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We investigate the expressiveness of the microfacet model for isotropic
BRDFs measured from real materials by introducing a non-parametric fac-
tor model that represents the model’s functional structure but abandons re-
stricted parametric formulations of its factors. We propose a new objective
based on compressive weighting that controls rendering error in high dy-
namic range BRDF fits better than previous factorization approaches. We
develop a simple numerical procedure to minimize this objective and han-
dle dependencies that arise between microfacet factors. Our method faith-
fully captures a more comprehensive set of materials than previous state-
of-the-art parametric approaches, yet remains compact (3.2KB per BRDF).
We experimentally validate the benefit of the microfacet model over a naı̈ve
orthogonal factorization, and show that fidelity for diffuse materials is mod-
estly improved by fitting an unrestricted shadowing/masking factor. We also
compare against a recent data-driven factorization approach [Bilgili et al.
2011] and show that our microfacet-based representation improves render-
ing accuracy for most materials while reducing storage by more than 10×.
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1. INTRODUCTION

In addition to the accurate simulation of global light transport, syn-
thesizing realistic images requires true-to-life models of local re-
flectance. The Cook-Torrance microfacet model [Cook and Tor-
rance 1981] is one such model ubiquitous in computer graphics,
that represents the local reflection from a surface as the product of
lower-dimensional factors derived from the statistical distribution
of micro-scale geometry. We investigate the validity of this model
from real-world measurements, using the MERL database [Ma-
tusik et al. 2003] of isotropic reflection. This neglects anisotropic
materials with directionally aligned surface micro-geometry like
scratches (on brushed metal) or fibers (in hair or fabric), but still
comprises a wide and interesting class of appearance.

We test whether the microfacet model spans the space of
isotropic reflectance or at least provides benefit over other models,
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and whether assumptions commonly made in applying this model
reduce its ability to capture real materials. In particular, we focus on
the question of how existing parametric models used for its factors
[Cook and Torrance 1981; Walter et al. 2007; Bagher et al. 2012;
Löw et al. 2012] may limit its representational power.

To do this, we devise a new representation and a model fitting
strategy based on the underlying structure of the microfacet model.
By separating the model’s functional structure from specific, con-
strained forms of its factors, we show the resulting generalized rep-
resentation is still compact and improves rendering fidelity for a
more comprehensive set of real-world materials. We call it the non-
parametric factor microfacet model. The factors we obtain are com-
plex and not realizable by previous parametric models (Figure 6).

Data-driven factorization [McCool et al. 2001; Lawrence et al.
2004; Lawrence et al. 2006; Bilgili et al. 2011] is another alter-
native to parametric microfacet models for compressing unwieldy
BRDF measurements (35MB in double precision for each material
in the MERL database). Surprisingly, these methods often fall short
of simple parametric fits though they command enormously more
fitting variables. There are at least two possible reasons for this.
Existing approaches apply generic factorizations not based on mi-
crofacet theory. They also apply simple optimization metrics whose
fits produce visibly high error when rendered in our experiments
(see Figure 7, bottom row). Fitting with many variables is compu-
tationally difficult and motivates simple, easy-to-solve optimization
metrics, such as a weighted sum of squared errors.

We solve the metric problem by formulating a new objective
which automatically specializes itself to each material’s high dy-
namic range (HDR) measurements. Like previous work in data-
driven factorization, it takes a simple weighted sum of squared er-
rors to make minimization tractable, but it combines a new com-
pressive weight (Equation 11) with standard material-independent
weights based on the BRDF’s parametric volume form (Equation 9)
and its importance in the local rendering integral (Equation 10).
In essence, we extend techniques in robust statistics to increase fi-
delity in the BRDF’s darker but broader areas relative to its bright
peaks, dramatically reducing error when the fits are rendered. An-
other way to understand this idea is that rendering fidelity is im-
proved by minimizing relative rather than absolute BRDF fit error.

We also develop a new alternating weighted least squares
(AWLS) solver to perform the minimization. While similar to pre-
vious approaches in tensor approximation [Lawrence et al. 2006;
Kolda and Bader 2009; Bilgili et al. 2011], our approach handles
nonlinear dependencies between factor variables arising in the mi-
crofacet model. It is simple to implement, rapidly converging, ro-
bust to random initialization, and completely automatic with no
per-material parameter tweaking needed. It yields single-term fits
that are consistently more accurate than previous models (see Fig-
ure 1), both quantitatively and visually, and requires only 3.2KB
per BRDF, a compression factor of more than 5000.

For each color channel, our model comprises three tabulated 1D
vectors, one for the shadowing-masking G, microfacet distribution
D, and Fresnel F factors, as well as the scalar diffuse and specular
coefficients ρd and ρs (Equation 3). We investigate two formula-
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Fig. 1. Comparing (left to right) [Bagher et al. 2012], [Löw et al. 2012], [Bilgili et al. 2011], our method, to BRDF measurements. The inset visualizes
squared error. The Buddha uses GREEN-METALLIC-PAINT, the bumpy sphere is CHROME-STEEL, and the floor is POLYETHYLENE [Matusik et al. 2003].
Compared to parametric approaches and data-driven non-microfacet factorization, our fit better matches ground-truth. Note the lack of brightness in the floor’s
background, the incorrect hue and bright underside of the bumpy sphere, the washed out appearance of Löw’s GREEN-METALLIC-PAINT fit, and the failure of
[Bilgili et al. 2011] to improve upon a simple parametric model (visually and in PSNR) despite its vastly increased degrees of fitting freedom.

tions forG: one that determines it fromD using a standard shadow-
ing model [Smith 1967] (G-from-D), and another that is completely
data-driven (independent-G). We also compare a naive model not
based on microfacet theory: a simple orthogonal factorization in
the measurement coordinates (Equation 4). Though it fits with only
half as many optimization variables, G-from-D provides rendering
results comparable to the naı̈ve model while the independent-G
method provides a superior rendering match using 3/4 as many
variables. The independent-G model also yields a moderate in-
crease in rendering fidelity compared to the G-from-D model for
many of the more diffuse materials. These results demonstrate the
benefit of the microfacet model’s non-orthogonal but physically-
motivated factorization, fit using a robust metric that compensates
for measurement magnitude.

Our findings (e.g. Figure 1) confirm that existing parametric
models are too weak to capture a broad range of realistic re-
flectance, and that generalizing to non-parameterized factors im-
proves rendering fidelity and captures a larger set of materials.
Furthermore, the combination of our representation and fitting
metric improves rendering results even compared to state-of-the-
art data-driven factorizations with over 10× as many parameters.
Only a few MERL materials are not visually captured by our non-
parametric model; we show that this is because their specular be-
havior can not be factored into the independent product of the nor-
mal distribution (D) and Fresnel (F ) functions as microfacet theory
predicts. This limitation is fundamental and can not be overcome by
substituting more sophisticated parametric models for its factors.

2. PREVIOUS WORK

Appearance modeling spans four decades of research and we dis-
cuss only the most relevant previous work. We forward readers to
Dorsey et al.’s comprehensive review [2008].

Data-driven models. BRDF data can be directly captured
with a gonioreflectometer [Marschner et al. 1999]. Matusik et
al.’s [2003] MERL dataset comprises a large set of (100) isotropic
BRDFs captured at high angular resolution (1.5 million samples),
although sampling noise and the well-known difficulty measur-
ing at grazing angles require corrective post-processing. Burley
has further analyzed error in this dataset and conjectured addi-
tional sources (e.g., cloth wrinkles when laying over a sphere,
some materials like GREASE-COVERED-STEEL are almost cer-

tainly anisotropic, etc.) [Burley 2012; McAuley et al. 2012]. Rec-
ognizing both the limitations and benefits of physical measurement,
we test the expressive power of the microfacet model using this
dataset, assuming it as ground truth. We show that a carefully de-
signed weighting scheme (Section 4.1) is necessary to make BRDF
fitting robust to measurement errors in real-world HDR data.

Parametric and microfacet models. Analytic BRDF models
are lightweight but approximate alternatives to data-driven repre-
sentations. Blinn [1977] introduced a now commonly used spec-
ular reflection model, Schlick [1994] incorporated Fresnel effects,
and Lafortune et al. [1997] proposed a more powerful and realis-
tic phenomenological model. Pacanowski et al. [2012] use rational
functions to obtain low error fits to some measured examples, but
their model is costly to fit and unstable across materials.

