
Privacy-preserving boosting

Esma Äımeur, Gilles Brassard, Śebastien Gambs and Baĺazs Kégl
Département d’Informatique et Recherche Opérationnelle

Universit́e de Montŕeal
Montréal, QC Canada

{aimeur,brassard,gambsseb,kegl }@iro.umontreal.ca

Abstract

How to realize an algorithm of the boosting family when the dataset
is split between two participants, who although willing to collabo-
rate together for the accomplishment of a task of mutual benefit, wish
at the same time to preserve the privacy of their data? We propose
MABoost (Multiparty Abstention Boost), a distributed and privacy-
preserving boosting by abstention algorithm, as a potential answer to this
question.

1 Introduction

Data miningis a rising domain located at the crossroads of databases, statistics and artificial
intelligence. Its main goal can be resume asfinding useful information inside a vast amount
of data. At the Age of Information where huge databases are more and more common, it
has become very popular and is now used in a wide range of different areas such as finances,
sociology or astrophysics, just to name a few.

Secure multiparty computationis the branch of cryptography which deals withthe real-
ization of distributed tasks in a secure manner, where the definition of security can have
different flavors depending of the setting considered such as preserving the privacy of the
data and protecting the computation against malicious participants. Typically, a secure
multiparty computation is defined as computing a functionf(x, y) where the entryx is in
the hands of one participant and the entryy is in the hands of the other participant. For the
computation to be considered totally secure, the two participants must have learned nothing
after the realization of the task other than the output of the function itself and thea priori
information they had regarding the entriesx andy. [Yao 86] was the first to describe a
technique which enables the implementation of any probabilistic computation between two
participants in a secure manner. Later his results were generalized to the setting of multi-
ple participants [Chaumet al88]. It must be stated, however, that although universal and
general, these methods can be very inefficient and heavy in terms of communication com-
plexity when the entries are large and when the function to compute is relatively complex
to describe. When this occurs, it is often more desirable to rely on anad hocsolution.

In this paper, we will look at the encounter of these two domains, data mining and secure
multiparty computation, in the case where the task isthe construction of a classifier. In ma-
chine learning,classificationcan be defined as the task ofaccurately predicting the class of
an object from some observations about this object. Now consider the following scenario:



Alice and Bob are directors of two concurrent banks but they wish to collaborate together
in order to perform a task of mutual interest. For example, they might want to construct
an apparatus that is able to give an advice on whether or not a person is a good candidate
for a loan. Each of the two participants owns a database which contains all the confidential
data regarding their clients upon which the classifier has to be built. Clearly, if Alice and
Bob could put together their data (e.g. if Bob could send his database directly to Alice),
then the problem of building a classifier would be greatly simplified as no distributed or
security aspect would have to be taken into account. Unfortunately, this is not the situation
as Alice and Bob would like to protect as much as possible the sensitive information they
possess regarding their clients, even if they are willing to cooperate. Therefore they wish
to build a classifier based on their respective databases in a distributed but also confidential
manner, meaning that they want to disclose as little information as possible regarding their
respective clients. Notice that, obviously, the final classifier does leak some information
about the clients, as in the example given above where we want to distinguish between a
good payer and a bad payer, but for the protocol to be considered secure we only require
that it does not reveal more than it is possible to learn by looking directly at the description
of the final classifier. Comparing different types of classifiers, how well and in which sense
they preserve privacy [Evfimievskiet al03], is also a very relevant and interesting (and of
course complex!) question which we will not discuss in this paper.

In this paper we propose aboosting-like algorithm to create the final classifier. We will
also constrain ourselves to a security model where the participants aresemi-honest, also
called sometimespassiveor honest-but-curious, meaning that theyfollow the execution
of protocol without any attempt of cheating but on the other hand they try to learn as
much information as possible regarding the other participant’s data by looking at the bits
exchanged during the protocol[Goldreich 04]. This model is weaker than the one where
we allow some participants to be malicious and to cheat actively during the protocol, but it
is however a realistic model that is usually considered in the domain of privacy-preserving
data mining. Of course once a protocol is proved secure in this model, it is always possible
to attempt to upgrade its security towards a stronger model.

The outline of this paper is the following: first we will describe privacy-preserving data
mining and review the three approaches that cope with this problem in the Section 2. We
will briefly present the principles of boosting in the Section 3. In Section 4, we will define
MABoost (Multiparty Abstention Boost), a boosting algorithm with abstention working in
a distributed and secure manner. The complexity of the algorithm (both communication and
algorithmic) and its security will be studied respectively in the Sections 5 and 6. Finally
we give some possible generalizations to this algorithm in the Section 7.

