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What	is	Visual	Question	Answering	(VQA)?
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VQA	v1	Dataset
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[Antol et	al.	ICCV	2015]



Papers	using	VQA

…	and	many	more
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VQA	Challenges
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2017

24	teams

2016

25	teams

2018

40	teams
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Problem	with	existing	setup	+	models

Today’s	VQA	models	–
• are	driven	by	superficial	correlations	in	training	data
• lack	sufficient	image	grounding

[Agrawal	et	al.	EMNLP	2016]
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Problem	with	existing	setup	+	models

• IID	splits	à similar	priors	in	train	and	test
• Memorization	of	priors	does	not	hurt	as	much
• Problematic	for	benchmarking	progress
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Meet	VQA-CP!

• New	splits	of	the	VQA	v1	and	VQA	v2	datasets	
• Visual	Question	Answering	under	Changing	Priors	(VQA-CP	v1/v2)
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VQA-CP	creation
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Train

Test

24



VQA-CP	creation

(“What	color	is	the	dog?”,	“white”)	
(“What	color	is	the	cat?”,	“black”)
(“What	color	is	the	plate?”,	“white”)	
(“What	color	is	the	bag?”,	“black”)	

Train

Test

25



Performance	of	VQA	models	on	VQA-CP

(Antol et	al.	ICCV15)

(Andreas	et	al.	CVPR16)

(Yang	et	al.	CVPR16)

(Fukui	et	al.	EMNLP16)

-31%

-25%

-29%

-27%
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Grounded	Visual	Question	Answering	(GVQA)	Model

• Inductive	biases	in	model	architecture	to	prevent	relying	on	priors

• Designed	to	disentangle:
• What	can	be	said? Q:	What	room	is	this?
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(SAN,	Yang	et	al.	CVPR16)



GVQA
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• Disentangles	visual	recognition	from	answer-type	prediction
• Explicitly	enforces	visual	grounding
• No	direct	pathway	from	question	to	final	answer
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Results

36

(Yang	et	al.	CVPR16)

(Yang	et	al.	CVPR16)

(Ours)

(Ours)

+12%

+6%



GVQA’s	output
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GVQA’s	output
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GVQA’s	output
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GVQA’s	output
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GVQA’s	output

Q: What color are his pants?
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Results	on	the	Original	Splits

42
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Results	on	the	Original	Splits
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Results	on	the	Original	Splits
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+(8-10)%

+(3-5%)



Results	on	the	Original	Splits
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+1%
+(0.4-0.5%)



Transparency

• GVQA	has	interpretable	intermediate	outputs
• Insights	into	why	it	is	predicting	what	it	is	predicting
• Enables	system	designer	to	identify	causes	of	error
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Q:	What	season	is	it?

ACP says answer 
should be a season

VCC says: 
white
skiing
winter

mountains

GVQA answers
winter

SAN answers
summer

SAN’s	attention	map GVQA’s	attention	map

A:	winter
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Q:	What	is	the	most	
prominent	ingredient?

ACP says answer 
should be a 
vegetable

VCC says: 
carrots
pasta
green
plate

GVQA answers
carrots

SAN answers
carrots

SAN’s	attention	map GVQA’s	attention	map

A:	pasta
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Summary

• Models	largely	driven	by	superficial	correlations
• A	new	split	of	the	VQA	dataset	-- VQA-CP
• A	novel	Grounded	VQA	model	– GVQA
• Moving	forward:	best	of	both	worlds	– priors	+	grounding
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Dataset,	model	and	code	at:
www.cc.gatech.edu/~aagrawal307/vqa-cp/

Thank	you!
Questions?
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