Ngan and colleagues [2005] were the first to experimentally
validate parametric models using least-squares fits to the MERL
dataset, and provided guidelines for using parametric versus data-
driven models. Since then, more sophisticated parametric models
have been introduced [Ashikhmin and Premoz̆e 2007; McAuley
et al. 2012; Bagher et al. 2012; Löw et al. 2012] but none con-
sistently obtain good fits across real-world BRDFs.

Cook and Torrance [1981] proposed the microfacet model for
computer graphics and analytically derived the shadowing-masking
factor from a statistical distribution of orientations on micro-scale,
perfectly specular facets. Their model’s factors and their angular
arguments will be discussed further in Section 3. Schlick [1994]
approximated the Cook-Torrance model factors with more efficient
rational functions. Different parametric forms for the individual
factors in this model have been investigated, including more effi-
cient Fresnel approximations [Schlick 1994; Lazányi and Szirmay-
Kalos 2005] and different shadowing-masking formulations [Smith
1967; Brown 1980; Ashikmin et al. 2000; Bourlier et al. 2002]

Recent work proposes two-parameter models for the micro-
geometry distribution factorD via the shifted Gamma [Bagher et al.
2012] or ABC [Löw et al. 2012] functions. We compare in part
to these two fits as the most accurate parametric models to date.
Bagher et al. build on the work of Ashikhmin and Premože [2007],
which assumes D(θh) to be the dominant factor and fits it from
the 1D retro-reflective (θd = 0) BRDF slice. For the Fresnel fac-
tor, Ashikhmin et al. fit the Schlick model using rendering compar-
isons, while Bagher et al. fit a more general Fresnel model using
the θh = 0 BRDF slice. Bagher et al. thus fit BRDFs using just two
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2D data slices within θh, θd ∈ [0, 70◦]. Löw et al. fit over the 3D set
of angular samples restricted to θh, θd ∈ [0, 80◦]. We fit over the
entire angular range, ensuring fidelity even for glancing reflections.

Löw et al. notably apply a type of compressive metric by trans-
forming scaled BRDF samples ρ̂ = cos θi ρ via log(1 + ρ̂) be-
fore summing squared errors. Nielsen et al. [2015] also transform
samples by applying a log to the ratio of BRDF measurements
and the median BRDF value over the entire MERL dataset.1 Log-
transformed values are better suited to principal component analy-
sis, which they use to accelerate material capture. These nonlinear
transforms preclude our simple AWLS minimization strategy and
are challenging to apply to tabulated models with more than a few
parameters; no previous data-driven factorization method has done
so. We compare Löw’s microfacet model, fit using both their metric
and ours (Löw et al. also propose another model based on Rayleigh-
Rice theory that they report is generally a little less accurate than
their microfacet-based one.) We find that our metric is comparable
to Löw’s, with the advantage that ours can be efficiently minimized
for tabulated models, so that our gain comes from the more general
non-parametric model we propose.

Microfacet models with a tabulated D (microfacet distribution)
factor have also been proposed [Ngan et al. 2005; Ashikhmin and
Premoz̆e 2007; Wang et al. 2008; Ghosh et al. 2008]. These models
are only partially “non-parametric”, retaining a parametric model
for the Fresnel factor F based on a single index of refraction [Cook
and Torrance 1981] and a shadowing factorG derived fromD using
a simple model. We study the effectiveness of general tabulated
factors for all three microfacet factors.

Dupuy et al. [2015] efficiently fit microfacet slope distributions,
which are analytically related to the surface’s underlying normal
distribution function, from the retro-reflective slice (θd = 0) of
real-world BRDF data. They then compute the remaining micro-
facet factors based on a parametric model. Dupuy et al. identify
the harder problem of independently fitting all microfacet factors
(which they refer to as “inversion”), which is our contribution.

Factored representations. Several BRDF factorizing strate-
gies have been proposed; each varies in the form and parameteriza-
tion of its factors, its fitting objective and method, and the tradeoff
it yields between accuracy and storage. Steigleder et al. [2002] tab-
ulate an anisotropic Phong model [Ashikhmin and Shirley 2000]
to make it more suitable for interactive rendering. Kautz and Mc-
Cool [1999] apply decomposition to a BRDF matrix (optionally)
retabulated according to the halfway parameterization and with 2D
directions unfolded into 1D column-vectors, resulting in a one-term
product of these 2D factor column-vectors. McCool et al. [2001] fit
a one-term model of three 2D factors in log space. Their fitting im-
plicitly enforces non-negativity and de-emphasizes high BRDF val-
ues. Instead of fitting in log space, we re-weight a simple sum-of-
squares metric. This avoids problems with near-zero measurements
and magnification of small differences with the inverse (exponen-
tiation) transform. To accelerate importance sampling, Lawrence
et al. [2004] propose a sum of 2D products for view variation and
a nested sum of 1D products parameterized by halfway elevation
and azimuthal angles for light variation (139-332KB per material).
They adopt non-negative matrix factorization (NMF) [Lee and Se-
ung 2000] to fit their factors. Our model uses two orders of mag-
nitude less memory. We observe that BRDF fitting of single-term
models naturally avoids negative components with only trivial con-
straint enforcement in an otherwise unconstrained minimization.

1The measurements and median are cosine-weighted, similarly to Löw et
al., and slightly biased to avoid numerical issues due to the log transform.

Lawrence et al.’s inverse shade trees [2006] enforce an overall
functional structure to infer purely 1D factors. They consider the
broader class of spatially-varying reflectance while we focus on
point-wise BRDFs. Their model is not based on microfacet the-
ory but is instead similar to the naive model we propose. We note
that each microfacet factor is not a direct function of a separate
independent variable, so that our approach can be interpreted as a
“non-orthogonal” tensor factorization. Specifically, non-linear de-
pendencies arise from the shadowing-masking (G) factor’s depen-
dence on θi or θo (see Equations 1 and 2). TheG factor also appears
twice, each time as a function of a different derived angle. Finally,
the G-from-D version of our model determines G using a double
integration of the microfacet distribution factor D.

Ben-Artzi et al. [2006] consider editing/rendering of a factored
representation fit using existing metrics and techniques. As with
other methods, their factorization is not based on microfacet theory,
but rather a two-term, two-factor expansion without a G factor in
the specular term. We believe our microfacet factors support similar
intuitive user editing but have not yet investigated this.

Bilgili et al. [2011] apply Tucker tensor decomposition to mea-
sured BRDF data in order to obtain the product of four tabulated 1D
factors, parameterized via the elevation and azimuthal angles of the
halfway and outgoing vectors. Their model involves a (multi-term)
sum of 20 factor products, for a total of 80 1D factors, requiring
77KB (double precision) per material and making it difficult to edit
the resulting representation. We directly compare our model and
show that ours provides better rendering fidelity for most materials
in the MERL dataset. Our fits also require less than a tenth their
storage. Note that Bilgili already includes rendering comparisons
showing improvement over [Lawrence et al. 2004].

Without compressive weighting, fitting factors to measured
BRDFs with a simple sum of squares metric, as proposed by
Lawrence et al. or Pacanowski et al., leads to high rendering error
in single-term product models (Figure 7). This conclusion broadly
aligns with previous work using compressive BRDF transforms
[McCool et al. 2001; Löw et al. 2012; Nielsen et al. 2015].

Weighted linear regression. While robust techniques for re-
gression analysis are ubiquitous in statistics and experimental anal-
ysis [Graybill and Iyer 1994; Carroll and Ruppert 1998], previous
work in CG reflectance modeling ignores the well-known problem
of heteroscedasticity [White 1980]: the fact that statistical variables
(i.e. BRDF samples) differ in terms of variances and expected mea-
surement errors. A solution to this problem is weighted linear re-
gression, where weights are inversely proportional to sample vari-
ance. Often weights are simply made a direct function (e.g. recipro-
cal squared) of the dependent variable or measured response, called
least-squares percentage regression [Tofallis 2008]; see [NIS 2012]
and [EPA 2003, Section 11.5.2] for specific examples. We extend
these ideas to define a compressive weighting in Section 4.2; it ap-
plies a novel compressive numerator to ensure the weighting does
not grow arbitrarily as a BRDF measurement approaches 0.

