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Abstract

We have implemented the first copying garbage collector that

permits continuous unimpeded mutator access to the original

objects during copying. The garbage collector incrementally

replicates all accessible objects and uses a mutation log to

bring the replicas up-to-date with changes made by the mu-

tator. An experimental implementation demonstrates that the

costs of using our algorithm are small and that bounded pause

times of 50 milliseconds can be readily achieved.

Keywords: real-time garbage collection, copying garbage

collection, incremental collection, concurrent collection,

replication.

1 Introduction

Garbage collector pauses are always annoying, but for many

applications they are intolerable. For example, smocthly
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tracking a mouse in an interactive graphics application re-

quires pause times of 50 milliseconds or less[5]. For garbage

collection to be useful in applications with real-time con-

straints, pause times must be bounded. We have implemented

a garbage collector which provides real-time collection using

anew technique. This technique is efficient and can provide

such short bounded pause times.

The key method used by real-time collectors is incremental

collection, in which garbage collection work is interleaved

with mutation. For incremental collection to be possible, the

garbage collector must sometimes suspend its work and per-

mit the mutator to run, even though the collection algorithm

has not completed.

Previous work on incremental collection has focused on

techniques that required either special hardware or operating

system support [12, 1], or in which the extra overhead for the

mutator was potentially very high [4, 16]. These algorithms

are variants of Baker’s algorithm [2] which uses a to-space

invariant. The to-space invariant requires that the mutator

use only pointers into to-space. The cost of enforcing this

restriction leads to the need for special hardware or operating

system support.

Instead of a to-space invariant, our method uses a from-

space invariant which requires that the mutator use only the

original from-space objects. The garbage collector incremen-

tally builds a consistent replica of the accessible objects. The

modified colleetor invariant decouples the exeetttion of the

garbage collector from the mutator, and permits the collector

great flexibility in scheduling its replication activity.

An early prototype of our implementation[14] demon-

strated that replication can be used for incremental collec-

tion but did not provide real-time response. It also did not

allow for a careful comparison of performance with stop-

and-copy collection. To demonstrate that our technique is

practical and feasible for real-time collection, we have im-

plemented several variants of this technique for Standard ML

of New Jersey (SMJJNJ). Our experimental collectors pro-
vide excellent performance with little runtime overhead. The

real-time collector provides bounded pause times within the

limits needed by interactive applications.

In the sections that follow, we introduce our general ap-

proach, based on the new invariant. We provide a high-level
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explanation of our method and its fundamental correctness

conditions. We then discuss the details of our experimen-

tal implementation and its real-time performance goals. We

present experimental results that show that the cost of the

technique is low in practice and that pause times are well

controlled. Finally, we discuss possible improvements to the

implementation and suggest areas for further work. We as-

sume that the reader is familiar with the basics of copying

and generational garbage collection, a survey may be found

in Wilson [20],

2 Real-Time Replication Garbage Col-

lection

Incremental collectors permit the mutator to resume execu-

tion before the collection has completed. The operations of

the collector and the mutator may be interleaved. Thus the

effects of the garbage collector must not be observable by the

language primitives used by the mutator.

The standard technique used by copying garbage collectors

to copy an object destroys the original object by overwriting it

with a forwarding pointer. Therefore, incremental collectors

that use the standard copying technique require the muta-

tor to use only the relocated copy of an object. Enforcing

this to-space invariant typically requires a “read-barrier”, as

shown in figure 1. The implementation of read-barriers has

consequently been the focus of much effort in incremental

garbage collection work.
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Figure 1: A Read Barrier Protecting Tospace

In contrast, our technique requires the collector to replicate

live objects without destroying the original objects. The

mutator is able to continue accessing the original objects.

This allows us to eliminate the read-barrier and modify the

to-space invariant. However, our method requires a write-

barrier because the mutator may continue to modify objects

after they have been replicated, A write-banier is much less

costly to implement than a read-bamier[lO].

Conceptually, the standard Copy operation can be made

non-destructive by reserving an extra word in the object

which is not observable by the mutator and which is used

to store the forwarding pointer. In our algorithm, the goal

of the collector is to successfully replicate all live objects

which are present in “from-space” by creating corresponding
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Figure 2: Replication and The Mutation Log

objects in “to-space”. When this task is complete, the col-

lector replaces the roots of the mutator with pointers to their

corresponding replicas in to-space, discards from-space, and

terminates.

