
Abstract Compilation: a New ImplementationParadigm for Static AnalysisDominique Boucher and Marc FeeleyD�epartement d'informatique et de recherche op�erationnelle (IRO)Universit�e de Montr�ealC.P. 6128, succ. centre-ville, Montr�eal, Qu�ebec, Canada H3C 3J7E-mail: fboucherd,feeleyg@iro.umontreal.caAbstract. For large programs, static analysis can be one of the mosttime-consuming phases of the whole compilation process. We propose anew paradigm for the implementation of static analyses that is inspiredby partial evaluation techniques. Our paradigm does not reduce the com-plexity of these analyses, but it allows an e�cient implementation. Weillustrate this paradigm by its application to the problem of control owanalysis of functional programs. We show that the analysis can be spedup by a factor of 2 over the usual abstract interpretation method.Keywords: Abstract interpretation, static analysis, partial evaluation,compilation, control ow analysis.1 IntroductionAs the trend in designing higher level languages continues, it is increasinglybecoming important to design compilation techniques to implement them e�-ciently. Optimizing compilers for such languages must typically perform a varietyof static analyses to apply their optimizations. Most of these analyses are verytime-consuming. It is therefore essential to perform them as e�ciently as possi-ble. Speed of analysis is the issue addressed in this paper.For the class of �rst-order imperative languages, several techniques for staticanalysis have been designed and are now well established [1, 6]. Static analysisof higher-order functional languages is more di�cult because the control owgraph (call graph) is not known at compile-time. Nevertheless, several kinds ofanalyses have been designed [2, 7, 15] and some have been successfully integratedin real compilers [13, 15].1.1 A New ParadigmA popular approach for implementing static analyses is non-standard interpre-tation. Even traditional data-ow analysis can be viewed as an interpretationlayer, the ow graph being the abstract program to be \executed". The more re-cent analyses, devised in the abstract interpretation framework, are implementedas true interpreters (for example, see [13]).

But interpretation is costly because it adds a layer of abstraction to theanalysis process. We propose to go one step further and perform what we callabstract compilation. This new paradigm is based on a simple idea: instead ofinterpreting (in some sense) the source program, we compile it into a programwhich computes the desired analysis when it is executed.More formally, suppose we want to compute some static analysis S. S canbe viewed as a function of two arguments. The �rst is the program p we wantto analyze. The second is an initial abstract environment �0 that depends onthe analysis to be performed. The result of the analysis, S(p; �0), is an abstractenvironment which contains the desired information. The abstract compilationof p, C(p), would then be a function of one argument such that:C(p)(�0) = S(p; �0):Essentially, C is nothing more than a curried version of S. But, as we will see,only the \real computational part" of S(p; �0) can be kept in the code of C(p).For instance, there is no traversal of the abstract syntax tree of p in C(p). Thisway, all the overhead of interpretation is eliminated. The abstract compilationprocess is really a kind of ad hoc partial evaluation. In fact, the abstract compilerC can be seen as a partial evaluator specialized for the static analysis S.Devising C directly made us aware of several interesting optimizations thatcan be performed to further speed up the analysis. Our results show that, usingthe technique of abstract compilation, the analysis can be sped up by over afactor of 2.1.2 OverviewIn this paper, we demonstrate our paradigm by showing how the control owanalysis (cfa) of higher-order functional programs can be compiled. We �rst de-scribe the analysis and the language we want to analyze. Then, two di�erentcompilation strategies are presented. The �rst compiles the analysis into a tex-tual program which is then executed using a general interpretation procedure.The second shows how we can use closures to produce a more e�cient analysisprogram. Finally, we compare our results with more conventional implementa-tions of the cfa.Throughout the text, the Scheme programming language is used, mainly forour examples. But note that the compilation algorithms presented here do notrely on any particular language although they use some Lisp-like notation.2 Control Flow AnalysisIn higher-order functional languages, functions are �rst-class objects, i.e. theycan be passed as arguments to other functions, returned as the result of func-tions, stored in data structures, and so on. It is thus more di�cult to predict atcompile-time the behavior of programs making heavy use of higher-order func-tions. One way to do so is the control ow analysis (cfa), of which there exists