3. MICROFACET MODEL

We use a canonical local coordinate frame with surface normal n =
z = (0, 0, 1). We denote the light direction by i, view direction by
o, and halfway vector as the bisector of these two vectors: h =
(i + o)/‖i + o‖ (see Figure 2). All directions are 3D unit vectors.

An isotropic BRDF is invariant to rotation of the halfway vec-
tor around the normal, and can be parameterized by three an-
gles (θh, θd, φd) derived from n, i, and o. The angle between
the halfway vector and normal is denoted θh ∈ [0, π/2] where
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Fig. 2. Isotropic BRDFs are functions of θh, θd, and φd. The angle φd
(not shown) represents rotation of the view vector o (or light vector i)
around the halfway vector h, out of the plane formed by h and n.

cos θh = n ·h. The angle θd ∈ [0, π/2] is formed between the view
or light direction and the halfway vector: cos θd = i · h = o · h.
Finally, the angle φd ∈ [0, π] denotes the rotation of the view
direction about h. It is defined by cosφd = o⊥h · n⊥h , where
u⊥v = u−(u·v)v

‖u−(u·v)v‖ denotes perpendicular projection of u onto v.
The angle between the light direction and normal, θi = cos−1(i ·

n), and between the view direction and normal, θo = cos−1(o ·n),
can be determined from these three angular coordinates via:

cos θi = cos θh cos θd + sin θh sin θd cosφd, (1)
cos θo = cos θh cos θd − sin θh sin θd cosφd. (2)

BRDF samples must lie in the positive hemisphere of n; in other
words, θi, θo ∈ [0, π/2]. The above formulas are easily derived us-
ing the parameterization introduced in the appendix. BRDFs satisfy
reciprocity: reflectance is unchanged if i and o are exchanged. This
implies that θi and θo can also be exchanged; the above formulas
follow the conventions of the MERL dataset access code.

Given this parameterization, our microfacet-based model repre-
sents BRDFs in terms of three 1D factor functions via

ρM (θh, θd, φd) = ρd + ρs

(
D(θh)F (θd)G(θi)G(θo)

cos θi cos θo

)
. (3)

The D factor is called the normal distribution function (NDF) and
represents the probability that a microfacet normal makes an an-
gle of θh with the macro-scale normal n. The F factor is called
the Fresnel factor and models reflectance variation in the θd pa-
rameter. The geometric factor G models shadowing, masking, and
inter-reflection effects, in terms of the obliquity of the view or light
direction, θi or θo. Reciprocity implies that the same G factor must
be shared for both the θi and θo arguments.2 For conciseness, we
absorb the division by π usually present into ρd and ρs.

Equation 3 represents a single-term product model. In particular,
the structure of the microfacet model presumes that the BRDF’s
dependence on θh, θd can be decomposed into a single product of
independent functions D(θh) and F (θd). Other data-driven (and
non-microfacet-based) factorization methods such as [Lawrence
et al. 2004; Lawrence et al. 2006; Bilgili et al. 2011] apply a multi-
term model: sums of multiple products over many such factors,
with potentially more fitting power. Multi-term models are diffi-
cult to fit, and do not necessarily realize this potential, as we will
demonstrate in Section 5. Editing and manipulating the parameters
of such multi-term models is also more difficult.

To test the microfacet model’s validity, we define a naı̈ve model

ρN (θh, θd, φd) = ρd + ρsD(θh)F (θd)H(φd), (4)

2Previous work defines a general 2D geometric factor which is approxi-
mated by the product of 1D factors: G(θi, θo) ≈ G1(θi)G1(θo). To sim-
plify notation, we use G for the 1D geometric factor rather than G1.

that factorizes directly in terms of the angular coordinates. We addi-
tionally compare against the bivariate model [Romeiro et al. 2008]

ρB(θh, θd, φd) = B(θh, θd) (5)

that tabulates over θh and θd. This model is a 2D factorization and
much less compact than our 1D microfacet models, despite com-
pletely ignoring dependence on φd. It will help us to analyze the
limitations of our principal model for specular materials.

We fit to the MERL database [Matusik et al. 2003] contain-
ing measurements for 100 different isotropic materials. Each ma-
terial measurement is stored in a uniformly-sampled 3D block
of (θh, θd, φd) coordinate space with an angular sampling of
90×90×180, for each rgb color channel. In single precision, this
amounts to 17.5MB of data (originally 35MB in double precision).
The θh dimension is further transformed via

θ′h =
√
θh. (6)

This provides denser sampling close to 0, in the region of the spec-
ular highlight; θ′h is then uniformly sampled in [0,

√
π/2].

We fit each color channel of the model separately in (3). For each
color channel, we must solve for three vectors each containing 90
components (representing sampled factor functions D, F , and G),
and two scalars (ρd and ρs). Our choice for the number of fac-
tor samples (90) is made so as to match the MERL database’s an-
gular sampling resolution, and assumes the database already sam-
ples each material’s reflectance adequately. Quantizing each vector
component and scalar using single precision floating point (four
bytes) yields a size of 3 · (3 · 90 + 2) · 4 = 3264 bytes per material.
In fact, dynamic range clamping (discussed in Section 4.3) requires
only 20, rather than 32, bits per value. The naive model’s H fac-
tor tabulates 180 samples to match the MERL sampling resolution,
yielding 4344 bytes per BRDF. The bivariate model is sampled at a
resolution of 90×90×3, yielding 97200 bytes per BRDF.

4. MODEL FITTING

For each rgb color channel, each of the D, F , G, or H factors
becomes a vector representing a 1D sampled function. D, F , and
G consist of 90 vector components while H comprises 180 com-
ponents. Each factor component is a single optimization variable
denoted by subscript indexing, e.g. Dk. The diffuse and specular
coefficients (ρd and ρs) yield two additional optimization variables
per color channel. We explain how to solve for these variables, de-
tailing both the objective function as well as how we minimize it.

4.1 Fitting objective

We minimize the following sum over all BRDF measurements:

E =
∑
j

wj
(
ρ(θh, θd, φd)j − ρ∗j

)2
, (7)

where ρ∗j is a BRDF measurement, (θh, θd, φd)j is its parametric
coordinates, and ρ is evaluated from (3), (4), or (5) by accessing the
factor component vectors at the specified parametric coordinates.

The weight wj is given by the product of three subweights as

wj = wV (θh, θd, φd)j wI(θh, θd, φd)j wC(ρ∗j) . (8)

We detail the three subweights below; global constants in these def-
initions do not affect the minimization and can be ignored. We vi-
sualize the subweight functions across BRDF samples in Figure 3.

We include all measured samples in the objective except those
for which θi, θo > 89◦, where cosines in the denominator of (3)
cause numerical instabilities.
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Volume form weighting. The first subweight arises from the
three-angle parameterization of isotropic BRDFs. It is given by

wV =
√

8 sin2 θd (cos2 θd + sin2 θd cos2 φd) dθh dθd dφd . (9)

Though prior work mentions weighting by solid angle (see e.g.
[Ngan et al. 2005]), the proper weighting is determined by the vol-
ume form of the mapping between the (θh, θd, φd) parameter space
and the (i,o) output space of pairs of unit directions. This formula
is derived in the appendix; we believe it has not appeared before in
the CG literature. Since the BRDF parameterization is in terms of
θ′h rather than θh, (6) implies that dθh = 2θ′h dθ

′
h = 2

√
θh dθ′h.

BRDF importance weighting. The second subweight is

wI = cos θi cos θo. (10)

The cos θi factor arises because it always multiplies the BRDF
in the local shading integral over incident lighting directions. The
cos θo factor is included for reciprocal symmetry and since surface
points are more likely to appear as their normal aligns with the
view direction. This and similar weighting schemes have been used
in earlier work [Lafortune et al. 1997; Ngan et al. 2005].

Compressive weighting. There are many reasons to expect
more measurement error near a higher-magnitude BRDF sample,
including blurring, diffraction, distortion, transmission inefficiency,
registration/calibration errors, and veiling glare [Talvala et al. 2007]
in the acquisition. This is why errors in optical systems are es-
timated using signal to noise ratio (SNR), a logarithmic measure
relative to signal strength.