2.1 Mutations are Logged

After the collector has replicated an object, the original object

may be modified by the mutator. If this happens, then the

same modification must also be made to the replica before

the mutator switches to using the replica. Therefore, our

algorithm requires the mutator to record all mutations in a

“mutation log”, as shown in figure 2. The collector must use

the mutation log to ensure that all replicas reach a consistent

state by the time the collection terminates, The collector does

this by processing the log entries and applying mutations to

the replicas.

When the collector modifies a replica which has already

been scanned, it rescans the replica to ensure that any object

referenced as a result of the mutation is also replicated in

to-space. After a log entry has been processed in this way

it may be discarded. The cost of logging and of processing

the mutation log depends on the application, and also the im-

plementation of logging. Mutation logging works best when

mutations are infrequent or can be recorded without mutator

cooperation. Mutation logging is also attractive whenever

writes are already expensive or a mutation log is required

for other reasons. For example, generational collectors, per-

sistent data, and distributed systems uswdly make mutation

operations more expensive[13].

2.2 The Collector Invariant

The invariant maintained by the replication-based garbage

collector is that the mutator can only access from-space ob-

jects, that all previously scanned objects in to-space contain

only to-space pointers, and that all to-space replicas are up-to-

date with respect to their original from-space objects, unless

a corresponding mutation is recorded in the mutation log.

This from-space invariant differs from standard collector

invariants because it requires the mutator to continue using

the original from-space objects. The from-space invariant

permits the replicated objects to be in an inconsistent state,

as long as the inconsistencies are recorded in the mutation

log. It is because of these inconsistencies that the mutator
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must continue to use only the from-space objects until the

collection algorithm completes.

2.3 The Completion Condition

The collector has completed a collection when the mutation

log is empty, the mutator’s roots have been scanned, and

all of the objects in to-space have been scanned. When

these conditions have been met, the invariant ensures that

all objects reachable from the roots have been replicated in

to-space, are up-to-date, and contain only to-space pointers.

When the collector has established this completion condition,

it atomically updates all roots of the mutator to point at their

corresponding to-space replicas, discards the from-space, and

renames to-space as from-space.

2.4 Limiting Pause Times

In order to guarantee that the garbage collector will only

pause the mutator for a bounded time, the collection algo-

rithm must somehow limit its execution. If the algorithm has

not completed when the maximum pause time has passed, the

collector must stop work and permit the mutator to conti]nue

executing.

The replication-based algorithm described here can sus-

pend execution at any time, and is suitable for concurrent

implementation (see section 6). However, the actual mech-

anisms that can be used to control the duration of garbage

collection pauses are implementation dependent, and are dis-

cussed in section 3.3.

2.5 Optimization Opportunities

The from-space invariant used by this algorithm is very weak,

in the sense that the collector never needs to work on any

particular task in order to allow the application to execute.

The collector only needs to replicate all the live data soon

enough to terminate and reuse the memory in from-space

before the application runs out of memory.

In the algorithm of Appel, Ellis, and Li[l], the application

may frequently be blocked waiting for the collector to copy

the objects that it must use. We believe that the flexibil-

ity of our invariant offers potentially important optimization

opportunities to any replication-based implementation. For

example, the collector can copy objects in essentially any

desired order.

This freedom in copying order could be used to increase

locality of reference or to change the representation of objects

stored in a cache[17]. Another way that copying order free-

dom can be exploited is by concentrating early replication
work on objects reachable from particular roots. Particular

roots may be more likely to change than others, so copying

them later could reduce the amount of latent garbage copied

by the collector.

Also, if no mutable objects have been replicated then the

collector need not apply mutations to replicas. The collector

could choose to concentrate early replication effort on only

immutable objects, and thereby delay the need to process the

log until the last possible moment. The actual copying of

an object can be delayed until the object is scanned using

an optimization suggested by Ellis[9]. The collector could

replicate mutable objects into a segregated portion of the to-

space, and delay copying and scanning mutable objects as

long as possible. Mutation log entries created before the first

mutable object was actually copied could be discarded.