several variants [2, 8, 12]. The 0cfa [15] computes, for each call site (� ...) ofa program, the set of functions that could be bound to � at runtime.To appreciate the usefulness of 0cfa, consider the Scheme program of Fig. 1.The 0cfa would �nd that in the map function, the only function that can bebound to f results from the evaluation of (lambda (y) (+ y x)) (the result ofapplying adder to the value 1 or 2). Knowing this, the compiler can optimizethe runtime representation of the closure and the call to f. Rather than being arecord with a code pointer and environment, the \closure" could simply be thevalue of x (1 or 2) and the call to f can be replaced by a jump to the body ofthe lambda expression with x as an argument.(define (adder x) (lambda (y) (+ y x))(define (map f l)(if (null? l)'()(cons (f (car l)) (map f (cdr l)))))(let ((lst '(1 2 3 4 5 6)))(append (map (adder 1) lst)(map (adder 2) lst)))Fig. 1. A small program� 2 ProgC 2 CallL 2 LamF 2 FunA 2 ArgV 2 VarK 2 ConstP 2 Prim (primitive functions: if, +, etc.)� ::= CC ::= (F A1 : : : An)j (letrec ((V1 L1) � � � (Vn Ln)) C)L ::= (� (V1 : : : Vn) C)F ::= L j V j PA ::= K j V j L Fig. 2. Abstract syntaxWe will now see how we can compute this cfa. Figure 2 describes the ab-stract syntax of our source language. It is a continuation passing style (CPS)�-language. We assume that all programs are fully alpha-converted. We use CPS

to simplify the analysis. Special forms like if can then be considered as primi-tive functions and all intermediate results are given names. Since only lambda-expressions, variables, and primitives can appear in the operator position of acall site, the 0cfa problem is equivalent to the one of �nding, for each variable voccurring in the program, the set of functions that can be bound to v. Our useof CPS carries no loss of generality since any non-CPS program can be easilyconverted to an equivalent CPS program.Figure 3 gives the functionalities of the abstract interpretation algorithm1for 0cfa shown in Fig. 4. The following terminology is assumed. First, l #formalsistands for the ith formal parameter of procedure l. Similarly, l #body is the bodyof procedure l (a call site). The abstract environments are functions from syn-tactic domain Var and deliver results in domain 2Lam. The empty environmentis denoted �0 (�0(v) = ; for all v) and [v 7! S] stands for the environment �such that �(x) is S if x = v and ; otherwise. Finally, environments can be joinedusing the t operator, de�ned by (� t �0)(v) = �(v) [�0(v).0cfa-program : Prog�dEnv!dEnv0cfa-call : Call �dEnv!dEnv0cfa-app : Fun�Arg� �dEnv!dEnv0cfa-abstract-app : 2Lam �Arg� �dEnv!dEnv0cfa-args : Arg� �dEnv!dEnv0cfa-prim : Prim�Arg� �dEnv!dEnvlookup : Arg�dEnv!dEnvdEnv = Var! 2LamFig. 3. FunctionalitiesThe 0cfa of a program p is computed by �nding an environment � such that� = 0cfa-program(p; �). This can be done iteratively by successive approxima-tion, starting with �0. It can easily be shown that this process eventually ter-minates. The approximations �0; �1; : : : form an ascending chain (taking � v �0to mean �(v) � �0(v) for all v), since we only add elements to the environ-ment. Also, since every program is �nite, �(v) must be �nite for all v. Thus ouralgorithm will �nd � in a �nite number of steps.This is the usual way the 0cfa is implemented. For example, [13] describesthe analysis performed in the Bigloo compiler [14]. It is essentially the same asthe one we have presented. It is also very close to the one presented by Shivers1 For the sake of simplicity, we do not include any error-detection mechanism to the0cfa. We thus assume that all programs are syntactically valid.