The compressive subweight specifies that we should not try as
hard to fit higher (and thus likely higher error) values ρ∗j as we do
lower ones, and is given by

wC =

(
f
(
ρ∗j/ρ̄; log 2

)
ρ∗j/ρ̄

)p
, (11)

where f is a compressive function of the form

f(x;α) = 1/α (1− e−αx) , (12)

and ρ̄ is the weighted median of the BRDF with weight given by
the product wV wI . The power p is typically chosen in the range
[1, 2]: the larger p, the higher the weight given to darker regions of
the BRDF relative to brighter regions. We always use p = 1.4.

The compressive function in (12) is shown in Figure 4. It maps
all non-negative real numbers x to the finite interval [0, 1/α]. The
larger α, the more compressive the transformation; i.e., the more
higher values are squeezed closer to the function’s asymptote of
1/α. We fix α = log 2 in order to map the BRDF weighted median
to the center of the output range (i.e., to 1/2α).

Note that f(x) ≤ x and limx→0 f(x)/x = 1. The maximum
value of wC is therefore 1. From this maximum, at x = ρ∗j/ρ̄ = 0,
it decreases monotonically to 0 as the BRDF value ρ∗j →∞. There
is no difficulty with weights getting arbitrarily high as ρ∗j → 0, as
is the case with the simpler alternative of weighting by the mea-
surement reciprocal wC = (ρ∗j)

−p used in previous work [Tofallis
2008; EPA 2003]. Away from 0, (11) is essentially identical to this
simpler alternative scheme.

4.2 Fitting method

Alternating weighted least squares (AWLS) is an iterative proce-
dure that repeatedly updates each factor in sequence until conver-
gence. To update a single factor, we hold everything else constant
and solve for its optimal weighted least-squares value. This guar-
antees that the iteration proceeds downhill in the objective.

To understand how each factor component is computed, consider
the simplified objective

E(x) =
∑
j

wj (zj − x yj)2 , (13)

where x represents an individual factor component to be solved for.
The minimizing solution is

x =
∑
j

wj yj zj

/∑
j

wj y
2
j . (14)

For each factor component, we therefore accumulate the weighted
sums representing the above numerator and denominator over all
BRDF samples mapping to that component’s parametric location.
The optimal value of the component is then given by the division
in (14).

Specifically, assume we want to update the factor D. The other
factors, as well as ρd and ρs, are held constant. A component of
D, labeled Dk, corresponds to a particular value of its argument
(θh)k.
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MERL indep.-G G-from-D naı̈ve [Löw] [Löw] [Bagher12] [Ngan05] [Bilgili11]
our metric orig. metric

Fig. 5. BRDF fit visualizations. The three rows represent materials (top to bottom): ALUMINUM, VIOLET-RUBBER and POLYURETHANE-FOAM. Only the
single slice φd = 90◦ is shown. The visualization uses tone-mapping via the compressive function in (12).

ALUMINIUM - red channel VIOLET-ACRYLIC - green channel POLYURETHANE-FOAM - blue channel
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Fig. 6. Microfacet factors for three example materials. (left to right): ALUMINUM, VIOLET-ACRYLIC, and POLYURETHANE-FOAM. The factors plotted are
(top to bottom): D, G, and F . The corresponding BRDFs are visualized in Figure 5.

Let the parametric locations of all BRDF samples whose θh co-
ordinate maps to (θh)k be indexed by j, yielding (θd, φd, θi, θo)kj .
To update Dk we seek the least-squares best solution to the
weighted system of equations indexed by this j:

ρ∗kj = ρd + ρs
Dk [F (θd)]kj [G(θi)]kj [G(θo)]kj

[cosθi cos θo]kj
,

where, as before, equation j is weighted by wj . The optimal solu-
tion is given by (14) with

{x, yj , zj} =

{
Dk,

ρs[F (θd)]kj [G(θi)]kj [G(θo)]kj
[cosθi cos θo]kj

, ρ∗kj − ρd
}
.

The F factor, and H in the naı̈ve model, are updated similarly.
To solve for ρd and ρs, we observe that the optimal solution to

the simplified objective

E(a, b) =
∑
j

wj (a+ b xj − yj)2 (15)

can be computed by Cramer’s rule as:

a =

∥∥∥∥ ∑
j wj yj

∑
j wj xj∑

j wj xj yj
∑
j wj x

2
j

∥∥∥∥/∥∥∥∥ ∑
j wj

∑
j wj xj∑

j wj xj
∑
j wj x

2
j

∥∥∥∥, (16)

b =

∥∥∥∥ ∑
j wj

∑
j wj yj∑

j wj xj
∑
j wj xj yj

∥∥∥∥/∥∥∥∥ ∑
j wj

∑
j wj xj∑

j wj xj
∑
j wjx

2
j

∥∥∥∥ . (17)

If the optimal a < 0, we clamp it to 0 and apply the following
simpler formula to determine an optimal b via

b =

∑
j wj xj yj∑
j wj x

2
j

. (18)

The optimization proceeds by updating each factor component
(e.g.D or F ) using (14), and then updates ρd and ρs which become
a and b in (16) and (17). We show results of this fitting procedure
for a few representative MERL materials in Figure 5, with their
corresponding derived factors in Figure 6.

Fitting the bivariate model is also similar, but can be computed in
a single step without iterative relaxation. Each of the components
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MERL ground truth
NICKEL COLOR-CHANGING-PAINT1 MAROON-PLASTIC WHITE-FABRIC2

with compressive weighting

(a
)

(b
)

(c
)

1mm

1mm

1mm

1mm

1mm

1mm

1mm

1mm

without compressive weighting

(a
′ )

(b
′ )

(c
′ )

1mm

1mm

1mm

1mm

1mm

1mm
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Fig. 7. Rendering results for BRDF fits with and without compressive weighting. We compare four materials, from left to right NICKEL, COLOR-CHANGING-
PAINT1, MAROON-PLASTIC, and WHITE-FABRIC2. For specular materials (leftmost three columns), compressive weighting (middle row) is necessary to obtain
a fit that matches the rendered ground truth; the reflectance match is very poor without it (bottom row). This is true for all three of our non-parametric models:
(a) independent-G, (b) G-from-D, and (c) naive. For more diffuse materials (rightmost column), results with and without compressive weighting are similar.

in the 2D B matrix in (5) is computed by a simple weighted sum
over all BRDF samples mapping there via the formula in (14). More
specifically, each θh, θd component is computed over all samples in
φd with weights determined by (8), as before. This fitting method
differs from [Romeiro et al. 2008], which takes a simple average
over all φd samples.

4.3 Solving for G

G can either be treated as an independent tabulated factor or de-
rived from D using a shadowing model [Smith 1967; Brown 1980;
Bourlier et al. 2002; Walter et al. 2007; Bagher et al. 2012]. When
evaluatingG or the cosine factors in (3), we apply linear interpola-
tion in the θi or θo spaces. This is not necessary for D and F since
all BRDF samples ρ∗j are uniformly parameterized in θ′h and θd,
and map exactly onto the corresponding vector component.

G-from-D. Determining G from D introduces a nonlinear de-
pendence in the relaxation, so that the solved-for D is no longer
optimal. We address this problem by computing D using the stan-
dard AWLS step, deriving G from it, and then explicitly check-
ing whether the objective function has decreased. If not, we ap-
ply a simple 1D minimization based on golden section search
(GSS) [Press et al. 2007] that is guaranteed to reduce the objective
along the line from D’s previous state to its new one.

We computeG fromD by first normalizingD to be a probability
density function (PDF) via D̃(θh) = D(θh)/D̄ where

D̄ = 2π

∫ π/2

0

D(θ) cos θ sin θ dθ. (19)

Then G(θ) = (1 + Λ(cot θ))−1 where

Λ(µ) =
1

µ

∫ π/2

tan−1 µ
(tanω − µ)(1 + tan2 ω) p2(tanω) dω ,

p2(r) = 2

∫ π/2

0

p22(r2 + tan2 ψ)(tan2 ψ + 1) dψ , and

p22(u) = D̃(tan−1
√
u) cos4(tan−1

√
u) .

