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We present a sparse analytic representation for spherical functions, in-
cluding those expressed in a spherical harmonic (SH) expansion, that is
amenable to fast and accurate rotation on the GPU. Exploiting the fact that
each band-l SH basis function can be expressed as a weighted sum of 2l+1

rotated band-l zonal harmonic (ZH) lobes, we develop a factorization that
significantly reduces this number. We investigate approaches for promoting
sparsity in the change-of-basis matrix, and also introduce lobe sharing to
reduce the total number of unique lobe directions used for an order-N ex-
pansion fromN2 to 2N−1. Our representation does not introduce approx-
imation error, is suitable for any type of spherical function (e.g., lighting
or transfer), and requires no offline fitting procedure; only a (sparse) matrix
multiplication is required to map to/from SH. We provide code for our rota-
tion algorithms, and apply them to several real-time rendering applications.
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1. INTRODUCTION

Spherical functions are used in several areas of computer graph-
ics (CG) such as rendering [Sloan et al. 2002] and shape analy-
sis [Kazhdan 2007]. In many important cases, spherical harmonics
(SH) are an ideal representation for such functions: e.g., many pa-
rameterized BRDFs can be represented analytically in SH, admit-
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ting efficient, frequency-adaptive reconstructions. Shading these
BRDFs with dynamic lighting in SH can also be very efficient.

An important property of SH is closure under rotation: an SH ex-
panded function can be rotated directly from its coefficients, with-
out requiring explicit reconstruction, rotation, and reprojection.
Unfortunately, existing efficient approaches only handle a handful
of low-order (N ≤ 5) rotations per frame for real-time applica-
tions, or only support a restrictive subset of functions without in-
troducing significant approximation error.

Contributions. We present an alternative basis for spherical
functions based on rotated zonal harmonic (ZH) lobes. This basis
spans the same space as SH, affords a more efficient rotation al-
gorithm, and there is a sparse linear mapping between each space.
We investigate promoting sparsity in this mapping, as well as their
mathematical implications. Simple, accurate, and efficient rotation
algorithms are implemented on the CPU and GPU, and bench-
marked against existing techniques used in graphics. Lobe sharing
(Section 6) reduces the number of unique lobe directions from N2

to 2N − 1, and our algorithms are trivially parallelizable.
Our sparse, lossless representation enables a novel data-parallel

optimization tailored to shader-based engines, and especially suit-
able for real-time relighting. Our rotation algorithms, requiring less
than 40 lines of code (provided in Supplemental Material), outper-
form existing approaches, especially on the GPU, and we apply
them to several relighting applications. Readers interested in the
mathematical exposition can refer to Sections 3 to 6, whereas those
more interested in the algorithm can focus on Section 7.1.

2. PREVIOUS WORK

Our goal is to derive a fast rotation algorithm with unnoticeable
visual error behavior, particularly amenable to the lower order SH
expansions (N < 20) used in CG applications. Higher-order rota-
tion requires greater attention to numerical stability issues and thus
a different compromise between speed, stability and accuracy. A
recent algorithm to this end can be found in [Lessig et al. 2010].

Many signals in CG are expressed naturally in a spherical do-
main, and SH expansions of such functions can be appealing due
to their analytic form, frequency-space properties, and identities.
While SH has a long history in CG, including uses in volumetric
transport [Kajiya and Von Herzen 1984] and BRDF representation
[Westin et al. 1992], we focus on the recent use of SH in derivatives
of Precomputed Radiance Transfer (PRT).

Sloan et al. [2002] precompute and project a linear mapping
(capturing shadowing/reflection effects) of incident light to outgo-
ing radiance into SH. At run-time, global-frame lighting is rotated
using low-order SH rotation matrices computed from complex zyz-
Euler recurrence formulae [Edmonds 1960]. Kautz et al. [2002]
decompose the y-rotation into a zxz-rotation for local coordinate
frame shading. These approaches do not map well to the GPU and
quickly become the bottleneck of SH relighting approaches. An
inherent no-win memory/computation trade-off exists: local-frame
shading requires many per-point rotations but affords more com-
pact transfer representation, while global-frame shading requires
fewer rotations but at the cost of more storage for transfer. Our ap-
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Fig. 1. St. Jean Cathedral rendered on a web browser with Google’s O3D API. We augment this open-source demo (with permission of Benoı̈t Mayaux [2010];
http://www.patapom.com/O3D/Cathedral.html). with a local reflectance model and order-9 SH light rotated with our fast, accurate, and simple “signal-tailored”
GPU rotation algorithm. We encourage readers to digitally zoom-in to reveal detail.

proach scales favorably to higher N , is easily implemented on the
GPU, and enables efficient mixed global- and local-frame rotation.

Křivánek et al. [2006] replace the zyz-Euler approach’s y-
rotation with a Taylor expansion, enabling low-order local-frame
shading but with added approximation error. In contrast, we per-
form exact SH rotation at lower computational and storage costs.

Sloan et al. [2005] fit ZH lobes to transfer functions with non-
linear optimization. At run-time, transfer is rotated using fast ZH
rotation (see Section 3). Their fitting performs well with transfer
functions but less so for arbitrary SH vectors. Our approach is more
accurate and applies to arbitrary functions without offline fitting.

In concurrent work, Lessig et al. [2010] develop a similar ZH
decomposition, using Reproducing Kernel Hilbert Space (RKHS)
analysis, for a new sampling theorem over the sphere that opti-
mizes for numerical stability. This approach is amenable to wide-
bandwidth signals where high numerical precision is required; we
instead optimize for sparsity of the ZH decomposition, leading to
very fast rotation for lower-bandwidth signals used in CG.