0cfa-program(p; �) = 0cfa-call(p; �)0cfa-call([[(f a1 : : : an)]]; �) =0cfa-app(f; ha1; : : : ; ani; 0cfa-args(ha1; : : : ; ani; �))0cfa-call([[(letrec ((v1 l1) � � � (vn ln)) c)]]; �) =let �0 = � t [v1 7! fl1g] t � � � t [vn 7! flng]�00 = 0cfa-args(hl1; : : : ; lni; �00)in 0cfa-call(c; �00)0cfa-app(f; ha1; : : : ; ani; �) =condisVar(f) :0cfa-abstract-app(�(f); ha1; : : : ; ani; �)isPrim(f) :0cfa-prim(f; ha1; : : : ; ani; �)isLam(f) :let �0 = � t [f #formals1 7! lookup(a1; �)] t � � �� � � t [f #formalsn 7! lookup(an; �)]in 0cfa-call(f #body; �0)0cfa-abstract-app(;; ha1; : : : ; ani; �) = �0cfa-abstract-app(S; ha1; : : : ; ani; �) =let l = some member of S�0 = � t [l #formals1 7! lookup(a1; �)] t � � �� � � t [l #formalsn 7! lookup(an; �)]in 0cfa-abstract-app(S � flg; ha1; : : : ; ani; �0)0cfa-args(hi; �) = �0cfa-args(ha1; : : : ; ani; �) =let �0 = if isLam(a1)then � t 0cfa-call(a1 #body; �)else �in 0cfa-args(ha2; : : : ; ani; �0)0cfa-prim([[+]]; ha1; : : : ; a3i; �) = 0cfa-args(ha1; : : : ; a3i; �)0cfa-prim([[if]]; ha1; : : : ; a3i; �) = 0cfa-args(ha1; : : : ; a3i; �)� � �lookup(e; �) =condisConst(e) : ;isVar(e) : �(e)isLam(e) : fegFig. 4. 0cfa abstract interpretation algorithm

in [15]. We will now show how we can compile the analysis, by extending theinterpretation algorithm.3 A First Abstract CompilerWhen many iterations are needed for the algorithm to reach a �xed point, a lotof work is done which does not have a direct impact on the result of the analysis.The reason for this is that each iteration requires a traversal of the entire syntaxtree, examining each node to see if it is an application, an abstraction, etc. Thisis the interpretation overhead. When we consider the interpretation algorithmof Fig. 4, we notice that only three functions can actually inuence the result ofthe analysis: 0cfa-call when applied to a letrec special form, 0cfa-app when fis a �-expression, and 0cfa-abstract-app.What we are interested in is a way to remember only those computationswhich a�ect the �nal result of the analysis. Consider the sample CPS programof Fig. 5, where each �-expression has been numbered from 1 to 7 (we will laterrefer to these expressions as �1 to �7). It de�nes a curri�ed version of apply,a function such that ((apply f) x) = (f x). The program then computes((apply (apply (� (x) (+ x 1)))) 2).((�1 (apply k1)(apply (�2 (x1 k2)(+ x1 1 k2))(�4 (t2)(apply t2 (�5 (t3) (t3 2 k1))))))(�6 (f k3)(k3 (�7 (x2 k4)(f x2 k4))))tl-cont) Fig. 5. A small CPS program.By carefully examining the program, we can determine the particular callsites where the control ow information will be propagated. The call (�1 �6tl-cont) will add �6 to �(apply) and tl-cont to �(k1). This is the simplestcase. But consider an inner call site, (t3 2 k1), in �5. The analysis will takeeach �i 2 �(t3) and will add �(k1) to �(�i #formals2). In constrast, the call (+x1 1 k2) adds no information and has no impact on the �nal result.Note that only the call sites where the information is propagated are usefulfor the computation of the analysis. One way to implement the analysis would

be to �rst traverse the syntax tree and store the useful call sites in some datastructure and then traverse it at each iteration. But again, there still remainsan interpretation layer, namely the computations needed to traverse the datastructure.Compilation can overcome this layer of interpretation by replacing the datastructure representing the program to analyse by the control structure of anotherprogram (the \analysis program"). The only \interpretation" that remains is atthe processor level but since this is unavoidable we will not count it. Figure 6shows a �rst compilation algorithm for 0cfa. We use a Scheme-like notation forthe produced code. The function comp-program takes as input a program p andproduces p0, the analysis program2 in source form. When p0 is run, it performsthe analysis by �nding an abstract environment such that � = p0(�), by thetechnique of successive approximation.To see how it works, consider the following program:((�1 (f c1)((�2 (x c2)(f x c2))2c1))(�3 (y c3)(+ y 1 c3))tl-cont)Once compiled, we get the following analysis program:(� (�)((� (�)((� (�)((� (�)((� (�)(1) ((� (�) (0cfa-abstract-app �(f) � x c2))(2) � t [x 7! (lookup 2 �)] t [c2 7! (lookup c1 �)]))((� (�) �)�)))(3) � t [f 7! (lookup �3 �)] t [c1 7! (lookup tl-cont �)]))((� (�) �)�)))((� (�)((� (�)((� (�) �)((� (�) �)�)))((� (�) �)�)))�)))2 We assume that 0cfa-abstract-app and lookup can be \linked" in some way with theresulting program.