2 Privacy-preserving data mining

Today, Internet makes it possible to reach and connect sources of information throughout
the world, but at the same time raises a lot of questions regarding the security and the
privacy of these sources of information.Privacy-preserving data miningis an emerging
field that studieshow data-mining algorithms can affect the privacy of the dataand tries to
find and analyze new algorithms that will respect and preserve this privacy. A review of
the problematic and the state-of-the-art of privacy-preserving data mining can be found in
[Verykioset al04] where some of the algorithms are reviewed and the three different trends
of approaches for dealing with privacy-preserving issues in data mining are identified.

The algorithms belonging to the first approach are usually based onheuristics that modify
the values of selected attributes on individual recordsin order to preserve privacy. This
technique of selective data modification is calledsanitizationand has been proved to be
NP-hard [Atallahet al99]. When making data sanitization, one always needs to find an
equilibrium between the amount of privacy and the utility lossresulting from this sanitiza-



tion process. In order to sanitize data, it is possible to make different modifications on the
data such asaltering the value of an attribute by eitherperturbing it or replacing it with
the “unknown” value,swappingthe values of attributes between individual records,use a
coarser granularityby merging several possible values, use asamplingstrategy, etc.

With the second approach, the data is modified again but in aglobal rather than a local
manner. Byadding noise drawn from a known distribution(e.g. gaussian or uniform) it is
possible to construct a classifier and to apply areconstruction algorithmwhich will try to
clean up the effect of the noise and construct a classifier which is as close as possible to
the one constructed on the original distribution [Agrawal and Ramakrishnan 00]. Here also
there will be a trade-off between thelevel of privacy(the noise added) and thequality of the
reconstructionwhich directly affects the performance of the classifier. This approach can
be extended in a natural way to the problem ofdensity estimation, where we are trying to
estimate directly the shape of the original distribution rather that building a classifier based
on this distribution. In [Agrawal and Aggarwal 01], the authors describe a reconstruction
algorithm based on the principle of Expectation-Maximization (EM) which accurately and
efficiently estimate the shape of the original distribution. In this example, it is also possible
to tune the intensity and the type of noise added in order to adjust the level of privacy and
the quality of the reconstruction obtained.

The third and last approach is very different in spirit from the first two and attacks
the problem with acryptography-based view[Clifton et al02]. After all any dis-
tributed and privacy-preserving computation can be considered as an instance of a se-
cure multiparty computation, and privacy-preserving data mining is no exception. In
[Lindell and Pinkas 02], the authors described an algorithm which computes amodified
version of ID3in a distributed and privacy-preserving manner. ID3 is well-established
algorithm which uses aentropy-based metricin order to construct a decision tree. The
version of ID3 that is computed is not the original ID3 algorithm directly but rather anap-
proximationof this algorithm. The approximation differs from the exact version by a factor
that is a parameter of the algorithm, and has a direct impact on the level of privacy.

The algorithm described in this paper has a cryptographic flavor and belongs to the third
approach. In our case, however, the classifier we are after is not a decision tree but rather
one which is a result of applying a boosting scheme.

3 Boosting

Boosting isa method which enables the creation of an efficient classifier by iteratively
combining several weak classifierswhose predictions have to be only slightly better than a
random guess. For example, aweak classifier(sometimes called aweak hypothesis) could
be a simple rule which makes a prediction of the class of an object by looking at the value
of a single attribute. Boosting can be seen as ameta-algorithmbecause it combines the
output of other algorithms.

The idea of boosting originated from the domain of PAC (Probably Approximately Cor-
rect) Learning [Valiant 84], which is at the crossing of theoretical computer science
and machine learning. However, it has recently seen a resurgence and became popu-
lar in the machine learning community with the appearance of the algorithm AdaBoost
[Freund and Schapire 97]. Since that time, this algorithm has been studied extensively both
theoretically and experimentally, and has been shown to have several interesting properties.
Among them, it has been proven that AdaBoostmakes the training error decrease exponen-
tially fast with the number of iterations, and also that it is able tomake the generalization
error continuing to get lower even after the training error has become zero. We will illus-
trate the concept of boosting algorithm by briefly reviewing how AdaBoost works.