Rotation of spherical radial-basis functions (SRBFs) and Haar
Wavelets has also been investigated in the context of PRT. Tsai and
Shih [2006] use an SRBF basis that maps to ZH lobes and effec-
tively exploit the ZH rotation rule (see Section 3.1) for fast rota-
tion. Wang et al. [2006] precompute Haar rotation transforms for
discrete rotational frames, generated using octahedral maps.

Significant work has been conducted outside CG on SH rotation.
This body of work is concerned with N > 20 which is a non-
typical use case in CG and, to the best of our knowledge, we are
the first to purposefully develop a sparse mapping between SH and
rotated ZH basis spaces for fast rotation. We refer interested read-
ers to Lessig et al.’s [2010] review of this literature and focus our
discussion and results on SH rotation for N < 20.

We introduce an alternative representation of spherical func-
tions that admits high-performance, parallelizable, accurate SH ro-
tations, even at comparably higher order than previous approaches.
We provide data to compute fixed, sparse coupling matrices as well
as source code (< 40 lines of code), in our Supplemental Ma-
terial. We outperform existing approaches (see Section 7.1) for
low-order rotation on the CPU, and a novel signal-tailored rota-
tion algorithm on the GPU is able to consistently outperform ex-
isting approaches. Although the computational complexity of our
approach is the same as the state-of-the-art zxzxz techniques, sev-
eral key differences exist: our algorithm exploits sparsity using a
single precomputed, fixed, sparse high-dimensional transformation
matrix (for a fixed order N ), whereas zxzxz approaches need to
construct sparse z-rotation matrices algorithmically, as well as re-
quiring two separate sparse, precomputed x-rotations. Our standard
rotation approach is composed of three simple steps (dominated
by arithmetic computation), allowing higher-performance at low-
orders on the CPU (and GPU), and the signal-tailored GPU op-
timization replaces the two most expensive steps of the standard
algorithm with look-ups into precomputed cubemap textures.

3. OVERVIEW AND TERMINOLOGY

We adopt notation from the real-time rendering literature (e.g.,
[Ren et al. 2006]) in our exposition: italics for scalars and 3D
points/directions (e.g., ω), boldface italic for coefficient column
vectors (e.g., f ), and sans serif for matrices/tensors (e.g., Al).

Let f(ω) be a spherical function, with ω = (x, y, z) = (θ, φ) ∈
S2, and θ and φ are spherical (lat-long) coordinates of point
(x, y, z) on the sphere’s surface, S2. Projecting f onto the real SH
basis used in CG yields a coefficient vector f =

∫
S2 f(ω)y(ω)dω,

where y(ω) is a vector of SH basis functions with

yml (θ, φ) =


K0

l P
0
l (cos θ), m = 0√

2Km
l cos (mφ) Pm

l (cos θ), m > 0√
2K

|m|
l sin (|m|φ) P |m|l (cos θ),m < 0

, (1)

where m indexes the (2l + 1) band-l basis functions, Km
l is a

normalization term, and Pm
l are associated Legendre polynomi-

als (ALPs). Band-l basis functions are degree l polynomials in
(x, y, z).

A band-limited reconstruction of f can be obtained by weighting
the SH basis functions by the elements of f :

f(ω) ≈ f̃(ω) =
∑N−1

l=0

∑m=l
m=−l f

m
l yml (ω) = f · y(ω) (2)

and order-N reconstructions use N2 basis coefficients. Unless f is
band-limited, reconstruction is approximate. At times it is conve-
nient to use a single index i = l(l+1)+m for all basis functions.

3.1 Zonal Harmonics

Zonal harmonics are them = 0 subset of SH basis functions. These
functions are circularly symmetric about z and are scaled Legen-
dre polynomials (Eq. 1, line 1). Sloan et al. [2005] show, using
the Funke-Hecke convolution theorem, that a ZH function oriented
about the canonical z-axis (with coefficient gl) can be rotated to an
arbitrary direction ωd, yielding an SH function (with coefficients
fm
l ), by simply scaling the SH basis functions evaluated at ωd via

fm
l = n∗lgly

m
l (ωd) = g∗l y

m
l (ωd) [Sloan et al. 2005], (3)

with n∗l =
√

4π/(2l+ 1). One of our main contributions is to
show that, by carefully choosing lobe directions, band-l SH basis
functions can be perfectly reconstructed with significantly fewer
than 2l + 1 weighted, rotated band-l ZH lobes, y0l (Figure 2 and
Table I). The weights and directions are fixed and pre-tabulated,
not computed on-the-fly. We also reduce the number of directions
required for an order-N expansion fromN2 to 2N −1 (Section 6).

As a consequence, we are able to develop simple and efficient
algorithms that generalize the fast ZH rotation rule to arbitrary SH
rotations, which we apply to various shading problems.

4. ZONAL HARMONIC FACTORIZATION

Put briefly, the main observation our paper brings to light is
that each band-l basis function can be perfectly represented as a
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Fig. 2. Every band-l SH basis function can be exactly represented with at
most, but often significantly fewer than, 2l + 1 rotated y0l (ω) ZH lobes.
For example, y12(ω) can be decomposed into a weighted sum of two y02(ω)
lobes rotated to ω2,1 and ω2,2. See Section 4 for notation details.

weighted sum of at most 2l + 1 rotated y0l lobes. We begin by
quickly illustrating this fact for the trivial cases of the l = 0 and 1
basis functions, and follow with a general band-l formulation.