These formulas follow the notation and are easily derived from
previous work [Walter et al. 2007; Bagher et al. 2012], using the
change of variables ψ = tan−1 q, ω = tan−1 r, and u = tan2 θh.
To numerically evaluate the above integrals, we obtain sufficient
accuracy with a 15 point Gaussian quadrature. The tabulated D
function is evaluated using linear interpolation.

Independent-G. Solving for G also introduces a non-trivial
factor dependency. Unlike the other two factors, it appears twice
in the microfacet model. It is also evaluated at θi and θo, which are
complicated functions of the BRDF’s angular coordinates. We ap-
ply a simple heuristic to solve for it. Let the two factors be denoted
Gi = G(θi) and Go = G(θo). Using a standard AWLS update
step, we can solve for each separately holding the other (as well
as the D and F factors, and ρs and ρd scalars) constant. We then
average these two results, and apply a simple Gaussian smoothing
filter. Gaussian smoothing removes high-frequency oscillations in
G we otherwise obtain for some specular materials and makes the
fitting more robust. This procedure is iterated until it converges or
increases the objective. In the case where the first iteration increases
the objective, we apply a GSS update.

We tried making the 1D factors Gi and Go be independent (i.e.
non-reciprocal), but found the constraint that both be identical a
useful regularization that sped convergence and eliminated ambi-
guities between factors. We also experimented with a fully 2D G
factor without obtaining good results; convergence was slow.

For the independent-G solution, note that the cosine factors in (3)
are superfluous in the sense that they can be absorbed into the gen-
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eral G factor. We retain them so that the G factors are comparable
between the two methods.

Dynamic range (DR) clamping. We keep all factors normal-
ized so that their maximum component is 1 to prevent scaling
drift; ρs absorbs the compensatory scaling. To ensure a physically-
plausible dynamic range, we clamp each factor component to be
no less than ε = 1e-6. This is necessary in independent-G fitting
which involves the product of four factors solved for independently
(ρs,D, F,G). Without DR clamping, we sometimes get large val-
ues for ρs and inflated importance of tiny variations in near-zero
factor components. For G-from-D fitting, DR clamping is unneces-
sary and we simply clamp negative factor components to 0.

5. RESULTS AND DISCUSSION

Figure 7’s first three columns show that compressive weighting
is necessary to obtain good rendered matches to ground truth for
many specular materials. For more diffuse materials, results with
and without compressive weighting are similar (fourth column).
This is true regardless of the form of the non-parametric model we
fit: G-from-D (a′), independent-G (b′), or naive (c′). The metrics
used in previous work on BRDF data-driven factorization, such as
[Lawrence et al. 2004; Ngan et al. 2005; Lawrence et al. 2006; Ben-
Artzi et al. 2006; Wang et al. 2008; Pacanowski et al. 2012], lead
to poor rendering fidelity, particularly in the case of single-term
BRDF expansions and HDR lighting environments. Our single-
term non-parametric model would not significantly outperform
state-of-the-art parametric and factorized alternatives without mag-
nitude compensation in the weighting of squared differences. This
finding parallels that reported in [Löw et al. 2012], where a stan-
dard vs. a logarithmically-transformed metric are compared and the
latter found superior.

Our test rendering suite combines several HDR environment
maps (EMs) and scene geometries: A) a sphere in the Grace EM, B)
the Stanford Buddha and sphere in the Ennis EM, C) Buddha and
sphere in the Grove EM, and D) a sphere in St. Peter’s EM. EMs
are from [Debevec 2001] with the exception of Ennis [Debevec
2008]. EMs acquired from the real world yield realistic imagery
when combined with measured BRDFs. They also effectively iden-
tify reflectance mismatches across a BRDF’s entire angular extent
using a single rendered image.

We compare renderings generated using various parametric and
non-parametric models, with quantitative error reported in terms of
standard PSNR. PSNR numbers are computed in the linear space of
rendered outputs (i.e. without tone-mapping), over all “foreground”
pixels, meaning pixels directly covered by an object with MERL
reflectance. The PSNR numerator is the maximum intensity in any
rgb color component of any foreground pixel in the ground truth
rendering. In all rendered images in this paper and the supplement,
we apply the following fixed tone mapping operator which com-
bines exposure compensation with standard gamma correction via:

output = pow((1 - exp2(-exposure * pixel)), 1/gamma) .

We use the settings exposure = 0.02 and gamma = 2.2 for all
renderings except with the darker and lower dynamic range Ennis
environment map, which uses exposure = 1 and gamma = 2.8.

We used three different renderers to generate our various re-
sults and comparisons. Scene A is rendered with the HQR ren-
derer [Soler and Roche 2014] using BRDF importance sampling
and 500K samples per pixel. Scenes B and C are rendered with
PBRT [Pharr and Humphreys 2010] using multiple importance
sampling (MIS) of the BRDF and lighting [Veach 1998], with 4K

Table I. Fitting statistics over all materials.
technique

fitting time (s) # of AWLS iterations GSS calls # of materials
min avg max min avg max min avg max invoking GSS

independent-G 59 2838 16421 25 1192 10168 1 47 2296 57

G-from-D 135 765 7222 15 56 1012 2 69 359 46

naı̈ve model 349 680 2281 817 2038 7628 0 0 0 0

samples per pixel (including 16x spatial anti-aliasing). Scene D
is rendered with a custom GPU renderer with 300k samples per
pixel partitioned evenly between distributions proportional to the
BRDF, the lighting, and a uniform hemispherical distribution using
MIS. For both lighting and BRDF importance sampling, we gener-
ate pre-tabulated cumulative distribution functions (CDFs) during
initialization and perform sample warping using quasi-Monte Carlo
patterns. Further rendering details are included in the Appendix.

We also developed an interactive WebGL demo that renders our
independent-G model with HDR environmental lighting. It works
directly from our compact factor representation, without precom-
puting a CDF as in the offline renderers described previously. We
first assembled the factors and coefficients for each of the 100
MERL materials into a single 512 × 128 “uber-texture” (top of
Fig. 16). Direct rendering using this texture is further described in
the Appendix.

We compare to three parametric microfacet models: the Cook-
Torrance model of [Ngan et al. 2005], the shifted gamma micro-
facet model of [Bagher et al. 2012], and the microfacet model of
[Löw et al. 2012]), all three with fits across the MERL dataset pub-
licly available from the authors. We investigate Löw’s model fit
using both their E2 (logarithmic) metric in Eqs. 31/32 from their
paper and our metric (Eq. 7 in our paper), minimizing our metric
using the Ceres solver [Agarwal et al. 2014]. We also compare to
the data-driven factorization method of [Bilgili et al. 2011] using
fits supplied by the authors.

We provide a comprehensive supplementary document with
complete fitting and rendering results across all materials and fit-
ting methods. Each page of the supplement compares rendering re-
sults across the various fits. We also include an additional page with
the ground truth rendering results repeated in each corresponding
image slot, allowing readers to flip back and forth between con-
secutive pages to obtain a visual impression of the rendering error.
Our supplemental video contains similar comparisons between an-
imated rendering results. Among other things, the video confirms
that our model retains high rendering fidelity when the light or view
rotate continuously. Supplementary material also includes the sam-
pled factor curves we fit for each model, for all the MERL mate-
rials. All of our fits were computed on a single core of a 6-core
3.20GHz Intel Xeon E5-1650 CPU with 16 GB of RAM. Our per-
formance statistics are summarized in Table I.

Our non-parametric representation consistently beats parametric
factor models for all materials, both visually (Fig. 1) and quanti-
tatively (Fig. 8). Though we fit our model to each color channel
independently, we see excellent visual fidelity in rendered reflec-
tion color, without the color shifting artifacts in highlights present
in alternative methods (see e.g. Figure 1).

Fig. 8 reports bottom-line rendering errors across our experi-
ments. We sort materials by increasing diffuseness (top) and in-
creasing error (bottom), measured from the independent-G method.
Diffuseness is computed from D̄ as in Eq. 19, where D is obtained
by fitting to the naive model. Recall thatD is normalized so that its
maximum value is 1. It is easy to verify that D̄ = (maxθ D̃(θ))−1,
where D̃ is the mean-normalized distribution derived from the
maximum-normalized D factor. D̃ has a high peak for specular
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Fig. 8. Rendering errors across all materials. Materials are sorted by increasing diffuseness from (19) (top), and decreasing error for independent-G (bottom).
All three non-parametric models provide better accuracy than the parametric alternatives. As diffuseness increases, error from the non-parametric models
increasingly diverges, with the independent-G method consistently providing the best fit.

materials and a much smaller one for diffuse materials, so the re-
ciprocal of this peak yields a reasonable measure of diffuseness.

