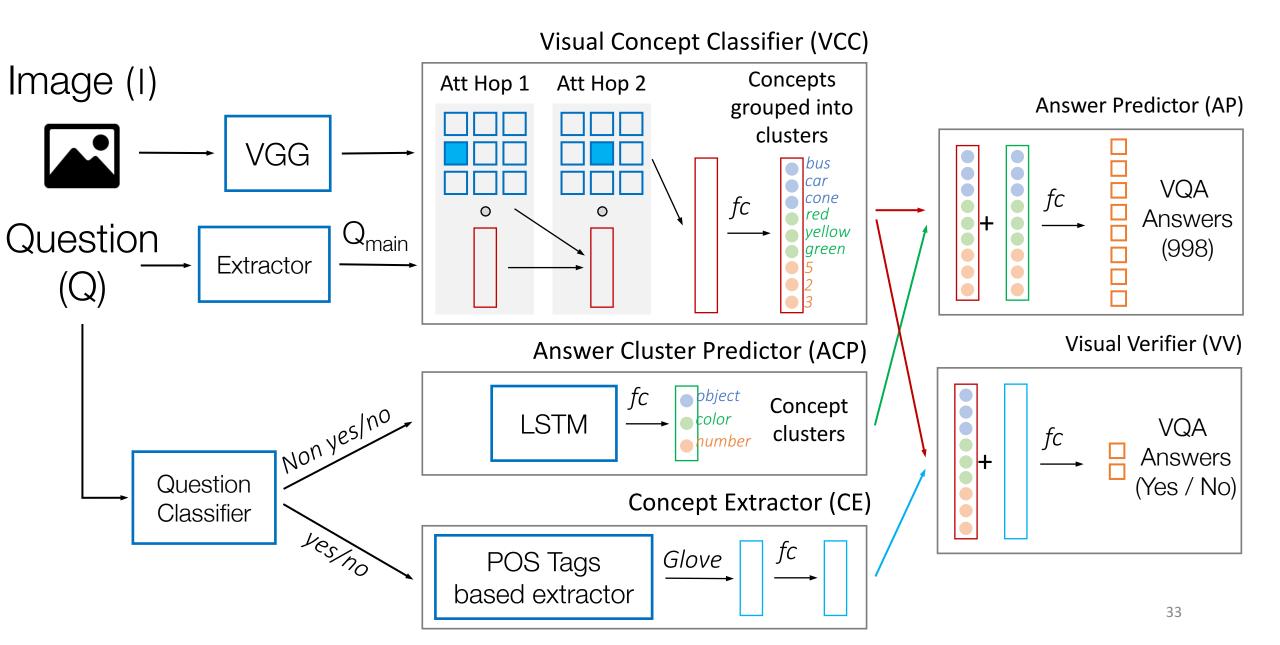
- Designed to disentangle:
 - What can be said?
 - What should be recognized?

• Inductive biases in model architecture to prevent relying on priors

- Designed to disentangle:
 - What can be said?
 - What should be recognized?







- Disentangles visual recognition from answer-type prediction
- Explicitly enforces visual grounding
- No direct pathway from question to final answer

Results

Dataset	Model	Overall	_
VQA-CP v1	GVQA (Ours) SAN (Yang et al. CVPR16)	39.23 26.88	_ }
VQA-CP v2	GVQA (Ours) SAN (Yang et al. CVPR16)	31.30 24.96	+6%

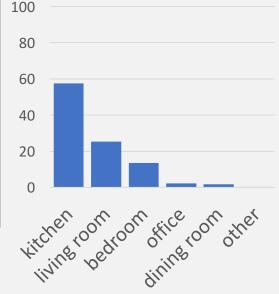
Train

Q: What room is this?

A: Kitchen

Training Prior

Q-type: What room is



Test

Q: What room is this?

A: Bathroom

PredictionBathroom

Q: What color are the bananas?

Q-classifier ACP VCC Answer

non yes/no color bananas
green green
many
food

Q: Is the person smiling?