Band-0 and 1 cases. The l = 0 function y00 is constant and
unaffected by rotation. Band-1 functions are scaled monomials of
Cartesian coordinates: (y−11 ; y01 ; y

1
1) = (−νy; νz; −νx) with ν =√

3/(2
√
2). An alternative interpretation of these functions is that

of a double-sided cosine lobe aligned along y, z and x. The ZH
lobe νz can be rotated to either the y or x axes using Equation 3
with ωd = ω1,−1 = (π/2, π/2) = (0, 1, 0) for y−11 and ωd =
ω1,1 = (π/2, 0) = (1, 0, 0) for y11 . Consequently, we can express
these m 6= 0 functions as a weighted, rotated y01 ZH lobe:

y−11 (ω) = α−11,−1 y
0
1(ω → ω1,−1), y11(ω) = α1

1,1 y
0
1(ω → ω1,1),

where αm
l,d is the weight of the dth lobe1 of yml , with direction

ωl,d, and ω → ω′ denotes 3D rotation from ω to ω′. In general,
we pre-compute these weights (αm

l,d) and lobe directions (ωl,d)
to induce sparsity and accelerate computation, as we will discuss
shortly. For band-1 we have [α−11,−1 α

−1
1,0 α

−1
1,1] = [−1 0 0] and

[α1
1,−1 α

1
1,0 α

1
1,1] = [0 0 − 1] which, along with ω1,−1 and ω1,1,

forms the optimal solution for this band.

General case. Band-1 basis functions are monomials in (x, y, z)
and only require a single rotated lobe. In general, each band-l SH
basis function can be composed of a weighted sum of up to 2l + 1
rotated y0l ZH lobes. Minimizing the number of lobes used in prac-
tice has significant implications, discussed in Section 5.

The m = 0 function can always be trivially represented with

[α0
l,−l . . . α

0
l,0 . . . α

0
l,l] = [0 . . . 1 . . . 0] and ωl,0 = (0, 0). (4)

We will show that all m 6= 0 basis functions can be represented as

yml (ω) =
∑l

d=−l α
m
l,d y

0
l (ω → ωl,d) , (5)

where the 2l+1 lobe directions, ωl,d, are shared across basis func-
tions in the band, but a unique set of 2l + 1 weights, αm

l,d, are re-
quired for each basis function. We start by formulating the problem
of solving for the unknown weights/directions as a non-linear sys-
tem of equations, and then augment a simplified matrix inversion
procedure to enforce sparsity in the resulting coupling matrices.

System of non-linear equations. We aim to formulate Equa-
tion 5 in a manner suitable for solving for the unknown weights and
lobe directions. We apply the SH Addition Theorem which states
that a zonal harmonic aligned about an arbitrary direction can be
reconstructed as a weighted sum of spherical harmonics,

y0l (ω → ωl,d) = n∗l
∑l

m′=−l y
m′
l (ωl,d) y

m′
l (ω) , (6)

1For consistency with m-indexing, d indices start at −l and end at l.

where the reconstruction weights are proportional to the SH basis
functions evaluated in the lobe direction. In a sense, Equation 5 is
the “dual” of the SH addition theorem in Equation 6: one states that
SH basis functions can be reconstructed from weighted and rotated
ZH basis functions, and the other states that a rotated ZH basis
function can be reconstructed with weighted SH basis functions.

Expressing Equation 5 in matrix-vector form across all m ∈
[−l, l], and substituting Equation 6 in for y0l (ω → ωl,d) yields y

−l
l (ω)

...
yll(ω)

 =

 α
−l
l,−l . . . α

−l
l,l

...
. . .

...
αl
l,−l . . . α

l
l,l


︸ ︷︷ ︸

Al

 y
0
l (ω → ωl,−l)

...
y0l (ω → ωl,l)



= Al Dl︸ ︷︷ ︸
Âl

 y
−l
l (ωl,−l) . . . y

l
l(ωl,−l)

...
. . .

...
y−ll (ωl,l) . . . yll(ωl,l)


︸ ︷︷ ︸

Yl

 y
−l
l (ω)

...
yll(ω)

 (7)

where Dl is a (2l + 1) × (2l + 1) diagonal matrix with repeated
entries of n∗l . From Equation 7 we see that Âl Yl = I, where I is the
identity matrix. This matrix equation defines a system of (2l + 1)
non-linear equations in the (2l+1)2 unknown α weights and (2l+
1) unknown (θ, φ) lobe direction pairs. We can reduce the total
number of unknowns using Equation 4 from (2l+1)2 +2(2l+1)
to 2l(2l+ 3) and solve for them by minimizing

argmin
∀d,∀m :

[
αm
l,d, ωl,d

] ∑
ij

(
[Al Dl Yl − I]ij

)2
. (8)

Expression 8 can be solved using a constrained non-linear solver to
restrict lobe angles to [0, 2π]; however, we found an unconstrained
solver sufficed with rapid convergence to 0 (see below), especially
since this optimization need only be performed once:

l = 2 3 4 5 6 7 8 9 10
time (secs) 2 5 7 10 16 25 38 53 69

This process must be repeated for each band l and analogues of
the Al, Dl, and Yl matrices exist for the set of all SH basis functions
one would consider. Two of these matrices, Â and Y, have a block-
diagonal form matching that of a standard SH rotation matrix: e.g.
each block diagonal square matrix in Â is the appropriate Âl matrix.