comp-program(p) = comp-call(p)comp-call([[(f a1 : : : an)]]) =let C1 = comp-args(ha1; : : : ; ani)C2 = comp-app(f; ha1; : : : ; ani)in [[(� (�) (C2 (C1 �)))]]comp-call([[(letrec ((v1 l1) � � � (vn ln)) c)]]) =let C1 = comp-call(c)C2 = comp-args(hl1; : : : ; l2i)in [[(� (�) (C1 (C2 � t [v1 7! fl1g] t � � � t [vn 7! flng])))]]comp-app(f; ha1; : : : ; ani) =condisVar(f) :[[(� (�)(0cfa-abstract-app (� f) � a1 : : : an))]]isPrim(f) :0cfa-prim(f; ha1; : : : ; ani)isLam(f) :let C = comp-call(f #body)in [[(� (�)(C � t [f #formalsi 7! (lookup ai �)]))]]comp-args(hi) = [[(� (�) �)]]comp-args(ha1; : : : ; ani) =if isLam(a1)then let C1 = comp-call(a1 #body)C2 = comp-args(ha2; : : : ; ani)in [[(� (�) (C2 (C1 �)))]]else comp-args(ha2; : : : ; ani)comp-prim([[+]]; ha1; : : : ; a3i) = comp-args(ha1; : : : ; a3i)comp-prim([[if]]; ha1; : : : ; a3i) = comp-args(ha1; : : : ; a3i)� � � Fig. 6. 0cfa compilation algorithmIt is not hard to see that only lines (1), (2), and (3) will contribute to the abstractenvironment. We can also see that there are still a number of useless compu-tations done by this analysis program. Two simple optimizations can furtherreduce the number of computations performed at each iteration.We can �rst eliminate all the calls to the identity function (� (�) �) byperforming �-reductions. This can be done at low cost by adding additionaltests to the compilation process. For example, assuming that Id-Funct? is true if

its argument is the code of the identity function, the comp-call function becomes:comp-call([[(f a1 : : : an)]]) =let C1 = comp-args(ha1; : : : ; ani)C2 = comp-app(f; ha1; : : : ; ani)in if Id-funct?(C1)then C2else if Id-funct?(C2)then C1else [[(� (�) (C2 (C1 �)))]]The second optimization comes from the behavior of lookup. When appliedto a constant, it returns the empty set; when applied to a �-expression, it returnsthe set containing only this expression. This leads to the following optimization.First, we can eliminate all the contributions of the form [v 7! (lookup c �)],where v is a variable and c is constant. Also, we can remove the environmentsof the form [v 7! f�kg] and add them to the initial environment. This saves oneiteration, but more importantly, it simpli�es the lookup mechanism and makeseach iteration faster.When these two optimizations are added to the compilation algorithm, thecompiled code for the previous example now becomes(� (�)((� (�)((� (�)((� (�)((� (�) (0cfa-abstract-app �(f) � x c2))� t [c2 7! (lookup c1 �)]))�))� t [c1 7! (lookup tl-cont �)]))))Starting with �00 = [f 7! f�3g] (as computed by the second optimization), wecan �nd that �1 = [f 7! f�3g] is a �xed point for this function in only oneiteration.This solution is not entirely satisfactory. The layer of abstraction is no longerpresent in the resulting code but the program must be executed in some way,thus requiring interpretation at another level. If, for example, we use a builtininterpretation procedure, like Scheme's eval, our experimentations reveal thatit remains much more e�cient to compute the analysis by means of abstractinterpretation. But it is possible to do better.4 Representing the Compiled Analysis with ClosuresMany functional programming languages allow the user to create new functionsvia �-expressions. When these expressions are evaluated, they return a closure,i.e. a function that remembers the current environment.

