
Bootstrapping a Self-Hosted Research Virtual Machine for
JavaScript

An Experience Report

Maxime
Chevalier-Boisvert
Université de Montréal

chevalma@iro.umontreal.ca

Erick Lavoie
Université de Montréal

lavoeric@iro.umontreal.ca

Marc Feeley
Université de Montréal

feeley@iro.umontreal.ca

Bruno Dufour
Université de Montréal

dufour@iro.umontreal.ca

ABSTRACT
JavaScript is one of the most widely used dynamic lan-
guages. The performance of existing JavaScript VMs, how-
ever, is lower than that of VMs for static languages. There
is a need for a research VM to easily explore new imple-
mentation approaches. This paper presents the Tachyon
JavaScript VM which was designed to be flexible and to
allow experimenting with new approaches for the execution
of JavaScript. The Tachyon VM is itself implemented in
JavaScript and currently supports a subset of the full lan-
guage that is sufficient to bootstrap itself. The paper dis-
cusses the architecture of the system and in particular the
bootstrapping of a self-hosted VM. Preliminary performance
results indicate that our VM, with few optimizations, can
already execute code faster than a commercial JavaScript
interpreter on some benchmarks.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization, code generation, run-time environments

General Terms
Algorithms, Performance, Design, Languages

Keywords
JavaScript, virtual machine, compiler, self-hosted, optimiza-
tion, implementation, framework

1. INTRODUCTION
JavaScript (JS) [8] was designed by Netscape in 1995 for

client-side scripting of web pages. Since then, all main-
stream web browsers have integrated a JS Virtual Machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DLS’11, October 24, 2011, Portland, Oregon, USA.
Copyright 2011 ACM 978-1-4503-0939-4/11/10 ...$10.00.

(VM) which can access the Document Object Model, placing
JS in a unique position for implementing web applications.

Due to this, JS is currently one of the most widely used
dynamic programming languages. Each of the main browser
vendors has built their own VM, some being open-source
(Apple WebKit’s SquirrelFish1, Google Chrome’s V82,
Mozilla Firefox’s SpiderMonkey [6]) and some closed-source
(Microsoft Internet Explorer 9’s Chakra3), all of which use
Just-In-Time (JIT) compilation.

With the increased use of JS in web applications, the per-
formance of a browser’s JS VM has gained in importance
in the past few years, even appearing prominently in the
browser’s marketing literature. However, the performance
of the best JS VMs is still lower than the performance of
VMs for static languages. Although there is clearly a need
to design more efficient VMs, there has been relatively little
academic research on the implementation of JS. We believe
this is mainly due to the lack of easily modifiable JS tools,
and in particular a research VM, which would allow easy ex-
perimentation with a wide variety of new approaches. The
mainstream VMs, even if they are open-source, are not ap-
propriate for this purpose because they are large systems
in which it is tedious to change even conceptually simple
things (such as the function calling convention, the object
representation, the memory manager, etc.) without break-
ing obscure parts of the system. This has motivated us to
begin the design of a family of JS VMs and tools suitable
for research and experimentation.

This paper is an experience report on the design of
Tachyon, our first JS VM. Tachyon is a work in progress,
and this paper discusses the current state of the system.
Specifically, Tachyon has now reached the point where it
bootstraps itself. The discussion of the bootstrap process is
thus a central aspect of this paper.

1.1 Self-Hosting
The most remarkable feature of Tachyon is that it is writ-

ten almost entirely in JS. We expect this self-hosting to yield
some important benefits compared to a VM written in an-
other language. It is typical to write JIT-based VMs in a

1http://trac.webkit.org/wiki/SquirrelFish
2http://code.google.com/p/v8/
3http://en.wikipedia.org/wiki/Chakra (JScript engine)

low-level host language (e.g. C/C++) in order to have fast
JIT compilation. But this is at odds with the productivity
advantage of a high-level language, such as JS, for writing
the complex algorithms that are found in compilers. This is
an important issue for a research compiler where rapid pro-
totyping of new compilation approaches is desirable. Since
we expect Tachyon’s code generation to eventually be com-
petitive with compilers for static languages, we also believe
the self-hosting will not cause the JIT compiler to be slow.
Self-hosting also has the advantage of a single runtime sys-
tem (memory manager, I/O, etc), which eliminates code du-
plication as well as conflictual interactions of independent
client and host runtime systems.