Formally, a boosting algorithm takes as input atraining setand afamily of weak classifiers
and return as output a final classifier which is alinear combination of several weak clas-
sifiers. The training set is a collection ofn data points {(x1, y1), (x2, y2), ..., (xn, yn)}
where each data point(xj , yj) is a pair composed of theobjectitself xj and its associated
classyj . The objectxj is usually represented asa vector ofk attributeswherexji denotes
the value of the attributei for this particular objectj. For the rest of the paper, we will
limit ourselves to attributes whose values arereal numbers of finite precision, but there are
ways of adapting the algorithm for all kinds of datatypes includingintegers, binary values
or evensymbolic ones. For thebinary classification, the associated classyj belongs to the
set{−1,+1} where the label “−1” stands for thenegative classand “+1” for the positive
class.

One of the key features of a boosting algorithm is the ability toallocate weights to the
training pointswhich typically representhow hard the points tend to be to classify. If the
weight of a data point is high, then it means that it is difficult to classify it correctly. On
the contrary if its weight is low, then it means that it is relatively easy correctly classify this
point. Letwj denote the weight of thejth data point. The weights are always normalized,
that is,

∑n
j=1 wj = 1. Initially, to indicate that all the data points are equally difficult (or

easy) to classify, the weight of the all the data points are set to1
n .

Boosting can be seen as aniterative process that at each iteration tries to find the optimal
weak classifier for the current distribution of the weights on the data points. By optimal,
we mean a weak classifier that minimizesthe weighted error of the current distribution.
Let ht be the weak classifier of thetth iteration andwt

j the weight of thejth point at
the tth iteration. Minimizing the weighted error at thetth iteration simply means finding
the weak classifierht such thatεt =

∑n
j=1 wt

jI{ht(xj) 6= yj} is minimal, whereεt is the
weighted error of thetth iteration andIht(x}j) 6= yj} is the indicative function which is 1 if
its argument is true, and 0 otherwise.

The weight ofht, calledαt, indicates how good are the predictions of this classifier and is
directly linked toεt by the formula1

2× ln 1−εt

εt . After each iteration, the weights of the data
points will be updated. If a data point was correctly classified then its weight will decrease,
and if it was misclassified its weight will increase. The magnitude by which points will
change directly depends on the value ofεt. After T iterations, AdaBoost will output a final
classifier which has the formfT (.) =

∑T
t=1 αtht(.).

There exist numerous versions and extensions of AdaBoost. In this paper we will use a
variant proposed by [Schapire and Singer 99] which allows the classifier not only to answer
“−1” or “ +1”, but also to abstain by returning “0”. This variant is a particular instance of
a more general algorithm which allows the weak classifier to output a real number from
[−1,+1]. The absolute value of the output can be interpreted as the confidence that the
classifier has in its prediction. If the classifier returns “0”, this naturally means that it
abstains.

4 MABoost

In general, boosting-like algorithms implicitly assume the whole set of data to be avail-
able in the hands of one person at the beginning. In our case, we make the assumption
that thedataset is split equally between the two participantsand we would like to de-
sign an algorithm that is able to perform boosting while protecting the privacy of the data
of the participants at the same time. Therefore our goal is to imagine a distributed and
privacy-preserving boosting algorithm. MABoost (Multiparty Abstention Boost), which is
described in the following sections, falls in this category. Designing a boosting algorithm
that can abstain on some data was not the motivation at the beginning, but it naturally fol-



lows from the necessity to have a distributed and privacy-preserving algorithm. Note that
this does not mean thateverydistributed and privacy-preserving boosting algorithm has to
use abstention.

The weak classifiers that we use aredecision stumps. A decision stump isa very simple
decision tree with one root and two leaves, for example it could be “if attributei of x <
threshold thenx belongs to class C1 elsex belongs to class C2”. This family of classifiers
may seem very simplea priori but it has been empirically proved that one could obtain
excellent results by using them as weak classifiers with a boosting algorithm.

MABoost is an iterative algorithm where each iteration consists of five steps.

Step 1: Finding the ideal decision stump for each attribute

Before trying to agree on a common attributei, Alice and Bob first computes independently
from their respective databases the ideal decision stump for each existing attribute. Leth

(i)
A

be the weak classifier of Alice for the attributei and letε(i)A be the weighted error of this

classifier on her database.h
(i)
B andε

(i)
B are defined in the same manner for Bob.