3 Implementation

To test the practicality of our new approach, we implemented

a real-time garbage collector using the replication-based al-

gorithm, The collector is designed to show that pause times

can be limited and to permit accurate comparison with an

existing stop-and-copy collector. The experimental collector

operates in the runtime system of Standard ML of New Jersey,

which uses a two-level generational heap design. The collec-

tor uses the replication algorithm for both minor-incremental

and major-incremental collections, which share the imple-

mentation of object replication and mutation logging.

The major and minor collectors differ in when collections

are initiated and how their execution is controlled. The real-

time collector can be operated with the incremental algorithm

enabled for one or both of the two generations present in the

original SML/NJ collector. The experimental results pre-

sented in section 4 use results from various configurations

to quantify the costs of the replication method and the pause

time behavior for several benchmarks.

3.1 The SML/NJ Runtime System

We chose SML/NJ (version 0.75) for our work primarily

because it has a good compiler and a simple generational

garbage collector. Since the runtime system has no stack,

heavy demands areplaced on the storage allocation and recla-

mation system. Providing real-time garbage collection is

therefore challenging. However, the SML language encour-

ages a mostly functional programming style, so mutations

are rare. This is advantageous to our technique.

In the SML/NJ collector, there are two generations, old and

new. Objects are allocated in new-space. When new-space

fills, a minor collection is initiated which copies the live data

into old-space. The size of the new-space is controlled by

the runtime parameter N. Another parameter, O, controls the

initiation of a major collection. When the amount of memory

copied into the old space by minor collections exceeds O, a

major collection occurs, copying all live data into to-space

and then exchanging the roles of to-space and old-space.

3.2 Replication and Logging

Generational collectors must identify mutations that might

create pointers from old-space into new-space. The SML/NJ
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Figure 3: SML/NJ Heaps with GC Parameters

collector uses a log called the “storelist” to track such mu-

tations. The replication-based algorithm needs to log all

mutations to the contents of a previously replicated object.

We modified the SMUNJ compiler so that all mutations are

recorded in its storelist.

The most straightforward implementation of non-

destructive copying is to store a forwarding pointer to the

replica in an extra word in each object. However, measure-

ments of the SML/NJ system suggest that most objects are

only three words long, including the object header word used

to store certain type and length information. This means that

the overhead of allocating an extra word per object would be

prohibitive. Therefore in our implementation we overwrite

the object header word with the forwarding pointer.

Fromspace Tospace

Figure 4: Getheader Operations Follow the Forwarding Word

Our implementation must ensure that the replacement of

the objeet header word is not observable by the mutator.

The mutator accesses the object header word only during

the polymorphic equality operator and certain type-specific

length operations. We modified the compiler to implement

these operations by checking for the forwarding pointer and

reading the object header word from the replica when nec-

essary. This slows down these operations without imposing
an overhead on normat read access to object contents. We

also modified all runtime system call operations which mod-

ify ML data (e.g. 1/0 primitives) to perform appropriate

logging.

3.3 Controlling Pause Duration

In SML/NJ the pauses due to major collections are the longest

and most disruptive. The real-time collector uses the incre-
mental algorithm to eliminate these pauses. The incremental

algorithm is enabled when the O parameter tirst triggers a

major collection. Each time a minor generation collection

occurs, the major-incremental collector performs some work

after the minor collector terminates. This approach slightly

increases the pause times for minor collections and com-

pletely eliminates the more disruptive major pause times.

In order to control the total pause time caused by the com-

bined minor and major collections, the incremental algorithm

restricts the amount of work it does using a parameter, L. The

L parameter limits the total amount of memory copied by the

collections during a single pause. However, only the incre-

mental algorithm respects the work limit L.

If the minor collection has exceeded the copy limit L, then

the major-incremental algorithm processes the mutation log,

but does not perform any additional replication work. There-

fore, when L is very small, the major-incremental collection

may not terminate. There is an implementation-dependent

lower bound for L that will guarantee termination, but such

a conservative completion strategy increases the total cost of

garbage collection [14].

3.4 The Real-Time Collector

Minor collection pauses are usually short, but may not be

bounded by L. Therefore, to bound these collection pauses,

the real-time collector uses the incremental algorithm for mi-

nor collections as well as for major collections. When the

work limit L is exceeded during a minor collection, the col-

lector suspends execution and returns control to the mutator.

In this case, new-space must be expanded in order for the

mutator to allocate more objects. Currently the implemen-

tation expands new-space by a parameter A, whenever any

incremental collection is awaiting completion.