1.2 JavaScript
Tachyon aims to implement JS as specified in the ECMA-

Script 5 (ES5) [8] specification. Although the infix syntax
of JS superficially resembles that of Java, the JS semantics
have much more in common with Python and Smalltalk. It
is a dynamic language, imperative but with a strong func-
tional component, and a prototype-based object system sim-
ilar to that of SELF [3].
A JS object contains a set of properties (a.k.a. fields in

other OO languages), and a link to a parent object, known
as the object’s prototype. Properties are accessed with the
notation obj.prop, or equivalently obj["prop"]. This allows
objects to be treated as dictionaries whose keys are strings,
or as one dimensional arrays (a numeric index is automati-
cally converted to a string). When fetching a property that
is not contained in the object, the property is searched in
the object’s prototype recursively. When storing a property
that is not found in the object, the property is added to
the object, even if it exists in the object’s prototype chain.
Properties can also be removed from an object using the
delete operator. JS treats global variables, including the
top-level functions, as properties of the global object, which
is a normal JS object.
Anonymous functions and nested functions are supported

by JS. Function objects are closures which capture the vari-
ables of the enclosing functions. Common higher-order func-
tions are predefined. For example, the map, forEach and
filter functions allow processing the elements of an array of
data using closures, similarly to other functional languages.
All functions accept any number of actual parameters. The
actual parameters are passed in an array, which is accessible
as the arguments local variable. The formal parameters in
the function declaration are nothing more than aliases to the
corresponding elements at the beginning of the array. For-
mal parameters with no corresponding element in the array
are bound to a specific undefined value.
JS also has reflective capabilities (enumerating the prop-

erties of an object, testing the existence of a property, etc)
and dynamic code execution (eval of a string of JS code).
The next version of the standard is expected to add proper

tail calls, rest parameters, block-scoped variables, modules,
and many other features. Even though we are currently
targeting ES5, we have been careful to keep Tachyon’s design
amenable to implementing the expected additions without
extensive refactoring.

1.3 Contributions
This paper presents Tachyon, a meta-circular JS VM. It

aims to serve as a case study for the design of a meta-circular

VM for dynamic languages. The main contributions of this
paper are:

• A presentation of the design of our compilation pipeline
(Section 3).

• The design of low-level extensions to JS for manipu-
lation of memory, compatible with the existing syntax
(Section 3.5).

• An execution model for the VM (Section 4.1).

• A description of the bootstrap process required to ini-
tialize the VM given the execution model (Section 5).

Note that for the remainder of the paper, we use the term
compiler to designate subsystem responsible for translating
JS code to native code, and the term VM to refer to the
combination of the runtime system and the compiler.

2. RELATED WORK
The literature on the design of meta-circular VMs for dy-

namic languages is rather sparse. To the best of our knowl-
edge, no comprehensive synthesis of issues and opportunities
has been done. There are, however, documented examples
for some languages.

Squeak is a recent implementation of Smalltalk, written in
Smalltalk. The Squeak VM is a bytecode interpreter written
in a restricted, non-object-oriented subset of Smalltalk [7]
that can be easily compiled to C code. This approach pre-
vents usage of more expressive features of the language for
the implementation of the VM. In contrast, Tachyon can use
the entire JS subset it supports in its own implementation.

JikesRVM was the first meta-circular VM to show that
high-performance was compatible with meta-circularity.
Tachyon uses a similar mechanism to the JikesRVM magic
class to expose primitive operations (Section 3.5).

Klein, a meta-circular implementation for Self [18], showed
that mirror-based reflection [2] could foster much code reuse.
Tachyon provides the reflection mechanisms specified in ES5
but those do not comprise mirror-equivalent mechanisms,
preventing usage of the Klein implementation techniques for
serializing objects in a binary image and remote debugging.
Tachyon creates the objects needed at run-time during the
initialization phase instead of relying on mirrors to access
already existing objects (Section 4.2). Tachyon uses an x86
assembler that we implemented in JS but unlike Klein’s as-
sembler, it is not self-checking.

PyPy [16] uses a rather different approach from other
meta-circular VM projects. It does not directly compile
Python code into executable code. Rather, their approach
involves describing the semantics of a bytecode interpreter
for a programming language (e.g. Python), and generating
a virtual machine (e.g. generating C code) that supports
the described language. It is able to improve on the perfor-
mance of the raw bytecode interpreter by applying . The
system now supports most of Python and significantly im-
proves upon the performance of the stock CPython distri-
bution, partly due to a tracing JIT compiler [1]. Tachyon
is hand-coded, and does not use automatic generation tech-
niques.