Linearizing the problem. In concurrent work, Lessig et al.
[2010] formulate SH rotation using a new sampling theorem for the
sphere based on RKHS analysis. They show that any non-singular
choice of the ωl,d is valid and results in an invertible Yl. Thus,
Equation 7 can be solved by simply picking a random set of ωl,d

and solving for the αm
l,d as Âl = [Yl]

−1. While their analysis fo-
cusses on the conditioning of the system for accurate sampling, we
seek instead to promote sparsity in the structure of Âl for fast GPU
rotation and thus require a different kind of optimization.

Interpretation as coupling coefficients. Given the set of
weights and lobe directions, we can represent an arbitrary spher-
ical function, with SH coefficient vector f , as a weighted combi-
nation of rotated ZH functions. The band-l SH coefficient vector
of the function, fl = [f−ll . . . f l

l ]
T, can be transformed into band-l

coefficients in our Rotated Zonal Harmonic Basis (RZHB):

ẑl =
[
Âl

]T

fl s.t.
l∑

i=−l

[fl]i y
i
l (ω) =

l∑
j=−l

[ẑl]j y
0
l (ω → ωl,j) .
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The process of representing a spherical function, with an initial SH
coefficient vector f , in the RZHB with a new coefficient vector
ẑ is called Zonal Harmonic Factorization (ZHF). Similarly, an
RZHB vector ẑ maps back to its corresponding SH vector using
Zonal Harmonic Expansion (ZHE): f̂ = YT ẑ.

An important special case arises when Âl is sparse. We will dis-
cuss the implications and practical benefits of this sparsity.

5. SPARSE ZH FACTORIZATION AND EXPANSION

We will discuss sparsity in both Âl and Yl, and how to enforce it,
resulting in a compact mapping between SH and RZHB.

Investigating sparsity. A row in Â maps a single SH basis
function into the RZHB; if a row is sparse, its corresponding SH
basis function can be represented with fewer than 2l+1 rotated ZH
lobes. For example in Section 4, each band-1 SH basis function was
represented with 1, as opposed to 2l+1 = 3, ZH lobes by aligning
the lobes along the x, y, and z axes. Promoting sparsity in Â is both
interesting from a theoretical perspective and also admits a more
efficient ZHF for rotation and shading algorithms (see Section 7).

Finding lobe directions to sparsify Â and Y is a continuous
search problem with a candidate space whose volume grows ex-
ponentially in N . After thorough experimentation (detailed in the
Supplemental Material), we were able to reduce the continuous
search to a discrete search. This reduction, coupled with a genetic
algorithm search, results in an effective approach for precomputing
the sparse ZHF matrices. We include lobe directions (for N ≤ 8)
in the Supplemental Material.

Our empirical evidence suggests that aligning lobe directions
with the zeros of SH basis functions promotes sparsity in Â and
Y (see Supplemental Material): choosing φ roots of Equation 1 is
straightforward, however a closed-form analytic expression for the
zeros of ALPs is an open problem (although their locations’ ranges
can be bound [Lacroix 1984]). We numerically determine the loca-
tions of zeros in the ALPs to seed candidate θ values for the lobe
directions. The empirical utility of aligning lobes along the location
of SH basis function zeros can be tied to the fact that a ZH lobe ro-
tated along such a direction is orthogonal to the SH basis function
the direction zeros out (by the Funke-Hecke convolution theorem).

Obtaining sparsity. Given the insights above, we can reduce
the continuous search for sparse solutions into a discrete search by
only sampling θ and φ values (for all d) at the zeros of the band-
l SH basis functions. We encode candidate angles in a vector of
length v = 2(2l + 1), of the form (θ0, . . . , θ2l, φ0, . . . , φ2l), each
element of which is selected from the Legendre and sinusoidal root
candidates for bands 1 through l. Given any setting of these values,
we generate an Âl matrix and evaluate its sparsity by considering
the fraction of zero entries that result. This is the objective function
which we seek to maximize. In practice, to avoid numerical issues,
we consider an entry to be zero if |[Âl]i,j | < ε, with ε = 10−9.

Exhaustive search quickly becomes intractable as the search
space grows exponentially in l. Instead, we address this optimiza-
tion using an evolutionary algorithm. We begin by initializing a
population of individuals, assigning each entry a random value
from the set of candidates. This may result in Yl matrices so sparse
that they are not invertible, resulting in a candidate fitness −∞
(worse than any candidate that does lead to a valid Âl). We em-
ploy uniform crossover and mutation, a population size of 500, a
crossover fraction of .8 and a mutation rate of v−1. We use elitism
of 2 and terminate after 50 stall generations [Michalewicz 1998].

Table I. Number of optimized lobes used to represent
each SH function (up to l = 6), and sparsity in Âl.

m = -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
l = 2 2 2 1 2 2
l = 3 2 2 2 1 3 3 3
l = 4 3 4 4 5 1 5 2 4 3
l = 5 3 7 5 10 5 1 7 5 7 3 4
l = 6 9 4 8 4 9 7 1 10 6 10 5 8 5

Sparsity (as a % of total entries;higher is better)

l = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
64 67 62 53 49 46 42 39 38 38 37 37 36 36 36 35 35

Table I lists the number of lobes for each l ≤ 6 SH function, as
well as the per-band sparsity up to l = 18. For fixed l, the m = ±i
functions are rotationally symmetric by definition. We take this into
account when determining candidate directions, however explicitly
forcing the use of symmetric lobes within bands may not lead to
an optimally sparse representation across bands in an order-N ex-
pansion. This explains the differing number of lobes for m = ±i.