For a minor collection the log contains pointers into the old

heap which are roots. Our technique requires that all roots

be atomically updated at the time of a flip. For minor flips

this requires an additional traversal of the log to update the

roots in the old heap. At this point the log has been filtered

so that it includes only the pointer related mutations as only

these entries are roots.

Our real-time collector does not yet offer an absolute guar-

antee of bounded pause times. First, the implementation

makes no attempt to shield the mutator from page faults,

1/0, swapping, and other system effects. Second, the current

implementation does not incrementally copy a single large

object. nor does it incrementally process the mutation log.
Therefore, these operations can exceed the work limit L. If

necessary, these operations can easily be implemented so that

they are performed incrementally and respect the work limit.

4 Performance

The goals of the performance study were to demonstrate that

pause times are bounded and to measure the overheads im-

posed by our technique. The measured performance is good;

the real-time collector achieves short pause times with an

J-)’-Jn
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acceptable overhead. In addition to the basic measurements

of pause and execution times, we also undertook a series of

experiments to quantify the contributions of various factors

to the overhead.

4.1 Benchmarks

Three benchmmks were used to test our implementation.

Each was chosen because it stressed the memory manage-

ment system in a different way. All benchmarks require

several minutes to execute and require many major and mi-

nor garbage collections during execution. See [6] for more

details about these benchmarks.

Primes is a prime number sieve implemented in a simple

lazy language which is in turn interpreted by an SML

program. It allocates memory at a very high rate (ap-

proximately 10Mb/see), but few objects survive garbage

collection. It is typical of compute-bound programs in

SMLiNJ,

Comp is the SML/NJ compiler compiling a portion of

itself. This is the most realistic benchmark; the SML/NJ

compiler is a large optimizing compiler and is in daily,

production use. Comp does not allocate as much data as

Primes, but more of it survives collections. The amount

of live data fluctuates depending on the phase of the

compilation.

Sort is a sorting program based on futures which are in

turn implemen&l u~ing SML threads. Sort does more

mutation than a typical SML program and it creates a

large amount of live data. Both the large mutation rate

and the substantial survival rate make this a challenging

example for our technique.

All benchmarks were executed on a Decstation 50001200

with 64 Mb of physical memory running the Mach 2.5 oper-

ating system. The system has a 25 MHz clock and separate

64Kb instruction and data caches. For the pause time meas-

urements the system clock resolution was set to 4ms.

4.2 Parameter Settings

To test our system we chose values for the parameters N, O,

L and A. For Owe used the values 5Mb and lMb. The larger

value is typical for running SML/NJ in our environment,

while the lower setting was chosen to emphasize overheads

present in major collections. For N we chose lMb and 0.21Vfb.

Again, the larger value is typical for use with the stop-amd-

copy collector. The lower setting was chosen because it

atlowed us to achieve pause times of 50 milliseconds yet still

have the collector terminate. We chose 50 milliseconds as

our target pause time because this is the maximum pause time

which will allow an interactive program to smoothly track a

mouse[5].

When N is 0.2Mb we set L to O.lMb and when N is

lMb we set L to 0.5 Mb. The value of O.lMb was chosen

because that is approximately how much data the collector

can copy in 50 milliseconds, while the value of 0.5Mb was

chosen somewhat arbitrarily. A was chosen to be L/2. This

guarantees that the collector will make progress when an

incremental collection is active.

We also ran our benchmarks with other values of L but

those results are not particularly illuminating and have been

omitted due to lack of space (see [19] for more details). In

general, as L increases, pause times increase and duration

of collections decrease. Any overheads that are related to

collection duration decrease.

In this study we are concerned with quantifying the over-

heads of adding replication-based collection to the system,

rather that studying what polices should be used to control

such a collector. Since the choice of policy can strongly

influence performance we controlled for it in the following

way. Using the parameters above, the real-time collector

was run in such a way as to produce a script of exactly when

it flipped and how much new allocation space it returned.

These scripts were then used to replay these policy decisions

for all benchmark runs. This ensures that the differences we

measured were those imposed by our mechanism rather than

variations caused by different policy decisions. We measured

the overhead caused by this replay method and found it to be

smaller than the margins of error (approximately 270) typical
in our benchmark runtimes.