We will use closures here to overcome the interpretation overhead of theanalysis program. The idea is to represent a compiled expression with a closure.When this closure is applied, it performs the analysis of the given expression.We will thus replace the \code generation" by a \closure generation" (as in thework of Feeley and Lapalme [5]). This leads to the compilation algorithm ofFig. 7 (without the optimizations discussed above).comp-program(p) = comp-call(p)comp-call([[(f a1 : : : an)]]) =let C1 = comp-args(ha1; : : : ; ani)C2 = comp-app(f; ha1; : : : ; ani)in ��:C2(C1(�))comp-call([[(letrec ((v1 l1) � � � (vn ln)) c)]]) =let C1 = comp-call(c)C2 = comp-args(hl1; : : : ; lni)in ��:C1(C2(� t [v1 7! fl1g] t � � � t [vn 7! flng]))comp-app(f; ha1; : : : ; ani) =condisVar(f) :��:0cfa-abstract-app(�(f); �; ha1; : : : ; ani)isPrim(f) :0cfa-prim(f; ha1; : : : ; ani)isLam(f) :let C = comp-call(f #body)in ��:C(� t [f #formalsi 7! lookup(ai; �)])comp-args(hi) = ��:�comp-args(ha1; : : : ; ani) =if isLam(a1)then let C1 = comp-call(a1 #body)C2 = comp-args(ha2; : : : ; ani)in ��:C2(C1(�))else comp-args(ha2; : : : ; ani)comp-prim([[+]]; ha1; : : : ; a3i) = comp-args(ha1; : : : ; a3i)comp-prim([[if]]; ha1; : : : ; a3i) = comp-args(ha1; : : : ; a3i)� � � Fig. 7. 0cfa compilation algorithm using closures

Comp-app would thus be implemented as:(define (comp-app f args)(cond((var? f)(lambda (env)(0cfa-abstract-app (env f) env args)))...))It may seem that this new compilation scheme is not very di�erent from theprevious one; the main di�erence being that the generated code is no longertextual. This change of representation has two main advantages.First, there is no longer a need for an interpretation procedure like eval. Anylanguage that provides closures can be used to implement the abstract compiler.Secondly, and more importantly, both the abstract compiler and the analysisprogram run much faster because all the ��:E expressions are also compiled (weassume that the abstract compiler is itself compiled). Only closures are createdin the process of abstract compilation.5 ResultsWe have implemented the 0cfa using the abstract interpretation algorithm andthe compilation algorithm using closures for code generation. Our implementa-tions handle a larger subset of Scheme than the one presented here. Imperativeconstructs such as set!, set-car!, set-cdr!, etc., are treated.Our implementations also handle the case of functions \escaping" to memory.By this we mean functions which are stored in data-structures and that couldbe later fetched and applied. In order to handle this case conservatively, weintroduce a special variable, ESC, that abstracts the memory. For example, ifthe program to analyze contains the call (cons x y k), all the �-expressionsthat can be bound to x and y at runtime are added to �(ESC). Conversely, acall (car x (lambda (z) E)) will cause �(ESC) to be added to �(z). Clearly,this approximation is very coarse, but conservative and easy to implement.The front-end is the same for the three implementations. It performs thefollowing operations:1. It reads the Scheme program to analyze.2. It performs a certain number of syntactic expansions to express the programusing a minimum set of constructs (for example, let and let* special formsare expressed using only the lambda and set! special forms).3. It CPS-converts the program.4. It labels the �-expressions and �-converts the program. An abstract syntaxtree (AST) results from this last operation.The 0cfa is then computed directly from the AST.

The implementations have both been written in Scheme and they have beencompiled with the Gambit-C compiler (which generates C code) on a DEC Al-pha. Set operations have been implemented in C for e�ciency reasons. Severalrepresentations for sets have been considered. A list representation was too costlyand bit vectors consumed too much memory (typical sets contain very few ele-ments and are very sparse). The representation we adopted consists of vectors inwhich the elements are sorted. Each set union operation allocates a new vectorin which the elements are merged while being copied.We ran the 0cfa over the following set of programs:conform A program that manipulates lattices and partial orders.earley A parser generator for context-free languages based on Earley'salgorithm.interp A small interpreter implementing call-by-need semantics.lambda A �-calculus interpreter.lex A lexical analyzer generator.link The application linker for the Gambit-C compiler.ll1 An LL(1) parser generator.peval A small Scheme partial evaluator.source A parser for Scheme.Figure 8 gives the execution times for both implementations on a 160MBDEC AXP3000 (a DEC Alpha microprocessor under OSF/1). The times are allgiven in seconds. The �rst column gives the number of lines in the program. Thesecond column gives the number of iterations needed to reach the �xed pointand the third column gives the average number of elements of �(v), where � isthe result of the analysis and v ranges over all the variables of the program. Theinterp column gives the execution time required by the abstract interpreter toperform the analysis. The closure column gives the time for the analysis programsgenerated by the second compilation algorithm, including all optimizations dis-cussed. The numbers in parentheses give the speedup relative to the times givenin the interp column. The last column (gen+closure) gives the time needed togenerate and execute the analysis programs and to execute them. The numbersin parentheses give the speedup over interpretation.We can see that the compilation process can speed up the analysis by a fac-tor varying between 3 and 5 for most of these programs3 The only exceptionis interp. We can observe that the average set length (in the last column) forthis program is much higher than for the others (except peval) indicating thatit makes heavy use of higher-order functions and/or that a larger number offunctions are stored in data-structures. Since the sets contain more elements,relatively more time is spent in the set manipulation procedures compared to3 We consider that the time spent in the code generation phase can be amortized ifthe analysis program is to be run several times. Such a situation can arise in theglobal analysis of separately compiled modules.