Signal-specific sparsity. Sloan et al. [2005] derive an optimal
linear lobe so that any l = 1 SH vector can be reconstructed with
a single lobe. Analogous expressions do not exist for l > 1, and
so uniform discrete search and non-linear optimization are used to
fit rotated ZH lobes to a fixed SH vector. Their efficiency depends
on the type of signal being fit and precludes dynamic signals. Un-
bounded signals, e.g. environmental lighting, require many more
lobes and thus more time to converge. Instead, we exploit structure
in Y to pre-compute a fixed, sparse ZHF matrix that can map any
SH vector to the RZHB on-the-fly, without any costly offline fitting.

6. SHARING LOBES ACROSS BANDS

So far we have focussed on sparse per-band ZHF matrices. For an
order-N SH expansion (comprising all bands up to and including
lmax = N − 1) we can simply apply the ZHF independently per
band. This would require a total of N2 ZH lobes, where each band
l uses a unique set of 2l+1 directions optimized for sparsity in Âl.

Apart from the theoretical implications of Âl’s sparsity, there are
also computational benefits: the ZHF sparse matrix-vector multi-
plication can be hard-coded, translating to a theoretical per-band
speedup proportional to the percentage of sparsity (see Table I).

For an order-N expansion the ZHE requires the evaluation of
SH basis functions at these N2 directions. When the lobe direc-
tions do not align with the zeros of SH basis functions (as will be
the case for our fast SH rotation algorithm in Section 7.1), these
evaluations can become costly. We have investigated a hybrid ap-
proach for reducing the total number of lobe directions across all
bands, while maintaining sparsity in Â. We begin with our original
discrete, genetic algorithm sparsity search for band lmax, and con-
currently attempt to enforce sparsity across each Âl for all l ≤ lmax.
This amounts to choosing directions that induce sparsity across all
bands while sharing lobes between bands2.

With this approach, we maintain much of the per-band sparsity,
but with only 2lmax + 1 unique lobe directions instead of N2. Fig-
ure 3 illustrates cumulative sparsity by order; specifically, an order-
N expansion has sparsity measured as the number of zeros across

2Starting with candidates (θ0, . . . , θ2lmax , φ0, . . . , φ2lmax ), generating Âk

matrices for k ∈ [2, l], and measuring sparsity for each Âk matrix.
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Fig. 3. Order-N sparsity of Â from random and evolutionary search of
ALP/sinusoidal root candidates (singular Y are omitted from the statistics).
For example, at N = 8, the mean and max sparsities from many randomly
chosen lobe directions is approximately 3% and 29%, however our genetic
algorithm search found a solution with a sparsity of 45%.

all Âl sub-matrices, divided by the total number of elements. The
average sparsity of all Â matrices generated from the Legendre/si-
nusoidal root candidates decreases sharply with N (Figure 3), yet
our optimization successfully finds highly sparse solutions even for
large N . Shared directions, Ω, are nested supersets across bands:

Ω = { ω0,0 = ω1,−1 = ω2,−2 = ω3,−3 = . . . = ωlmax,−lmax ,

ω1,0 = ω2,−1 = ω3,−2 = . . . = ωlmax,−lmax+1,

. . . . . . . . . , ωlmax,lmax } .

7. APPLICATIONS AND EXAMPLES

Section 7.1 details two simple, efficient, accurate and trivially par-
allelizable SH rotation algorithms that leverage the RZHB. We
benchmark CPU and GPU implementations of our basic algorithm
against existing approaches and also present and benchmark a novel
GPU algorithm most suitable for rotating environmental lighting in
PRT. Section 7.2 overviews shading with SH and RZHB. Section
7.3 discusses applications of our rotation to real-time rendering.

7.1 Fast and Simple SH Rotation

Given the SH coefficient vector f of a function f(ω), we will out-
line a simple algorithm for obtaining the SH coefficients fr of the
rotated function f(R · ω) using ZHF and ZHE, with R′ = R−1.

One of the major benefits of the RZHB representation for spher-
ical functions is that, given ẑ, the function can be rotated by simply
rotating the lobe directions and keeping the same coefficients:

f(R · ω) =
N−1∑
l=0

l∑
m=−l

ẑl,m y0l (ω → R · ωl,m) . (9)

Equation 9 is a generalization of Equation 3 from ZH to SH. For an
arbitrary SH vector f , the rotated SH coefficient vector fr is

fr = [YR]
T

ÂT f = [YR]
T
ẑ , (10)

where YX is a matrix with the same elements as Y, but with each
direction ω substituted by X ·ω. Equation 10 can be derived by pre-
multiplying Equation 7 by [fr]T on the LHS, by [fl]

T on the RHS,
and replacing Yl by YR

l ; or, by applying ZHE to Equation 9.
Our basic algorithm directly implements Equation 10 and, with

lobe sharing, requires only a single order-N SH basis function eval-
uation at each rotated lobe direction. However, a common use case
(e.g. in PRT) admits a significant optimization, detailed below.

)(f )(~f )R'(~f

A

Rotated lobe directions (e.g.,         )R'Lobe directions (e.g.,    )

Fig. 4. With signal-tailored SH rotation, per-band SH expansions of the
original function are sampled at rotated ωl,m directions. By avoiding the
SH basis function evaluations and a dense matrix-vector multiplication, this
formulation affords a large performance improvement on the GPU.