4.3 Pause Times

The primary motivation for using a real-time garbage collec-

tor is to provide bounded collector pause times. In this section

we present the measurement results for our benchmarks.
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Figure 5: Compiler Benchmark (N=O.2Mb, O=lMb)

Figure 5 shows a plot of pause times for both the stop-

and-copy collector and the real-time collector running Comp
with O= lMb and N=200Kb. The real-time collector has a

maximum pause of 84ms and the peak at 50ms represents

991
,2/2.



Long GC Pauses dumg ComF Benchrmmk
5 1 I 1 1 1 1 1 1

Stop and COpy (S+C) —

4

t 1

100 200 300 400 50’3 600 700 S00 900 10@3
Pause Tme (mlhseconds)

Figure 6: Compiler Benchmark (N=O.2Mb, O=lMb)

the result of truncating the longer stop-and-copy pauses to

that value. Figure 6 shows the longer pauses of the stop-and-

copy collector which our technique eliminated. Note that

during this 245 second long run the stop-and-copy collector

causes a pause longer than 0.5 seconds approximately every

20 seconds.

Table 1 summarizes the rest of the pause time data. The

table shows the the median pause time, the 99% percentile

pause time, and the maximum pause time. These measures

show that the real-time collector is successful at bounding

the pauses, and that in exchange the duration of many shorter

pauses increase slightly.

4.4 Elapsed Times

l%e real-time collector is clearly successful at providing

bounded pause time, but at what cost in performance? A

diagram of the component costs of elapsed time in our imple-

mentation is shown in figure 7. Several of the costs, such as

latent garbage and the generational scan of pointer mutations,

are shared by any incremental and/or generational collector,

and are not peculiar to replication gc. These overheads will

be explored in some detail in the following section.

To determine total overhead, we measured our benchmarks

using a variety of configurations: the full real-time collec-

tor, the real-time collector with only minor collections done
incrementally, the real-time collector with only major collec-

tions done incrementally, the stop-and-copy collector with

the compiler changes for real-time collection and the stop-

and-copy collector without those modifications.

Figures 8, 9, and 10 summarize this data. In general the

overhead for the most realistic benchmzwk, Comp, is under

10%. We consider this overhead acceptable. Even Sort, the

most demanding benchmark, shows overheads under 2570.

Note that the cost of doing minor-only incremental is essen-

tially the full cost of real-time collection. We do not have

a good explanation of why in some cases this cost is larger

than for the full real-time collector, but in later sections we

Primes

ON Stop+copy Real-Time

Mb Mb 50% 99% Max 50% 99% Max

Comu 1..
ON Stop+copy Real-Time

Mb Mb soy. 99% Max 50% 99% Max
L

1 0.2 8 36 990 12 64 86

1 1.0 28 148 934 36 292 314

5 0.2 12 36 778 12 60 74

5 1.0 32 120 450 36 260 294

sort
ON Stop+copy Real-Time

Mb Mb 50% 99% Max 50% 99% Max

Table 1: Garbage Collection Pause Times (msec)

Elapsed Time

A

‘“*A @’a
I

...-.-..”..
Gener&’ional Logging
Scan Pointer
Mutations Reapply

Mutations

Figure 7: Components of Execution Time
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will see why it should be essentially the same.
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Figure 8: Primes Benchmark Elapsed Times
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Figure 9: Compiler Benchmark: Elapsed Times
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Figure 10: Sort Benchmark Elapsed Times

4.5 Overheads Due to Compiler Modifications

The compiler modifications which were needed to support

our technique impose two overheads on the compile~ testing

headers for forwarding words and adding extra records to

the log. The extra log records also impose an overhead on

the garbage colleetor. To measure these overheads we ran

the stop-and-copy collector with each of these modifications

enabled separately, We were unable to measure the cost of

testing for the presence of forwarding pointers, leading us to

conclude that it is negligible, or at most a few percent. The

cost of the extra log entries accounted for essentially all of

the overhead due to the compiler modifications.

Examining the entries in figures 8, 9,and 10, we see that

the overhead of these additional records is essentially O%

for Primes and near 5% for Comp and Sort. This is easily

explained by following observations. Primes does almost

no mutations and so should see no overhead. Sort mostly

mutates integer references which the compiler normally does

not place on the log, while Comp contains many mutations to

byte data which is likewise normally not logged. Perhaps the

overhead due to these non-pointer mutations could be reduced

either by forwarding them to to-space during mutation instead

of logging, or by using other logging techniques. We have not

yet made separate measurements of the mutator and garbage

colleetor costs.