Number Number of Average Execution timesof lines iterations set length interp closure closure+genconform 557 3 0.59 0.0648 0.0154 (4.2) 0.0416 (1.56)earley 648 3 0.41 0.0603 0.0117 (5.2) 0.0366 (1.65)interp 411 9 3.02 0.1230 0.0435 (2.8) 0.0612 (2.01)lambda 617 4 0.60 0.1050 0.0326 (3.2) 0.0634 (1.66)lex 1133 3 0.59 0.1290 0.0266 (4.8) 0.0752 (1.72)link 1608 6 2.22 0.4687 0.1322 (3.5) 0.2116 (2.12)ll1 613 5 0.43 0.0940 0.0226 (4.2) 0.0470 (2.00)peval 618 5 6.80 0.1727 0.0508 (3.4) 0.0896 (1.93)source 453 5 0.77 0.0773 0.0195 (4.0) 0.0400 (1.93)Fig. 8. Comparison of two strategies.the time spent to traverse the syntax tree. So it is not surprising that the inter-pretation overhead will be less signi�cant and the speedup lower than the otherprograms. Note also that even if we consider the time required to generate theanalysis programs (the gen+closure column), the overall speedup is close to 2 inalmost all cases.Figure 9 shows the relative bene�ts of the optimizations we have discussed,namely the �-reduction and the lookup optimization. The �rst column givesthe execution times (in seconds) for the analysis programs when the abstractcompiler does not perform any optimization. The next two columns give thepercentage of work that is saved by each optimization. The last column givesthe same information when both optimizations are performed. It proves that itis worth the e�ort to add them to the abstract compiler.Program No opt. �-reduct. Lookup All opt.conform 0.0292 18.7% 28.8% 47.3%earley 0.0274 26.4% 37.0% 57.3%interp 0.0675 22.0% 15.7% 35.6%lambda 0.0507 23.1% 18.6% 35.8%lex 0.0547 21.6% 31.9% 51.4%link 0.2137 20.6% 16.2% 38.3%ll1 0.0410 21.5% 16.9% 44.9%peval 0.0846 20.0% 17.7% 40.0%source 0.0370 24.7% 18.5% 47.5%Fig. 9. Relative bene�ts of each optimization.

6 Related WorkAlthough our work is novel in the �eld of static analysis, it is related to a numberof other works.Our work originated from the study of abstract interpretation, a frameworkwell-adapted for the design of static analyses. A growing interest has been shownfor this framework since the pioneering work of the Cousots [4]. It has been ap-plied to a number of interesting analyses in the area of functional programming,including strictness analysis [11], reference counting [7], and control ow analy-sis [15]. In [2], Ayers presents several techniques for the e�cient implementationof the 0cfa. His \initial call sites" correspond to the calls where our techniquecan perform the lookup optimization.Although we present here a more e�cient implementation of 0cfa, our para-digm is not restricted to analyses designed in the abstract interpretation frame-work. In fact, it can be applied to more conventional data-ow analyses [1, 6].In [13], Serrano describes the control ow analyses performed in the BiglooScheme to C compiler [14]. His results show that these analyses allow signi�cantoptimizations to be performed. But they also show that it can take 4 to 9 timeslonger to compile a program when all the optimizations are enabled. Since hiscompiler produces C code, the time spent by the analysis and optimizationprocess is often compensated by the time saved during the C compilation (thegenerated C code is easier to compile).We argue that if the Bigloo compiler was to produce native code instead ofC code, the time lost would not be compensated, thus revealing the real cost ofcontrol ow analysis (which has an O(n3) worst-case complexity).Lin and Tan [10] show how to compile the dataow analysis of logic programs.Although they named their technique \abstract compilation", they actually com-pile Prolog programs into code for the Warren Abstract Machine (WAM) usinga (standard) compiler and that code is passed to an abstract interpreter for theWAM which computes the dataow analysis. So there is no concept of analysisprogram in this technique, the abstract interpretation is being computed fromanother intermediate representation of the source program. Thus, optimizationsof the analysis program, as those we described here, cannot be performed.The use of closures for code generation has previously been proposed for com-pilation [5]. The latter describes an approach to compiling where each compiledexpression is embodied by a closure whose application performs the evaluationof the given expression. This idea of replacing \code generation" by \closuregeneration" is essentially the same as we used in our compilation algorithm.Closure generation is a form of runtime code generation. Leone and Lee [9]describe a technique for runtime code generation called deferred compilation.Their results also show that signi�cant speedups can be obtained. For example,multiplication of sparse matrices is sped up by a factor of 2 using their technique.