Signal-tailored rotation. When the initial, canonically ori-
ented SH vector f corresponds to a static function (e.g., a constant
environmental light source), as opposed to a dynamically chang-
ing function (e.g., binary visibility on an animating character, or
spatially-varying BRDF), a significant acceleration can be realized:

fr
l = I fr

l = Âl Yl f
r
l = Âl YR′

l fl

= Âl [fl · yl(R
′ · ωl,−l), . . . , fl · yl(R

′ · ωl,l)]
T

= Âl

[
f̃l(R

′ · ω0,0), . . . , f̃l(R
′ · ωl,l)

]T

, (11)

where the band-l expansion f̃l(ω) is pre-tabulated (e.g., in a cube-
map) and the rotated coefficient vector fr

l can be computed by sim-
ply sampling the canonical SH expansion at the inversely-rotated
lobe directions (e.g., R′ ·Ω), avoiding all SH function evaluations!
Equation 11’s first line exploits the Âl = Y−1l property and states
that SH expansion with rotated coefficients is equivalent to expan-
sion of the unrotated coefficients evaluated in the rotated directions.

Pre-tabulated band-l expansions3, f̃l(ω), further increase the per-
formance of our GPU implementation. The data-parallel nature of
Equations 10 and 11 allows millions of rotations to be computed si-
multaneously on the GPU (see Figure 5). Moreover, signal-tailored
pre-tabulation affords an additional layer of parallelism as several
SH expansions can be stored and rotated concurrently.

For example, to rotate an RGB environment light, we pre-
tabulate its per-band SH expansions into RGB cubemaps, and
then rotate all three color signals simultaneously (at many surface
points) on the GPU (see Figure 4). In summary, obtaining rotated
coefficients of a band-limited function reduces to sampling its per-
band reconstructions and performing ZHF.

Performance benchmark. We implemented our basic algo-
rithm on the CPU (scalar processing) and GPU, and signal-tailored
rotation on the GPU, both leveraging sparse matrix-vector multi-
plication and lobe sharing. We benchmark these three implementa-
tions against a CPU implementation of low-order SH rotation from
the DirectX SDK, the general SH rotation framework of Lisle and
Huang [2007], and optimized CPU and GPU implementations of
the zxzxz-decomposition approach [Kautz et al. 2002] provided to
us by the anonymous reviewers. In practice, we directly rotate the
optimal linear lobe [Sloan et al. 2005] for band-1 rotation, and only
compare performance for N > 2. A comprehensive performance
comparison plot is included in our Supplemental Material, and we

3We use a cubemap mip-map with max resolution 6× 10242; determining
optimal per-band resolutions is an interesting problem left to future work.
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Table II. # of floating point multiplications for stages of the zxzxz algorithm, and our ZHF rotation algorithms.
Order (N ) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

zxzxz Rotation
z-rotation 34 52 74 100 130 164 202 244 290 340 394 452 514 580 650 724 802

z-rotation (opt.)∗ 16 32 52 76 104 136 172 212 256 304 356 412 472 536 604 676 752
x∗∗-rotation 5 18 39 71 115 171 243 334 445 576 733 916 1757† 2718 3807 5032 6401

Total 112 192 300 442 620 834 1092 1400 1760 2172 2648 3188 5056† 7176 9564 12236 15208
ZHF Rotation

SH Basis Evaluation 14 28 47 71 100 134 173 217 266 320 379 443 512 586 665 749 838
[YR]T multiplication‡ 25 74 155 276 445 670 959 1320 1761 2290 2915 3644 4485 5446 6535 7760 9129

Sparse Â multiplication
9 33 75 137 246 384 570 820 1118 1453 1849 2333 2851 3524 4199 5030 6014

(Signal-tailored algorithm�)
Standard algorithm (CPU) 90 275 606 1123 1891 2930 4297 6046 8199 10783 13860 17495 21672 26550 32014 38256 45311
Standard algorithm (GPU) 34 107 230 413 691 1054 1529 2140 2879 3743 4764 5977 7336 8970 10734 12790 15143
∗ z-rotations can be optimized (compared to the routines we benchmark against) by exploiting recurrences in the (co)sine computations.
∗∗ Only one entry is shown per order for x-rotations, since the # of multiplications only varies by ±2 between + and − x-rotations (for fixed N ).
†We only optimize the sparsity of x-rotations up to N < 15, with slower loops used to (densely) compute the rotations for bands l ≥ 14.
‡ YR is used in our (non signal-tailored) implementations; however on the GPU, its construction avoids SH basis evaluations by using tabulated functions.
� For GPU signal-tailored rotation, the only multiplications (apart from rotating the lobe directions) are incurred by the optimized sparse Â multiplication.

choose to focus our comparison against the most competitive state-
of-the-art zxzxz rotation approach used in CG.

Figure 5 compares performance (in rotations per second) of our
CPU and GPU algorithms with optimized implementations of the
zxzxz approach (provided to us by the anonymous reviewers) on
an Intel core i7 laptop with 6 GB of RAM and an nVidia Quadro
FX 1800M with 1 GB of VRAM. Note that performance is plot-
ted on a log10 scale. CPU performance is computed as an average
of 106 random rotations (using the same random rotations for each
technique) and GPU performance numbers include the cost of re-
constructing the rotated spherical signal in a shader.