Step 2: Agreeing on a common attribute

Alice and Bob are now searching for an attributei such thatε(i)A < 1
2 andε

(i)
B < 1

2 simul-
taneously. If such an attribute does not exist, they want to be aware of that and if there
are one or more attributes that meet this requirement they want to find one determined at
random among all possible ones.

To make it easier to apprehend, we will rephrase this problem into a totally equivalent well-
studied problem. Suppose Alice and Bob each have a agenda with a list ofk time slots.
Associated with each time slot is a binary value 0 or 1 indicating if this time slot is already
filled or if it is still free. If there are one or more time slots that are free for both, they want to
find one chosen at random among all the possibilities, and if there is no time slot where they
are both free, they want to detect this situation. The problem of Alice and Bob is that they
are not good friends enough to trust each other to the point where one could simply send
his entire agenda to the other. Even worse, they do not want to disclose any unnecessary
information about their agenda while they try to solve this problem. This problem calls
for a solution based on a secure multiparty computation where the functionf(x, y) that
they want to compute takesx (the agenda of Alice) andy (the agenda of Bob) as input and
return the indexi of a time slot if a common free time slot exists or “you will never be able
to meet each other” if there is no such time slot. We call this task the “random rendez-
vous problem”. In communication complexity, this problem was proposed and analyzed
in [Kalyanasundaran and Schnitger 87] and it was proven that it requires a communication
of bits of Θ(n) in the average case. In this last paper, however, there was no interest
in any confidentiality or security aspect. It is important to note thatany distributed and
privacy-preserving protocol has to use at least as many bits of communication as the best
non privacy-preserving distributed protocol, therefore this result implies that any privacy-
preserving protocol for this task will have a communication complexity of at leastΩ(n)
bits, but possibly more, because security usually comes with a price.

Alice and Bob will encode their agendas as the bit stringsx andy, respectively, wherex
andy ∈ {0, 1}k, andk is the number of time slots in their agenda. For1 ≤ i ≤ k, xi

equals 1 if Alice is free during theith time slot and equals 0 if she has already scheduled
something for that time.yi is defined in the same manner for Bob. Suppose that Alice and
Bob are given the protocol ORBAN (for the OR of all Bitwise ANd) [Yao 86] which can
securely compute the function

∨k
i=1(xi ∧ yi) where

∨
denotes the usual OR which is true

if one or moreof its arguments are true and∧ denotes the AND function which returns
trueonly if both of its arguments are true. Semantically, we will consider the value “1” to



be equivalent to “true” and the value “0” to represent the value “false”. ORBAN(x,y) will
return 1 if Alice and Bob have a common time slot and 0 otherwise.

Consider now the following random rendez-vous protocol which uses ORBAN as a sub-
routine:

RandomRendezVous(x,y)
v← ORBAN((x1, ..., xk), (y1, ..., yk))
If v = 0 then

Return “you will never be able to meet each other”
Else

Permutex andy using the same random permutation
s← 1
p← k ÷ 2
While p ≥ 1 do

v← ORBAN((xs, ..., xs+p−1), (ys, ..., ys+p−1))
If v = 0 then

s← s + p
p← p÷ 2

Returns

We can assume without loss of generality that the total number of time slotsk is a power of
two. If it is not the case, it is always possible to add some imaginary time slots which are
already filled in order to reach this condition. First, Alice and Bob will try to use ORBAN
with their whole agendas and they will know if the function returns 0 that they have no
empty time slot in common. On the contrary, if this first call to ORBAN returns 1 then
this means that there is at least one common time slot which is free for both. Once they
have this confirmation, they can search for this time slot by applying a procedure similar
to binary search and which tries to locate the empty common slot by putting aside half of
the search space at each iteration. Therefore inlog k iterations, they find a common empty
time slot. For this time slot to be chosen at random among all the possible free time slots,
Alice and Bobrandomizetheir inputs by both applying the same random permutation on
the indices of their time slots. By doing so, they can avoid the situation where they always
find the common free time slot whose index is the lowest, and instead they will find a free
time slot randomly distributed among all the possible ones.

Imagine now that we use the random rendez-vous protocol not with an agenda, but rather
with a list where a slot is set to 1 if the participant was able to find a weak classifier
with weighted error below the threshold12 for the attribute associated to this slot, and to
0 otherwise. If Alice and Bob each make such a list and then apply the random rendez-
vous protocol, they will be able to discover a common attribute where they each have a
weak classifier with error bounded by12 if such an attribute exists, and otherwise they will
know that such an attribute does not exist. In the latter case, they will stop the execution of
MABoost and return as output the final classifierf t−1.