7 Future WorkThe analysis programs can be much faster if we consider generating machinecode instructions instead of closures. Preliminary results show that they cantypically be sped up by yet another factor of 4 in almost all cases. The onlydrawback is that the (abstract) compilation time also increases by a factor of10, making the overall process slower than abstract interpretation if the analysisprogram is run a small number of times. The Scheme-to-C interface that we useis in part responsible for this increase. Also, the creation of a closure at runtimeis much faster than the generation of a relatively long sequence of machine codeinstructions that do the same work. Nevertheless, we believe that the e�ciencyof the code generation can be further improved.Our approach is most bene�cial when the analysis is performed several times.This led us to the idea that the analysis program can be stored in a �le and laterreloaded together with other analysis programs in order to perform global controlow analysis of separately compiled multimodule programs. We are currentlyworking on this idea [3].8 ConclusionWe have presented a new way of implementing static analyses. It is based on theconcept of abstract compilation. This paradigm is attractive for several reasons.It is conceptually simple, it is not restricted to any kind of static analysis, andmore importantly, it can speed up the analysis.As an example, we have described how to compile the control ow analysis ofhigher-order functional languages and our results have shown that the analysiscan be sped up by over a factor of 2.References[1] A. V. Aho, R. Sethi and J. D. Ullman. Compilers. Principles, Techniques, andTools. Addison-Wesley, 1986.[2] Andrew E. Ayers. Abstract Analysis and Optimization of Scheme. PhD thesis,MIT, September 1993.[3] Dominique Boucher and Marc Feeley. Un syst�eme pour l'optimisation globale deprogrammes d'ordre sup�erieur par compilation abstraite s�epar�ee. Technical report992, Universit�e de Montr�eal, september 1995.[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni�ed latticemodel for static analysis of programs by construction or approximation of �xedpoints. In Proceedings of the 4th ACM Symposium on Principles of ProgrammingLanguages, Los Angeles, 1977, pp. 238{252.[5] Marc Feeley and Guy Lapalme. Using closures for code generation. Comput. Lang.12, 47{66, 1987.[6] Matthew S. Hecht. Flow Analysis of Computer Programs. North-Holland, NewYork, 1979.

[7] Paul Hudak. A Semantic Model of Reference Counting and its Abstraction (De-tailed Summary). In Proceedings of the 1986 ACM Conference on Lisp and Func-tional Programming, 351{363, 1986.[8] David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. Ph.D. thesis, YaleUniversity, 1988.[9] Mark Leone and Peter Lee. Lightweight Run-Time Code Generation. In Proceed-ings of the 1994 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pp. 97{106.[10] I-P. Lin and J. Tan. Compiling Dataow Analysis of Logic Programs. In Pro-ceedings of the 1992 ACM Conference on Programming Language Desing andImplementation, pp. 106{115.[11] Alan Mycroft. Abstract Interpretation and Optimizing Transformations for Ap-plicative Programs. Ph.D. thesis, University of Edinburgh, 1981.[12] Guillermo Juan Rozas. Taming the Y operator. In Proceedings of the 1992 ACMConference on Lisp and Functional Programming, 226{234, 1992.[13] Manuel Serrano. Control Flow Analysis: a compilation paradigm for functionallanguages. In Proceedings of SAC 95.[14] Manuel Serrano. Bigloo User's Manual. Inria-Rocquencourt. March 1994.[15] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,Carnegie Mellon University, Pittsburgh, 1991.

This article was processed using the LATEX macro package with LLNCS style