Q-classifier

CE

VCC

Answer

yes/no

smiling

smiling

woman

Q: What color are his pants?

Q-classifier ACP VCC Answer

non yes/no color black

pants black

1

dirt

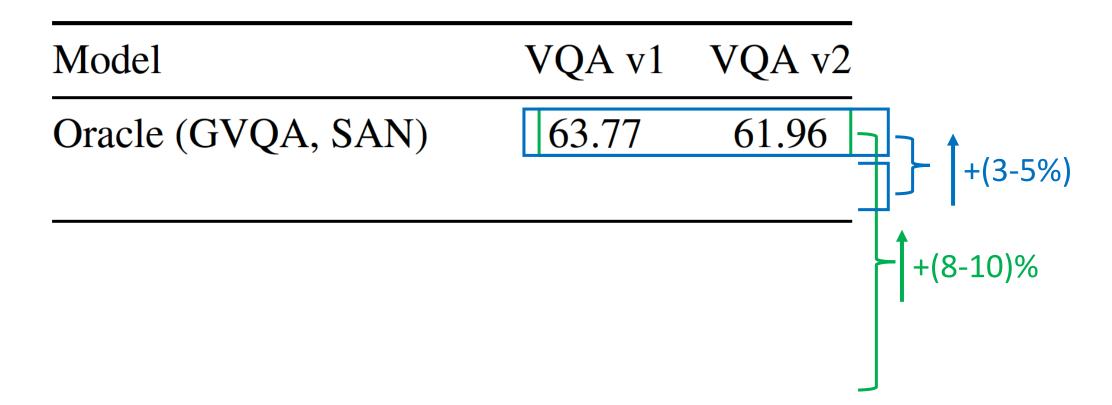
Q: What color are his pants?

Model	VQA v1	
SAN GVQA	55.86 51.12	-5%

Model	VQA v1		
SAN GVQA	55.86 51.12	-5%	

Dataset	Model	Overall	
VQA-CP v1	GVQA SAN	39.23 26.88	12% gain

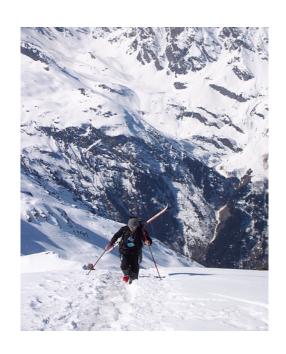
Model	VQA v1	VQA v2	
SAN	55.86	52.02	40
GVQA	51.12	52.02 48.24	-49



Model	VQA v1	VQA v2	
Oracle (GVQA, SAN) Oracle (SAN, SAN)	63.77 60.85	61.96 56.68	
Ensemble (GVQA, SAN)	56.91	52.96	+(0.4-0.5%)
SAN	55.86	52.02] '

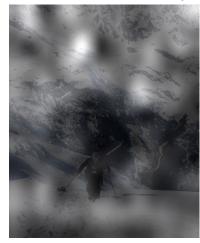
Transparency

- GVQA has interpretable intermediate outputs
- Insights into why it is predicting what it is predicting
- Enables system designer to identify causes of error

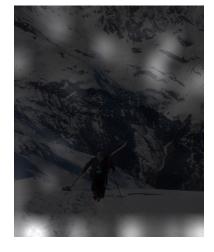


Q: What season is it?
A: winter

SAN's attention map



GVQA's attention map



VCC says:
white
skiing
winter
mountains

ACP says answer should be a season

Q: What is the most prominent ingredient?

A: pasta

SAN's attention map

GVQA's attention map

VCC says:
carrots
pasta
green
plate

ACP says answer should be a vegetable

Outline

Overview of VQA

Problem with existing setup + models

A novel VQA Split

A novel VQA model

Conclude

Summary

- Models largely driven by superficial correlations
- A new split of the VQA dataset -- VQA-CP
- A novel Grounded VQA model GVQA
- Moving forward: best of both worlds priors + grounding

Dataset, model and code at:

www.cc.gatech.edu/~aagrawal307/vqa-cp/

Thank you!

Questions?