Step 3: Combining two weak classifiers into a weak classifier that can abstain

Once Alice and Bob have agreed on an attributei, they will combine the two weak clas-
sifiers they each computed for this attribute and that only described their own data into a
classifier that will cover the whole set of data and whose weighted error is strictly bound
from above by1

2 . Let hA be the weak classifier of Alice which is in the form “If attribute’s
value< θA then object belongs to class C1 else object belongs to class C2”, where C1 and
C2 represent respectively the positive class and the negative class, orvice et versa. We call
εA the weighted error of this classifier. For Bob, we definehB , his weak classifier, and
εB its associated weighted error in the same manner. Note that in the case of the binary
classification,hB can take two forms; either it follows the same form as Alice classifier,



meaning it can be written as “If attribute’s value< θB then object belongs to class C1 else
object belongs to class C2”, or the classes C1 and C2 are reversed in the rule’s description.
It is important to notice that in the first case,hA andhB both agree on their prediction if
the value of the attribute is below theminimum(θA, θB) OR above themaximum(θA, θB),
whereas in the second case their classifiers agree if the value of the attribute is above the
minimum(θA, θB) AND below themaximum(θA, θB). It is this very simple but important
observation that makes it possible to combine efficiently the two classifiers together.

Suppose without loss of generality thanθA < θB and thathA is the rule “If attribute’s
value< θA then object belongs to class C1 else object belongs to class C2”. In the first
case (if the decision stumps of Alice and Bob agree in the classes C1 and C2 described
by the clauses “then” and “else”), then the two classifiershA andhB are merged into one
classifier̂h described by the following rule:

If attribute’s value< θA

Then object belongs to class C1
Else if attribute’s value> θB

Then object belongs to class C2
Else abstain

If on the other hand,hB is in the opposite case and describe by a rule which has the form
‘If attribute’s value< θB then object belongs to class C2 else object belongs to class C1”,
then the combined classifierĥ will look like:

If θA < attribute’s value< θB

Then object belongs to class C2
Else abstain

In both cases, we will obtain a classifierĥ which returns the result ofhA andhB when
they both agree and abstains otherwise. The weighted error of this classifier will be strictly
below 1

2 . It is now possible to apply boosting with this classifierĥ which covers the whole
space of data.

Step 4: Computing the weight of the merged classifier

If we assign arbitrarily the labels “−1” and “+1” to the classes C1 and C2, and the label
“0” to an abstention, then̂h returns a value from the set{−1, 0,+1}. This situation of
boosting by abstention is studied in details in [Schapire and Singer 99], and in particular
the rules for computing the weight of the merged classifier and how to update the weights
of the data points are described there. Letε− be the weighted error of the classifierĥ, ε0
its weighted abstention rate andε+ the weighted rate of good answers. Alice and Bob can
easily determine these three values by applyingĥ on their own databases and then putting
together their results. We calledεA− the weighted error of Alice obtained by usingĥ on her
database,εA0 her weighted abstention rate andεA+ the weighted rate of good predictions.
εB−, εB0 andεB+ are defined similarly for Bob. Remember that we assume that Alice
and Bob each has half of the whole dataset, therefore we have the simple relations that
ε− = εA− + εB−, ε0 = εA0 + εB0 andε+ = 1 − ε0 − ε−. The weightα of the merged
classifier only depends onε− andε+ and is equal to12 × log ε+

ε−
.

In order to smooth the predictions and to avoid the case whereα could become extremely
large or even infinite in magnitude whenε− is very small or equal to zero, it has been
proposed to poseα has being equal to12×log ε++δ

ε−+δ , whereδ is a small appropriate constant.

Step 5: Updating the weight of the data points



Updating the weights of the data points can be madeindependentlyby Alice and Bob once
they know the description of the merged classifierĥ and the weightα assigned to this clas-
sifier. All the points wherêh abstains will keep the same weights, all the well-classified
points will see their weights decrease, and all the misclassified points will see their weights
increase. More precisely, the weight of the well-classified points will be multiplied by
exp (−α) and those of the misclassified points byexp (α). Finally, the weights are nor-
malized so that

∑n
j=1 wj = 1.