Our standard algorithm outperforms an optimized zxzxz CPU
implementation until a break-even point between N = 7 and 8
on the CPU4. On the GPU, signal-tailored rotation is consistently
faster than all other GPU algorithms. The reviewer-provided im-
plementation of zxzxz has optimized, hard-coded sparse matrix-
vector multiplications for the x-rotation routines, up to N = 14.
We only include these optimized performance measurements (de-
noted using the♦ symbol) in Figure 5, and our comprehensive per-
formance plot in our Supplemental Material also includes perfor-
mance numbers beyond N = 14 (where loops are used to rotate
all bands l ≥ 14) on the CPU and GPU. Our standard (non-signal-
tailored) rotation algorithm surpasses shader compilation limits at
N = 16 (marked with �), as does the zxzxz approach at N = 18
(see the Supplemental Material). For N ≤ 7, our standard algo-
rithm outperforms zxzxz on the GPU before the cost of performing
dense matrix-vector multiplication with [YR]T begins to dominate.
As noted in Table II, an additional optimization can be realized for
the z-rotation of the zxzxz implementation by leveraging a recur-
rence when computing the sines/cosines of multiples of the rotation
angle. We did not implement this optimization and benchmarked
directly against the code kindly provided to us by the anonymous
reviewers, however including such an optimization may lead to an
earlier cross-over point between our algorithm and zxzxz.

Performance discussion. Table II compares the number of
floating point multiplication operations between the different com-

4Our CPU implementation does not leverage SSE vectorization, however
we have experimented with a naı̈ve vectorization across 4 input SH coeffi-
cients yielding a speed up of nearly 3× (not included in performance plots).
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Fig. 5. Performance comparison, in rotations per second, on a log10 scale.

ponents of our rotation algorithms, as well as the optimized zxzxz
rotation algorithm. The steep increase in operations at N = 14 for
the x-rotation component of zxzxz is again due to the lack of op-
timized sparse matrix-vector computation. Both our CPU and GPU
ZHF implementations hard-code the sparse matrix-vector multi-
plications (with ÂT and Â, respectively) with code provided for
N = 3 to 6 in the Supplemental Material. Furthermore, we use
optimized SH basis function routines, generated programmatically,
to evaluate the rotated lobe directions in our standard rotation al-
gorithm (multiplication operations for the code generated SH basis
function routines are also included in Table II). The multiplication
operation count in our standard algorithm on the CPU includes the
cost of evaluating SH basis functions at these rotated directions
to generate the elements of YR, as well as performing the dense
matrix-vector multiplication with [YR]T; in contrast, we use tabu-
lated SH basis functions on the GPU and when counting multipli-
cation operations for this GPU implementation.

We note that our approaches have asymptotic complexity equal
to the leading zxzxz approach. We performed a thorough perfor-
mance analysis to determine the major contributors to our relative
performance increase over zxzxz. Algorithmically, zxzxz performs
Euler angle decomposition, followed by five sparse matrix-vector
multiplies: three z-rotations and two fixed ±90◦ x-rotations. Hard-
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coding functions for the sparse x-rotation matrix-vector multipli-
cations yields a significant performance increase over algorithmic
matrix composition with loops. We use these optimized x-rotation
matrices up to N = 14 on the CPU and GPU.

Our signal-tailored rotation only requires a single, fixed sparse
matrix-vector multiplication, which we precompute using a code
generator. This is not true of our standard algorithm, which requires
(the transpose of) this multiplication (also precomputed with code
generation), as well as a dense multiplication by [YR]T. The cost
of generating and performing this dense matrix multiply becomes
the bottleneck on the CPU and GPU at around N = 7. For our
standard rotation implementation on the GPU we use precomputed
cubemaps for SH basis function evaluation although, from some
initial experiments, the circumstances under which these lookups
become beneficial compared to arithmetic evaluation of the basis
functions is both unclear and inconsistent. On the other hand, our
signal-tailored implementation only requires texture lookups and
one static, precomputed, sparse optimized matrix-vector multipli-
cation, yielding much simpler and more predictable execution be-
havior. We have also experimented with using tabulated SH basis
functions on the CPU with mixed results.

We believe that investigating the trade-offs between the use of
loops, tabulated data, and arithmetic operations may lead to sig-
nificant performance increases, both on the CPU and GPU. Given
this, while Table II gives a good sense of the scalability of the ZHF
and zxzxz algorithms, additional issues such as memory and cache
usage, bandwidth utilization, using loops with branching versus un-
rolled loops, and using precomputed tables versus on-the-fly arith-
metic evaluation all factor into the final observed performance.

Error. We target applications of low-order SH to CG, affording
a slightly relaxed level of accuracy compared to other scientific ar-
eas. As in [Lessig et al. 2010], we ensure that our choice of Ω yields
a well conditioned Y, enabling stable rotation; as mentioned in Sec-
tion 5, ill-conditioned Yl are not considered in our statistics. Visu-
ally, our rotation is temporally coherent (i.e., no “wobbling”), and
our results match all the approaches we have benchmarked against
(to within 6 digits of accuracy using 32-bit float frame buffers).

7.2 Coupling RZHB and SH for Shading

PRT techniques compute outgoing radiance with dynamic re-
flectance and lighting using compact basis representations. Under
certain circumstances outlined below, it is more efficient to perform
this computation in local, spatially-varying coordinate frames.