[
Primes

ON CR %CR CF %CF

(Mb) (Mb) II (sees) (sees)

1 0.2 II 7,0 2.3 14.1 4.7

I 1 1.0 6.4 2.7 21.2 9.0

5 0.2 5.7 2.0 14.7 5,1

5 1.0 II 6.1 2.6 21.4 9.2

Comp

ON CR %CR CF %CF

(Mb) (Mb) (sees) (sees)

1 0.2 3.3 1.3 3.7 1.4

1 1.0 3.0 1.3 4.6 2.0

5 0.2 3.1 1.4 3.9 1.8

5 1.0 2.5 1.3 4.7 2.4

sort
ON CR %CR CF %CF

(Mb) (Mb) (sees) (sees)

1 0.2 5.3 1.7 10.2 3.2

1 1.0 4.8 1.7 14.2 5.0

5 0.2 4.3 1.6 10.0 3.6

5 1.0 4.6 1.8 13.9 5.6

Table 2: Log processing costs
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4.5.1 Processing the Mutation Log

Two costs of our technique which are not shared by other

incremental or generational collectors are the costs of reap-

plying mutations to to-space and of atomically updating roots

found in the log during a minor flip. To measure this cost

we repeatedly processed the mutation log in order to increase

the overhead to a measurable level, both with and without

the reapplication of mutations enabled. This allowed us to

distinguished the two cases described above.

Figure 2 presents these results. CR is the cost of reapply-

ing the mutations in seconds and ‘%CR is the percentage cost

relative to that of the real-time collector. CF is the cost of

atomically flipping the roots in seconds and 9ZOCFis percent

relative to real-time collection. The cost of actually forward-

ing the stores is generally small and is always smaller than

the cost of the atomic flip. If the minor collection need not

be incremental then the flip cost may be avoided. It is also

possible that improving the data structures used to represent

the mutation log would reduce this cost. This data, along

with the measurements of overheads due to compiler modifi-

cations also reveals why the minor-incremental collector has

essentially the same performance as the real-time collector.

The minor-incremental collector shares all these costs with

the real-time collector, and these costs dominate.

Primes

G %G CG

(M; (M; (Kb) (sees)

1 0.2 739 0.5 0.4

1 1.0 0 0.0 0.0

5 0.2 159 0.1 0.1

5 1.0 0 0.0 0.0

Comp

G %G CG

(M: (M; (Kb) (sees)

1 0.2 7556 3.6 3.9

1 1.0 6247 4.1 3.2

5 0.2 5561 1.6 2.8

5 1.0 1723 1.9 0.9

(M: (M;

1 0.2

1 1.0

5 0.2

5 1.0

sort
G %G CG

(Kb) (sees)

5561 1.6 2.8

4115 1.5 2.1

1237 0.4 0.6

998 0.4 0.5

Table 3: Latent garbage amounts

4.5.2 Latent garbage

One potential overhead for any incremental collection algo-

rithm is that data considered live by the collector may die

before the collector terminates. This latent garbage increases

the overhead of collection since it must be copied and it leaves

less free memory to be used by the allocator. To measure this

effect we compared the amounts of data copied by the stop-

and-copy collector and the real-time collector. Because the

flips and allocation amounts were exactly synchronized the

difference between the two is the latent garbage.

Table 3 shows our measurements of latent garbage both in

Kb (G) and as percentage of the true live data (% G). We also

estimate the cost of copying this much data in seconds (CG).

Our cost estimates are based on measurements of the rate at

which the collector copied data. These measurements show

atypical copying rate of approximately 2Mb/sec. This corre-

lates well with the fact that L = 100Kb gives 50 millisecond

pause times.

We see that the amount of latent garbage is generatly a

small fraction of the total amount of data copied. The abso-

lute amount of latent garbage goes down both with increasing

N and O. For O this is because there are fewer collections

to create latent garbage. For N it is because for these mea-

surements increasing N increases L. When L increases the

incremental algorithm terminates more quickly and there is

less latent garbage. These measurements suggest that latent

garbage is not an important contributor to the overheads in

our current tests. However, different policies with respect to

when to begin collection and how rapidly to complete it may

make this effect more important.