Once the step 5 is finished, Alice and Bob can choose to start a new iteration or to stop the
algorithm and to ouputf t. The number of iterationst of MABoost they choose to perform
can be decided in advance or chosen adaptively depending on some criteria such has the
performance of the current classifier they have. The number of iterations also influences
the description length of the final classifier, and therefore it is possible to play with this
parameter in order to tune the level of privacy.

5 Complexity

When looking at the complexity of a distributed protocol, one can be interested in two
different measures of complexity: thecommunication complexity, meaning the number of
bits exchanged during the realization of the protocol, and the more classicalalgorithmic
complexitywhich looks at the processing time required from the participants.

5.1 Communication complexity

To define the quantity of communication used in one iteration of MABoost means toquan-
tify the number of bits exchangedduring this iteration. First, it is easy to observe that the
only steps which require some communication between Alice and Bob are the second, the
third and the forth. During the first step, Alice and Bob compute independently their ideal
weak classifiers for each attribute and therefore they do not need to speak to each other. The
same situation occurs during the fifth step where they do not need to engage in a dialog in
order to reweight their data points. In fact, the only step that costs in terms of commu-
nication is the second one where they have to agree on a common attribute. Letk be the
number of attributes of an object. Alice and Bob will use the random rendez-vous protocol
to find the common attribute upon which they build theĥ classifier. This protocol requires
log k calls to the protocol ORBAN in the worst case and one call to ORBAN at best if they
are able to discover directly that they will not be able to agree on a common attribute. If
this case occurs then they stop MABoost and return directlyf t−1. Note that this situation
can be considered marginal as it happens at most once. The average complexity of the ran-
dom rendez-vous protocol is the same as the worst case complexity, and is in the order of
Θ(complexity of ORBAN protocol × log k). There exists more than one ways of im-
plementing the ORBAN protocol, but if we use in a straightforward manner the technique
described in , this complexity will be ofΘ(n) wheren is the length of the bit strings entered
as inputs to the protocol. The overall complexity of the random rendez-vous protocol will
therefore beΘ(k log k). During the third and forth steps, some communication will also
occur, and the cost of this communication isΘ(1) because the exchange of the descriptions
of hA andhB necessary for the creation ofĥ and communicatingεA−, εA0, εB− andεB0

can be done with a number of bits that is constant for a fixed finite precision. Therefore the
cost of steps 3 and 4 is negligible compared to step 2, and the dominance of the latter make
the overall cost of one iteration of MABoost being equal toΘ(k log k). The cost of the
whole protocol will beΘ(tk log k), wheret is the total number of iterations of MABoost.



5.2 Algorithmic complexity

The only moment where Alice and Bob require some work from their respective computers
is at the beginning of the iteration, during the first step when they both have to compute the
best ideal weak classifiers for each attribute. The naı̈ve way to find the best weak classifier
for an attribute is to first sort the objects according to this attribute and then to find the
optimal threshold by looking at the objects in order to find the thresholdΘ at which the
weighted error is minimized. What is more costly is to sort the objects, which can be done
in Θ(n log n) if we are only concerned by one attribute, the rest of the operations being neg-
ligible compared to this cost. As the sorting has to be repeated for each attribute, the global
cost for thek attributes will be inΘ(kn log n) for the first iteration. Note that is enough to
sort once the objects for each attribute during the first iteration as it is possible to store the
results in order to use them for the remaining iterations. The storage of these values has
a space complexity ofΘ(kn). Computing the error of thêh classifier and reweighing the
points can be done inΘ(n) as it only requires looking at each individual data point once in
order to perform both tasks. Therefore we have a complexity ofΘ(kn log n) for the first
iteration because of the sorting process and a complexity ofΘ(kn) for the remaining iter-
ations. The overall time complexity of MABoost is a function oft the number of iterations
and is in the order ofΘ((t + log n)kn). Notice that this complexity increases linearly with
the number of attributes and so if this number is big, then the processing time of MABoost
may become large, also.

6 Security of the protocol

A multiparty protocol can be considered totally secure if the execution of this protocol does
not reveal more information than the output of the protocol itself. In cryptography, this is
called thesimulation paradigm[Goldreich 04]. Intuitively, this means that if the view of
the protocol of a participant can be efficiently simulated solely based on his input and the
output of the protocol, then the different participants learn nothing from the execution of
the protocol other than its output. A different definition of security exists which is based
the comparison of the output of a real protocol and that of an ideal protocol where an
incorruptible third party computes the function in place of the participants and then returns
the result to them. In this definition, the main idea is to find a real protocol which emulates
the behaviour of the ideal protocol. In this paper, however, we will not be interested in this
definition as it is equivalent to the first one for the setting of semi-honest participants which
is the one considered in this paper.