The average PSNR across all 100 materials and all four rendering
setups were as follows (in descending order): bivariate 64.07, ours
(independent-G) 58.22, ours (G-from-D) 56.42, ours (naive) 56.71,
Bilgili 54.02, Löw (orig. metric) 50.96, Löw (our metric) 50.26,
Bagher 46.33, and Ngan 39.65.

All three of our non-parametric representations provide a good
visual rendering match for nearly all the 100 materials in the MERL
database. For highly specular materials, the three perform simi-
larly. This is not surprising since they share the same D and F
factors and the G/H factors provide little additional expressive-
ness. As diffuseness increases, independent-G is increasingly ac-
curate compared to the G-from-D and naive models: see the vi-
sual results in Figure 9, and the quantitative results in Figure 8
(top). Note the backlighting effect at the silhouette preserved by
the independent-G method (i.e., NYLON and POLYETHYLENE in
Figure 9), but lost by the other two methods. Even when the images

look similar, independent-G consistently increases quantitative ren-
dering fidelity, up to 14dB compared to the other two methods.

The accuracy of a single-term product of 1D microfacet factors
is excellent but not perfect; our goal was to study these limits. As
shown in Figure 10, our non-parametric fits yield visually notice-
able differences to ground truth for a few materials, like ALUM-
BRONZE and VIOLET-ACRYLIC. Figure 11 indicates the reason for
these failures: some specular BRDFs are not accurately decom-
posed as a single product of 1D factors,B(θh, θd) 6≈ D(θh)F (θd).
In addition to being a heavyweight model (2D rather than 1D and
30 times larger than our independent-G model), we note that the
bivariate model does not capture the more diffuse MERL materi-
als well, as shown in the bottom two rows of Figure 11, and in
additional examples from the supplement such as the other plas-
tics, GREEN-LATEX, RED-FABRIC, POLYURETHANE-FOAM, and
PINK-FELT. We note that differences may be subtle when compar-
ing multiple images on the same page, but become more obvious in
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NYLON

61.061.0 57.257.2 56.756.7
SILVER-METALLIC-PAINT

58.858.8 55.155.1 53.953.9
POLYETHYLENE

67.667.6 56.756.7 58.058.0
YELLOW-PLASTIC

73.873.8 62.162.1 64.064.0
RED-SPECULAR-PLASTIC

42.842.8 42.742.7 41.241.2
independent-G G-from-D naı̈ve model ground truth

Fig. 9. Rendering comparison for non-parametric fits (close-up in the
inset). PSNR over the image is displayed in the lower left corner.
The independent-G method better preserves backlighting effects (NYLON

and POLYETHYLENE), darkening (SILVER-METALLIC-PAINT), highlights
(YELLOW-PLASTIC), and avoids color-shifting (green shift in highlights of
naive rendering for RED-SPECULAR-PLASTIC).

the supplement when flipping (paging back and forth) between the
approximate model and the ground truth.

Figure 12 directly compares our independent-G model to Löw’s,
the best of the parametric models. Our non-parametric fit im-
proves visual fidelity for many materials. Across all 400 render-
ings (4 renderings for each of 100 MERL materials), independent-
G beats Löw’s result 308 times (77%) and ties it 85 times (21%),
where a tie is defined as rendering PSNR within 2db. Many more
examples of materials where our model’s rendering fidelity ex-
ceeds Löw’s can be examined in the supplement, e.g. BLACK-
OBSIDIAN, RED-METALLIC-PAINT, GREEN-ACRYLIC, MAROON-

ALUM-BRONZE GREASE-COVERED-STEEL

56.556.5 46.946.9

46.646.6 34.934.9
VIOLET-ACRYLIC SILVER-METALLIC-PAINT2

56.256.2 52.252.2

41.641.6 23.023.0
independent-G ground truth independent-G ground truth

Fig. 10. Our fits with the greatest visual error.

PLASTIC, AVENTURNINE, HEMATITE, GREEN-PLASTIC, STEEL,
PVC and POLYURETHANE-FOAM.

Löw’s model generates slightly better quantitative errors when it
is fit with their metric vs. ours: our metric tends to better capture
glancing view/light directions, while theirs does better for more
normal directions. We conclude that the improvement we observe
over Löw is due to our model’s general non-parametric form rather
than our fitting metric. As discussed in Section 2, Löw’s logarith-
mic metric represents a form of magnitude compensation suitable
for optimization problems with few degrees of freedom. Our met-
ric’s advantage is that it makes minimization practical for the many
optimization variables involved in fitting tabulated factors.

Figure 13 compares our model to the Bilgili data-driven factor-
ization. Despite our model’s relative compactness (a factor of 12 re-
duction, assuming single precision floating point numbers for both
models), it provides a superior quantitative rendering PSNR for
71 out of the 100 MERL materials, and visually better results for
many materials, as shown in the figure. Across all 400 renderings,
independent-G beats the Bilgili factorization 236 times (61.5%)
and ties it 71 times (17.8%). Many more examples of materials
where our model’s rendering fidelity exceeds Bilgili’s can be found
in the supplement, e.g. BRASS, BLACK-OBSIDIAN, ALUMINIUM,
SILICON-NITRADE, GOLD-METALLIC-PAINT2 and NICKEL.

Our fitting strategy considers nearly the entire range of angular
measurements in the captured data. Glancing reflection angles may
be hard to measure accurately but values there are not arbitrary,
and those recorded in the MERL dataset represent a reasonable
correction/extrapolation. In contrast, evaluating existing paramet-
ric or tabulated models to angles beyond where they were origi-
nally fit sometimes yields an unrealistic appearance and a poor ren-
dered match to the reference, as shown in Figure 12 third row and
further visualized in Figure 14. Our fits avoid these artifacts. We
also tried fitting to a restricted subset of the BRDF’s angular range:
θh, θd, θi, θo ≤ 80◦, with results shown in Figure 15. Compressive
weighting remains critical to rendering accuracy even when the fit
is computed over a restricted angular range.

Figure 6 illustrates the form of the factors obtained with our
non-parametric fitting. D typically follows the form of a decreas-
ing bump but sometimes exhibits a slight increase near its peak at
θh = 0 (e.g. ALUMINA-OXIDE, YELLOW-PAINT, PVC in the sup-
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SILVER-METALLIC-PAINT2

27.027.0 39.139.1
VIOLET-ACRYLIC

56.256.2 79.179.1
ALUM-BRONZE

56.556.5 81.981.9
POLYETHYLENE

67.667.6 57.257.2
RED-PLASTIC

44.544.5 36.536.5

independent-G bivariate ground truth

Fig. 11. Comparing our fits to the bivariate model. For some specular ma-
terials (top three rows), the 2D bivariate model provides a better rendering
match. Clearly, specular reflectance is not well modeled by the microfacet
model’s single-term product separationD(θh)F (θd). This accounts for the
visual error in our poorest MERL fits (Fig. 10). For more diffuse MERL
materials, the bivariate model lacks fidelity (bottom two rows). See the sup-
plement for in-place comparisons to ground truth, and other examples.

plement). For fairly diffuse materials, the G factors fit with our
independent-G model sometimes exhibit complex variation in con-
trast to the strict monotonic decrease predicted by standard shadow-
ing models (e.g., POLYURETHANE-FOAM). Here, G may be cap-
turing micro-scale inter-reflection. Our factors also often exhibit
large, smooth oscillations not captured by any existing parametric
model. We additionally observe a significant bump (rapid increase
followed by decrease down to 0) in the Fresnel factor as θd → 90◦

(ALUMINIUM and VIOLET-ACRYLIC in Fig. 6). This is another be-
havior not predicted by existing models.