5 Related Work

The real-time copying collector by Baker[2] first proposed

the condition that object accesses somehow be redirected to

the relocated copy of the object. The work of Ellis, Li, and

Appel[l] exemplifies the use of virtual memory traps and

other operating system support to implement similar condi-

tions. A method due to Brooks[4], and later implemented

by North [161, requires the mutator to follow a forward-

ing pointer which leads to the relocated object. Nilsen[15]

describes a software implementation of Baker’s algorithm

which is designed for an environment in which strings are
heavily used. The overhead of his technique seems to be

prohibitive in a more general context.

Recent work by Boehm, Demers and Shenker [3] on a con-

current mark-and-sweep collector promises real-time perfor-

mance. As in our algorithm, a form of mutation logging is

used by the collector to track changes made by the mutator.

The mutation log is implemented by periodically sampling

the dirty page bits maintained by the virtual memory sys-

tem. Live objects are not relocated, but rather are marked

non-destructively. Therefore, GC efforts can be interleaved

freely with mutator operations, but the compaction possible
in copying collectors is unavailable. The authors observed

the possibility of using a from-space invariant for a copying

collector.
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Two recent collectors for ML are quite closely related to

ours. However, both depend on the semantics of ML mc~re

closely than our work.

Doligez and Leroy [8] have implemented a concurrent col-

lector which uses a mixed strategy to provide collection for

a multithreaded version of CAML. Immutable objects are al-

located in private heaps which are collected by a replicaticm-

based stop-and-copy collector. This collector copies vatues

into a shared heap which is collected using a concurrent

mark-and-sweep algorithm based on Dijkstra[7]. To avoid

the issue of inconsistent mutable values all such objects are

allocated in the shared heap. If mutations to such a value

cause other values which currently reside in a private heap

to become reachable from the shared heap, these values are

copied into the shared heap at the time of mutation. ‘IIe

use of replication-copying allows the original owner of these

values to continue to access the copy in the private heap.

Huelsbergen and Larus[l 1] have recently built a concur-

rent collector for SML/NJ which uses replication-based copy-

ing. They use a to-space invariant and a consistency protocol

which requires that the mutator read and write the to-space

version if it exists. Our previous work[14] considers this pro-

tocol, the from-space invariant and other consistency options

for replication garbage collection. In addition to maintaining

a to-space invariant, their collector has a number of otlher

differences from our own, Their collector is not generational

which leads to a slow down relative to the original SML/NJ

collector (despite the use of multiple processors) and makes

it difficult to directly assess the overhead of their technique.

Less important their implementation does not merge forward-

ing pointers with header words and thus has a substantial

space penalty. Also their implementation is more closely

tied to the semantics of mutable vatues in SML and to the de-

tails of their processor memory consistency model. We hope

to implement their technique along with others from[141 in

the context of a concurrent version of the collector described

here. This will allow a quantitative comparison of these

options.

6 Future Work and Conclusions

We are actively extending the current work in severat dire-

ctions. Our experimental implementation is perfectly suited

for use as a concurrent collector. The replication primitive

can be interleaved freely with mutator activity, as long as

the memory system provides single-word memory atonnic-

ity. Synchronization between the collector and the mutator is

only required for transferring the mutation log and updating

the roots. The concurrent version of this implementation is

working and initial performance measurements can be found
in [18].

Replication-based copying is also a promising apprcnch

for use in heap based transaction systems. In addition to the

advantages concurrent collection has for such systems a fur-

ther advantage is that such systems also must log all mutation

to transactional data. Replication-copying is thus even more

attractive. We are currently working on extending the con-

current collector implementation to support a transactional

persistent heap[13].

An area which we have not yet explored is what policies

are best suited for use with our collector. For example in

an interactive system, our technique would allow collection

to proceed while the system was waiting for input. If such

pauses are long enough or frequent enough collection may

become essentially free. On the other hand when running

compute bound jobs it may make no sense to pay even the

small cost of incremental collection since such jobs already

introduce lengthy pauses.

Conclusions

We have designed and implemented a real-time garbage col-

lector using anew replication-based invariant. This invariant

eliminates the need for a read-barrier, and therefore enables

real-time garbage collection on stock hardware with low mu-

tator overhead. We have examined various overhead costs

in an implementation that relies on mutator cooperation for

logging. Our experimental implementations show that con-

trolled pause times of 50 milliseconds can be readily achieved

in practice this satisfies the requirements for most interactive

applications.
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