Imagine a simulator that has access to the input of Alice, her database, and to the output of
the protocol, the final classifier. Would it be possible for this simulator to create a transcript
of the execution of the protocol which would be indistinguishable from a real transcript
of the execution of the protocol? If we can answer positively to this question, then this
means we can assert that the protocol privately computesf , in particular, in the sense of
the first definition given in the previous paragraph. For the analysis of the security of the
protocol, we only have to concentrate on the second, third and fourth steps as they are the
only steps where communication takes place. It is important to observe that in the case of
MABoost the process of creating the final classifier (the output of the protocol), is iterative
and that the information exchanged in the clear between Alice and Bob during steps 3 and
4 is explicitly contained inside the description of this final classifier. This observation gives
us for “free” the security aspect of these two steps. Indeed, why care to protect the privacy
of some information during the execution of the protocol when this information is going
to be revealed at the end of the protocol anyway. Therefore, the only step we have to be
careful about for the analysis of the security of the protocol is the second step.

The second step consists of the random rendez-vous protocol which heavily relies on the



ORBAN protocol as a subroutine. For this step to be considered secure, Alice and Bob
must learn nothing other than the indexi of a common attribute where they both have a
weak classifier with weighted error lower than12 . Suppose that the ORBAN protocol is
secure. The first call to ORBAN will only reveal to Alice and Bob whether or not they
can agree on a common attribute. If it is not the case, then they stop the protocol and they
have learned no extra information. On the contrary if Alice and Bob are able to pursue
the protocol, they select half of the attributes and make another call to ORBAN. From this
call they will learn whether or not there is at least one attribute they can agree upon in
this half of the attribute space. If ORBAN returns 1, they learn that there is at least one
potential attribute in the part of the attribute space but nothing else about the other half
of the space. On the contrary, if ORBAN returns 0, this means that they know that there
is no attribute they can agree upon on the considered part of the attribute spaceand that
there is at least one such attribute in the other part of the space. In this case, the protocol
has leaked at little bit of extra information. As there will belog k calls to ORBAN at the
maximum, the protocol will reveallog k bits of extra information before the two agree on
a common attribute. This cannot be considered a totally privacy-preserving protocol, and
though small we acknowledge that some information is leaked. To which extend someone
could do something useful with this type of information is still an open question. Note
that it may possible to have a total security by using more complicated and sophisticated
protocols which solve the set intersection problem [Freedmanet al04] but this would come
with an increase of the communication cost.

7 Possible generalizations and conclusion

In this paper, we have presented a protocol which performs a boosting-like algorithm in a
distributed and privacy-preserving manner in the restricted case where we only deal with
two participants and where the weak classifiers have the form of decision stumps. There
is at least two natural ways of generalizing this protocol, first by allowing the number of
participants to be greater than two, and also by looking at other families of weak classifiers
such as for example more complex decision trees or neural networks with few units in the
hidden layer.

To extend this protocol to the case ofn participants, withn ≥ 2, we could for example
define at each iteration a classifierĥ which carries out a majority vote from the individual
weak classifiersh1, h2, ...,hn of the different participants. The classifier could for example
return the vote of the majority of the classifiers when this majority is above a threshold set
to 1

2 + δ and abstain otherwise,δ being a well-chosen constant between 0 and1
2 whose

value can be tuned in order to increase the confidence of the classifierĥ in its prediction.
Notice that the protocol described in this paper is a particular instance of this more general
method.

It could be interesting also to test this algorithm with other types of weak classifiers and
to compare the results. Particularly, it would be interesting to observe empirically how
the choice of the type of weak classifiers, the number of bits required to describe these
classifiers (which in a sense is a measure of their complexity), and the number of iterations
influence the convergence speed of MABoost. For example, it may be conceivable that
with richer family of weak classifiers such as decision trees generated by the algorithm
C4.5, one can obtain an identical or better performance than with the decision stumps
in fewer iterations, meaning that the convergence would be faster. However this would
come at the price of exchanging more bits of communication at each iteration because
the decision trees inferred by C4.5 require a greater (and possibly unbounded) number
of bits to be described than the decision which only requires a constant number because
of their inherent simplicity. One could define a criteria to take into account at the same
time the number of iterations and the expected size needed to describe the weak classifiers,



which would be able to compare two possible choices of family of weak classifiers even
in case of equal performance. Intuitively, we are searching for weak classifiers that can
be described with few bits but which at the same time, yield a good performance after a
“sensible” number of iterations of MABoost. This would make it possible to bound directly
the number of bits exchanged during the protocol and therefore will give an upper bound
on the quantity of information which has been communicated.