Getting trapped in local minima is a problem in high-
dimensional non-linear optimization. A commonly-used strategy is

COLOR-CHANGING-PAINT3

70.970.9 68.968.9 72.172.1
TWO-LAYER-GOLD

29.129.1 35.335.3 44.644.6
SPECULAR-YELLOW-PHENOLIC

41.841.8 9.879.87 43.943.9
RED-FABRIC

36.836.8 38.138.1 44.344.3
[Löw12]
(our metric)

[Löw12] independent-G ground truth

Fig. 12. Comparison of our fit to the [Löw et al. 2012] microfacet model.
Note the incorrect color shift in COLOR-CHANGING-PAINT3, washed-
out appearance of TWO-LAYER-GOLD, poor fidelity to glancing reflection
in SPECULAR-YELLOW-PHENOLIC (with Löw’s original metric), and in-
correct highlights in RED-FABRIC. HDR error for SPECULAR-YELLOW-
PHENOLIC is understated by tone-mapping, but apparent in the numerical
PSNR (9.87), and further analyzed in Fig. 14.

to employ multiple starts, each initialized at random locations in
the high-dimensional state space. We observe that our G-from-D
model is very stable with respect to random initialization, and all
of its fits were computed in a single run. Our independent-G model
is usually stable, but can get stuck in a local minimum; here, we
employ eight fitting runs for each material. Four of these runs were
randomly initialized, one with a state-vector of 1’s, one with the
results of [Bagher et al. 2012], one with the results of our G-from-
D fit, and the last initialized D with the retro-reflective (θh = 0)
BRDF slice, F with the θd = 0 slice, and G with a constant value
of 1 across its domain. Our supplemental video illustrates the factor
curve convergence behavior across multiple random starts.

6. CONCLUSION

How does the reflectance of real materials behave? What simple
models capture this behavior? Does microfacet theory help? Are
parametric models proposed for its factors significantly limiting?

To begin to answer these questions, we presented a new BRDF
representation comprising the compact product of three generic 1D
factors from the non-orthogonal factorization underlying the mi-
crofacet model, and a new method (ALWS) to fit this model to
isotropic BRDFs. It is simple to implement, quickly converging,
automatic (no per-material parameter tweaking), and robust. It is
more accurate than previous fits based both on parametric models
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BRASS

46.146.1 69.069.0
COLOR-CHANGING-PAINT2

59.359.3 66.166.1
RED-METALLIC-PAINT

50.950.9 72.672.6
HEMATITE

46.246.2 63.563.5
SPECULAR-VIOLET-PHENOLIC

43.943.9 59.359.3

[Bilgili11] independent-G ground truth

Fig. 13. Comparison of our fit to the [Bilgili et al. 2011] factorized model.

and data-driven factorization, and provides visual and quantitative
accuracy across nearly all materials in the MERL dataset. We con-
clude that previous parametric models for the microfacet factors
have indeed limited reflectance accuracy.

We also showed that single-term fits that ignore magnitudes of
the BRDF samples provide poor rendering fidelity for specular ma-
terials. This result was a surprise to us, and we think it will help
data-driven factorization for multi-term models as well. Our solu-
tion is a simple compressive weighting scheme incorporated into
the standard sum-of-squared-error fitting metric. Though we fit in-
dependently to each color channel, our metric yields excellent ac-
curacy and color fidelity after rendering.

The Cook-Torrance microfacet model is fundamental in com-
puter graphics. We scientifically validated its underlying structure
from real-world measurements by showing that the independent-
G model provides significant quantitative and visual error reduc-
tion compared to a non-microfacet orthogonal factorization having

[Löw12] independent-G

Fig. 14. Error visualization for SPECULAR-YELLOW-PHENOLIC from
Fig. 12, row three. Red intensity here is linearly mapped to the sum of abso-
lute values of the error over all three color channels at each pixel, divided by
the maximum error incurred at any pixel by our independent-G fit, and al-
lowed to saturate above 1. [Löw et al. 2012] generates erroneous, extremely
bright reflections especially near the sphere’s silhouette. The actual ratio of
maximum pixel errors between [Löw et al. 2012]’s result and ours is over
1000, so the benefit of our fit is understated in this saturated visualization.

33% more degrees of freedom: the naive model. We also showed
the benefit of independent-G over a model that determines G from
D via a standard shadowing model (G-from-D). The gains are visu-
ally substantial for some diffuse materials, including an enhanced
ability to recover silhouette backlighting effects.

For a few materials, we demonstrated that an important limita-
tion on visual accuracy is the microfacet model’s inherent assump-
tion that specularity can be decomposed into the product of separa-
ble univariate functions, D(θh)F (θd). We reach this conclusion
by testing the bivariate specular model, which retains full flexi-
bility only in the angular coordinates θh and θd while totally ig-
noring θi and θo, and showing that this model alone remedies the
artifacts we observe in those materials. Evidently, the microfacet
model does not comprehensively express real-world specularity.
This deficiency can not be corrected by developing more sophis-
ticated parametric models for its 1D factors.

The relevance of these findings relies on our ability to fit non-
parametric microfacet factors (which removes their restriction to
simple parametric models) and our new metric (which better ex-
ploits the fitting power of the model for HDR BRDFs). Both are
new contributions. For example, no previous work has investigated
a non-parametric representation for the Fresnel factor in the micro-
facet model, or a geometric factor not derived from D.

We hope our work may lead to more general factor models to
improve fidelity and compactness. We have not yet studied spatial
variation in reflectance and are interested in fitting texture-mapped
models for the factors perhaps using a low-dimensional factor
eigen-basis, addressing the problem of interpolation and spatial co-
herence, and investigating how factors vary spatially from physical
measurement. Our work has explored the limits of a single-term
product expansion; a multi-term model is indicated for some ma-
terials and in demanding applications. Augmenting the bivariate
model by multiplying the 2D B(θh, θd) factor by a 1D geomet-
ric/shadowing G factor (i.e. replacing D(θh)F (θd) by B(θh, θd)
in Eq. 3) subsumes our current model and should yield a repre-
sentation able to capture both specular and diffuse reflectance with
high visual accuracy. We are still exploring the difficult problem
of how to fit this more general model. We are also studying how
to compute a low-dimensional factorization to compress B, using
per-component compressive weighting. As might be expected from
our results, singular value decomposition (SVD) and subsequent
truncation of small singular values of the unweighted B matrix per-
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HEMATITE

70.3370.33 41.9841.98 69.9169.91 44.1744.17

BRASS

69.0269.02 42.9842.98 69.0569.05 44.7744.77

GOLD-METALLIC-PAINT

58.8458.84 52.5852.58 57.9457.94 50.7550.75

with wC without wC with wC without wC
full: θi, θo ≤ 89◦ restricted: θi, θo ≤ 80◦ ground truth

Fig. 15. Compressive weighting and angular fitting range restriction. We compare renderings of independent-G fits with and without compressive weighting
using two different angular ranges in the BRDF fit: θi, θo ≤ 89◦ (as used for all our other results in this paper and the supplement) and θi, θo ≤ 80◦ (which
eliminates more glancing BRDF measurements from the fitting). Compressive weighting better matches ground truth in terms of both measured PSNR and
visual fidelity. This remains true even when we significantly restrict the angular fitting range as is often done in previous methods.

forms poorly in our preliminary tests; weighted low-rank approxi-
mation [Nati and Jaakkola 2003] seems necessary.

A final question is whether our factors are unique and physically-
motivated, or one among many representational artifacts that do the
job. We believe the former is mostly true. For most materials we get
consistent results regardless of how the minimization is initialized,
especially after invoking the “DR clamping” regularization (Sec-
tion 4.2), indicating uniqueness and possible physical reality. On
the other hand, especially with the independent-G model but even
with G-from-D, there is indeed ambiguity between factors for a
few materials, meaning that multiple quite different forms of the
locally-minimizing factors can be found yielding about the same
rendering fidelity. This may be due to single-term insufficiency in
the specular microfacet model (i.e., the more powerful bivariate
model B(θh, θd) is needed rather than D(θh)F (θd)) along with
the presence of nearly equal top singular values for the weighted
SVD of B. Such a factor ambiguity is almost certainly made worse
by introducing more degrees of freedom in an independent G fac-
tor. The issue is complicated because there’s no guarantee we find

the global minimum, so we can’t truly distinguish a deficiency in
the model from a deficiency in the numerical minimization.
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BILGILI, A., ÖZTÜRK, A., AND KURT, M. 2011. A general BRDF repre-
sentation based on tensor decomposition. Comput. Graph. Forum 30, 8.