Shading Overview. Direct light at point x in direction ωo is a
triple product integral of lighting Li, visibility V , and BRDF fr ,

Lo(x, ωo) =

∫
S2

Li(x, ω) V (x, ω) fr(x, ω, ωo) bn · ωcdω

≈
∑
ijk

[l]i [v]j [f̄ ]k

∫
S2

yi(ω) yj(ω) yk(ω)dω︸ ︷︷ ︸
Γijk

, (12)

where l, v, and f̄ are the SH projection vectors of the three terms5,
and Γ is the order-3 tripling coefficient tensor. If only one term is
dynamic (e.g., lighting), a double product integral can be computed,

Lo(x, ωo) =

∫
S2

Li(x, ω) T (x, ω, ωo)dω ≈ l · t , (13)

5Typically, the BRDF is combined with the cosine foreshortening term.

Fig. 6. Applying ZHF to several rendering applications
(see Section 7.3. With permission of Benoı̈t Mayaux [2010];
http://www.patapom.com/O3D/Cathedral.html).

where T is the visibility (and cosine) weighted BRDF term, also
called the “transfer”, and t is its SH projection coefficient vector.

In x’s local frame, fr is a four-dimensional function, as opposed
to six-dimensional in the global frame. Furthermore, some BRDFs
admit simpler analytic formulae in the local frame. In these scenar-
ios, evaluating Equations 12 or 13 in the local frame is ideal. How-
ever, local-frame shading requires the lighting (and, in the case of
dynamic geometry, visibility) to be rotated at each shading point.

Unlike previous work, we can dynamically rotate several func-
tions into the local-coordinate frame at each pixel on the GPU.

We derive coupling matrices for when one or both functions in
Equation 13 are represented in the RZHB (see Supplemental Mate-
rial). Two common use cases of (LD)PRT are dynamic lighting and
deformable local transfer/reflectance/visibility functions, where an
efficient solution is to represent one of the functions in the RZHB
and rotate into the local frame with Equations 10 or 11.

7.3 Rendering Applications

We apply ZHF and the efficient rotation algorithms to several di-
verse rendering scenarios, exhibiting the flexibility of our solution.

We augment an open-source St. Jean Cathedral demo (Figures 1
and 6), which executes completely in a web browser using Google’s
O3D javascript API, showcasing the modest computation require-
ments of ZHF rotation. In order to support “common denomina-
tor” hardware, O3D is restricted to Shader Model 2.0. Regardless,
order-9 rotations are computed on the CPU with javascript (Equa-
tion 10), and the final shade is reconstructed using multi-pass Pixel
Shader 2.0 kernels and Habel et al.’s [2008] sky model. ZHF is suit-
able for low-end console platforms that impose similar restrictions.

The cloth demo (Figure 6, top right) computes indirect light and
shadows using [Sloan et al. 2007] and [Ren et al. 2006] for rigid ob-
jects (respectively), and a variant of [Nowrouzezahrai and Snyder
2009] for cloth geometry. World-space order-8 rotations are com-
puted on the CPU, and then rotated into the tangent frame at ev-
ery (foreground) pixel using signal-tailored rotation. On our laptop
GPU, we maintain over 145 FPS in this demo. The height field
demo (Figure 6, top left) computes order-9 rotations on the GPU
for 2562 = 65.5K shade points at over 120 FPS.
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Our rotation approach is compatible with existing techniques for
computing dynamic SH visibility and BRDFs in a local-frame rep-
resentation [Ren et al. 2006; Ramamoorthi and Hanrahan 2002].

We use 32-bit floating point operations/storage (including tex-
tures) and, other than hard-coding the sparse matrix-vector multi-
plication, no effort was made to “hand tune” or optimize our code.

Discussion. The performance drawbacks of current SH rota-
tion, most notably their inability to map naturally to the GPU, im-
poses many limitations (sometimes indirectly) on real-time render-
ing applications. Ren et al. [2006] are forced to compute an SH
light-product matrix every frame for every light, whereas lighting
can be rotated into the local frame with our approach, where dif-
fuse (or, e.g. Phong) lobe product matrices can be more efficiently
evaluated. LDPRT [Sloan et al. 2005] is restricted to single-lobe
reflectance models and approximate visibility since the non-linear
lobe fitting approach is neither lossless nor well-suited for light-
ing functions. With ZHF, lighting can be rotated efficiently on both
the CPU and GPU (or both simultaneously). Thus, more complex
reflectance/visibility models can be supported without any loss in
accuracy. Signal-tailored GPU rotation is of particular usefulness,
mapping naturally to shader-based engines (as opposed to requiring
separate GPGPU kernels and interop), and would be of immediate
benefit to gaming and interactive applications. Moreover, with the
integration of WebGL and HTML5 technologies, high-quality web-
based rendering will seamlessly benefit from our approach.

8. CONCLUSION AND FUTURE WORK

We introduce an approach for determining lobe directions and
weights such that any order-N SH expansion can be represented
perfectly as a sum of static, precomputed rotated ZH lobes. We
show how to promote sparsity in this mapping, yielding interest-
ing theoretical and practical results. Signal-tailored rotation, which
can be viewed as a form of spherical polynomial interpolation, is
designed to leverage shader-based rendering architectures.

Our mathematical exposition is straightforward, especially com-
pared to prior work in SH rotations, and the resulting algorithms
are very easy to understand and implement. We outperform current
state-of-the-art rotation algorithms, especially on the GPU.

Source code, sparsity-optimized lobe directions for N ≤ 8, and
the MATLAB code used to generate this (and higher-order) data is
included in the Supplemental Material. This allows for rapid inte-
gration of our technique into existing rendering systems.

In the future, we plan to exploit ZHF for sparse data interpola-
tion/projection, and optimal signal-specific lobe fitting (e.g., choos-
ing directions according to the zeros of arbitrary SH expansions).
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