For some families of weak classifiers, there must exist ways of combining weak classifiers
without requiring the resulting classifierĥ to abstain on a part of the dataset. Being able to
combine two or more weak classifiers into a weak classifier that do not abstain and which
answer “−1” or “ +1”, permits to directly apply the original AdaBoost in a distributed
manner without using an abstention variant of boosting. Potentially the convergence could
be a little bit faster in practice in this situation.

The work we have described in this paper is still in progress right now and among several
experimentations, we are planning to compare empirically on several datasets the original
AdaBoost algorithm with MABoost in terms of performance and convergence speed. This
will help us evaluate how much the privacy-preserving aspect has an influence on the per-
formance of the final classifier. We are also currently investigating the privacy-preserving
part of step 2, and in particular we would like to design a efficient randomized version of
the set intersection problem.

References

[Agrawal and Ramakrishnan 00] R. Agrawal and R. Ramakrishnan, “Privacy preserving
data mining”,Proceedings of the ACM SIGMOD on Management of Data, pp. 439 –
450, 2000.

[Agrawal and Aggarwal 01] D. Agrawal and C.C. Aggarwal, “On the design and quantifi-
cation of privacy preserving data mining algorithms”,Proceedings of the 20th ACM
Symposium of Principles of Databases Systems, pp. 247 – 255, 2001.

[Atallah et al99] M.J. Atallah, E. Bertino, A.K. Elmagarmid, M. Ibrahim and
V.S. Verykios, “Disclosure limitations of sensitive rules”,Proceedings of the IEEE
Knowledge and Data Engineering Workshop, pp. 45 – 52, 1999.

[Chaumet al88] D. Chaum, C. Cŕepeau and I. Damgard, “Multiparty unconditionally se-
cure protocols”,Proceedings of the 20th Annual Symposium on the Theory of Comput-
ing, pp. 11 – 19, 1988.

[Clifton et al02] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin and M.Y. Zhiu, “Tools for
privacy preserving distributed data mining”,SIGKDD Explorations4(2), pp. 28 – 34,
2002.

[Evfimievskiet al03] E. Evfimievski, J.E. Gehrke and R. Srikant, “Limiting privacy
breaches in privacy preserving data mining”,Proceedings of the 22nd ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Databases Systems, 2003.

[Freedmanet al04] M. Freedman, K. Nissim and B. Pinkas, “Efficient private matching
and set intersection”,Proceedings of Eurocrypt’04, pp. 1 – 19, 2004.

[Freund and Schapire 97] Y. Freund and R. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting”,Journal of Computer and System
Sciences55(1), pp. 119 – 139, 1997.

[Goldreich 04] O. Goldreich,Foundations of Cryptography: Volume II Basic Applications,
Cambridge University Press, 2004.

[Kalyanasundaran and Schnitger 87] B. Kalyanasundaran and G. Schnitger, “The proba-
bilistic communication of set intersection”,Proceedings of the 2nd Annual IEEE Con-
ference on Structure in Complexity Theory, pp. 41 – 47, 1987.



[Lindell and Pinkas 02] Y. Lindell and B. Pinkas, “Privacy preserving data mining”,Jour-
nal of Cryptology15, pp. 177 – 206, 2002.

[Schapire and Singer 99] R. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions”,Machine Learning37(7), pp. 297 – 336, 1999.

[Valiant 84] L. Valiant, “A theory of the learnable”,Communications of the ACM27(11),
pp. 1134 – 1142, 1984.

[Verykioset al04] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin and M.Y. Zhiu, “State-
of-the-art in privacy preserving data mining”,SIGMOD Record33(1), pp. 50 – 57, 2004.

[Yao 86] A.C. Yao, “How to generate and exchange secrets”,Proceedings of the 27th Sym-
posium on Foundations of Computer Science27(11), pp. 162 – 167, 1986.