BLINN, J. F. 1977. Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph. 11, 2 (July), 192–198.

BOURLIER, C., BERGINC, G., AND SAILLARD, J. 2002. One- and two-
dimensional shadowing functions for any height and slope stationary un-
correlated surface in the monostatic and bistatic configurations. Antennas
and Propagation, IEEE Transactions on 50, 3, 312–324.

BROWN, G. 1980. Shadowing by non-gaussian random surfaces. Antennas
and Propagation, IEEE Transactions on 28, 6, 788–790.

BURLEY, B. 2012. Physically-based shading at Disney. Tech. rep., Walt
Disney Animation Studios. August.

CARROLL, R. J. AND RUPPERT, D. 1998. Translation and Weighting in
Regression. Chapman and Hall, N.Y.

COOK, R. L. AND TORRANCE, K. E. 1981. A reflectance model for com-
puter graphics. SIGGRAPH Comput. Graph. 15, 3 (Aug.), 307–316.

DEBEVEC, P. 2001. Light probe image gallery. http://www.

pauldebevec.com/Probes/.
DEBEVEC, P. 2008. High-resolution light probe image gallery. http:

//gl.ict.usc.edu/Data/HighResProbes/.
DORSEY, J., RUSHMEIER, H., AND SILLION, F. 2008. Digital Modeling of

Material Appearance. Morgan Kaufmann Inc., San Francisco, CA, USA.
DUPUY, J., HEITZ, E., IEHL, J.-C., POULIN, P., AND OSTROMOUKHOV,

V. 2015. Extracting Microfacet-based BRDF Parameters from Arbitrary
Materials with Power Iterations. Computer Graphics Forum, 10.

EPA 2003. Method 8000C, SW846, Revision 3. Tech. rep., U.S. Environ-
mental Protetction Agency. March.

GHOSH, A., HAWKINS, T., PEERS, P., FREDERIKSEN, S., AND DE-
BEVEC, P. 2008. Practical modeling and acquisition of layered facial
reflectance. ACM Trans. Graph. 27, 5 (Dec.), 139:1–139:10.

GRAYBILL, F. A. AND IYER, H. K. 1994. Regression Analysis: Concepts
and Applications. Duxbury Press, Belmont, CA.

KAUTZ, J. AND MCCOOL, M. D. 1999. Interactive rendering with arbi-
trary BRDFs using separable approximations. In Rendering Techniques.

KOLDA, T. G. AND BADER, B. W. 2009. Tensor decompositions and ap-
plications. SIAM Rev. 51, 3 (Aug.), 455–500.

LAFORTUNE, E. P. F., FOO, S.-C., TORRANCE, K. E., AND GREEN-
BERG, D. P. 1997. Non-linear approximation of reflectance functions.
In Proceedings of SIGGRAPH. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 117–126.

LAWRENCE, J., BEN-ARTZI, A., DECORO, C., MATUSIK, W., PFISTER,
H., RAMAMOORTHI, R., AND RUSINKIEWICZ, S. 2006. Inverse shade
trees for non-parametric material representation and editing. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 25, 3 (July).

LAWRENCE, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R. 2004. Ef-
ficient BRDF importance sampling using a factored representation. ACM
Trans. Graph. 23, 3 (Aug.), 496–505.
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Appendix: Volume Form Derivation

In the canonical coordinate system with surface normal n = z,
assume the halfway vector h is in the zx-plane; i.e., perpendicular
to y. In other words, the azimuthal angle of the halfway vector is
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φh = 0. Then the halfway vector can be parameterized by h =
z cos θh + x sin θh, and a perpendicular direction (also in the zx-
plane) by h⊥ = z sin θh −x cos θh. To complete this orthonormal
coordinate frame, let h∗ = h×h⊥ = −y. Then the light and view
directions are given by

i = h cos θd − (h⊥ cosφd + h∗ sinφd) sin θd

o = h cos θd + (h⊥ cosφd + h∗ sinφd) sin θd

or, in terms of components,

ix = sin θh cos θd + cos θh cosφd sin θd

iy = sinφd sin θd

iz = cos θh cos θd − sin θh cosφd sin θd

ox = sin θh cos θd − cos θh cosφd sin θd

oy = − sinφd sin θd

oz = cos θh cos θd + sin θh cosφd sin θd

Let T (θh, θd, φd) denote the above transformation going from
(θh, θd, φd) parameter space to (i,o) output space. Then the vol-
ume form, dΩ, induced by the above transformation is given by

dΩ =
√

det(∂TT ∂T ) dθh dθd dφd ,

where ∂T is the (6×3) Jacobian of the transformation T . The ma-
trix product g = ∂TT ∂T is the (3×3) metric tensor of the transfor-
mation; the square root of its determinant scales the volume form
after a coordinate transformation.

Taking derivatives and evaluating, we obtain

g = diag[2(cos2 θd + sin2 θd cos2 φd), 2, 2 sin2 θd]

so that

dΩ =
√

det g dθh dθd dφd,

=
√

8 sin2 θd(cos2 θd + sin2 θd cos2 φd) dθh dθd dφd.

Note that this result does not depend on θh.

Appendix: Rendering Details

Offline, CDF-based Rendering. We sample our microfacet
model directly into PBRT’s RegularHalfangleBRDF representa-
tion for a MeasuredMaterial [Pharr and Humphreys 2010, Sec-
tions 8.6.2 and 9.2.4], which uses the same uniform parameteri-
zation internally of (θ′h, θd, φd) with resolution 90 × 90 × 180.
Interpolation is not required when sampling our D and F factors;
we linearly interpolate between tabulated values when samplingG.

PBRT constructs the CDF for this representation according to the
process in [Pharr and Humphreys 2010, Section 14.6]. First, it re-
samples each BRDF view-slice (indexed by cos θo) into a lat-long
map with resolution (nθ, nφ) = (90, 360), converting values into
luminance. Second, it constructs 2D CDFs for each view-slice with
numerical integration of the BRDF luminance. Finally, it inverts
the CDF to warp uniform low-discrepancy random numbers pro-
portional to the BRDF. Our HQR and GPU renderers reimplement
the same representation and CDF algorithm as in PBRT.

We construct a separate CDF for environment lighting from a lat-
long map of resolution (nθ, nφ) = (180, 360). Our Monte Carlo
direct illumination estimate Lo at a shade point is:

Lo(ωo) ≈
S∑
s=1

Ns∑
i=1

ws(ωi)L(ωi) ρ(ωi, ωo) (n · ωi)
Ns Ps(ωi)

, (20)

Fig. 16. Direct rendering of our non-parametric microfacet representation
from our MERL “uber-texture”. The top image shows our texture map, en-
coding BRDFs of all 100 MERL materials; the bottom shows the resulting
rendering, in the Grace HDR environment map, after accumulating Monte
Carlo samples for 60 seconds in our WebGL application.

where L is the incident radiance (visibility-weighted light emis-
sion, for direct illumination) at the shade point, and we draw Ns
samples proportional to the sampling PDFs Ps(ω) of the S sam-
pling strategies. Recall that we use up to three of the following sam-
pling strategies: BRDF sampling, emission sampling, and a uni-
form hemispherical sampling. Here, ws is the MIS weight, and we
choose a power heuristic weight with parameter β = 2:

ws(ω) = (Ns Ps(ω))β
/

S∑
s′=1

(Ns′ Ps′(ω))β . (21)

Direct Rendering. We also implemented an interactive We-
bGL renderer (Fig. 16). At each pixel, it samples hemispherical
light directions using multiple importance sampling and evaluates
the BRDF analytically using Eq. 3. Monte Carlo samples of the
product of the BRDF and HDR environment map evaluation are
progressively accumulated for each light direction. This simple
method converges reasonably quickly even for highly specular ma-
terials. The D, F , and G factors, along with ρd and ρs, are queried
from a single 512×128 rgb “uber-texture” which encodes all 100
MERL materials. Factor components and diffuse/specular coeffi-
cients are represented as a Float32Array in WebGL.
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