In contrast to the aforementioned systems, Tachyon does
not use a bytecode representation for compiled code. It com-
piles JS directly to native code. A low-level Intermediate

Representation (LIR) based on a Static Single Assignment
(SSA) form is used as a platform-neutral representation for
compiled code (Section 3.3) instead of bytecode.
Other researchers have studied the compilation of JS.

Loitsch has proposed an approach to leverage the similar-
ity between JS and Scheme by using it as a target lan-
guage for a JS compiler [11]. Gal et. al. have described
TraceMonkey [6], a trace-based JS compiler that achieves
significant speedup by exploiting type stability in (possibly
nested) hot loops to perform type specialization and other
optimizations. Experiments on a popular benchmark suite
reveal that the technique can achieve speedups up to 25x.
The TraceMonkey implementation was later extended by

Sol et. al. [17] to further remove provably unnecessary over-
flow tests at run-time using a flow-sensitive range analysis.
The authors show that their technique is able to remove
more than half of the overflow checks in a sample of real JS
code from top-ranked web sites. Logozzo and Venter [10]
have also proposed an analysis that determines ranges as
well as types (e.g. 64-bit floating-point or 32-bit integer) of
numerical variables. The authors report up to 7.7x speedup
for some numerical benchmarks. Such techniques could be
implemented as part of Tachyon.
Some empirical studies can also shed some light on the

behavior of real-world JS applications, for example by com-
paring properties of standard benchmarks with real applica-
tions [15, 13], or by studying the use of particular language
features such as eval [14]. These studies will help direct
future efforts and implementation choices in our project.

3. COMPILER
The compiler operates on a succession of intermediate rep-

resentations getting progressively closer to native assembly
code. Four representations are used with the bulk of the
work being done on the third one:

• Source code: string representation of the JS code

• Abstract Syntax Tree (AST): tree representation of
declarations, statements and expressions

• Intermediate Representation (IR): Control Flow Graph
(CFG) in SSA form. Used to represent both the High-
Level IR (HIR) and Low-level IR (LIR)

• Assembly code (ASM): array of bytes and associated
meta-information representing the encoded assembly
instructions

A number of phases either produce those representations
or transform them. The front-end comprises the platform
independent phases:

• Parsing and free variable analysis: the source code is
translated into an AST and free variables are tagged
(Section 3.2).

• AST->IR: the AST is transformed into the HIR (Sec-
tion 3.3).

• Lowering: the HIR is transformed into the LIR and
optimizations are performed (Section 3.4).

The back-end comprises the platform dependent phases:

Parsing AST -> IR
Instruction

Selection

Lowering Register Allocation

Assembly

Source Code AST SSA CFG ASM

BackendFrontend

Free Var. Analysis

function foo()

{

 ...

}

 0xDE

 0xAD

 0xC0

 0xDE

 ...

Figure 1: Overview of the compiler phases and rep-
resentations.

• Register allocation: operands and destination tempo-
raries are associated to physical registers or memory
locations in the LIR instructions (Section 3.7).

• Instruction selection: the LIR after register allocation
is transformed directly to a partial encoding of ASM
(Section 3.10).

• Assembly: the final encoding for ASM is generated
(Section 3.11).

Both representations and phases are illustrated in Fig-
ure 1.

3.1 Supported JS Subset
Tachyon currently supports enough of ES5 to bootstrap

itself. The VM supports strings, arrays, closures, construc-
tors, objects, prototypes and variable argument count. The
Boolean, Error, Function, Math, Number, Object, String
objects and a subset of their methods from the standard
library are also supported. The internal representation for
numbers uses fixed precision integers. Bitwise, logical and
arithmetic operations are supported.

These functionalities were sufficient to implement the data
structures and algorithms needed in pure JS. For example,
we required associative tables, sets, infinite precision inte-
gers, graphs and linked lists. The VM does not yet support
regular expressions, floating-point numbers4, exceptions, ob-
ject property attributes (read-only, enumerable, etc.), get-
ters and setters.

While Tachyon does not currently support floating-point
numbers, this does not confer it an unfair performance ad-
vantage over other JavaScript VMs that do. Type and over-
flow tests are already inserted in the generated code so as to
handle floating-point operations once they are implemented.
Hence, the performance is the same as if these operations
were supported, but Tachyon cannot yet run code that would
invoke floating-point operations.

4At the time of publication, regular expressions and floating-
point numbers are implemented but not fully tested, and are
therefore excluded from the supported JS subset.

3.2 Parsing and AST
The parser is automatically generated from the WebKit

Yacc JS grammar. A script transforms the grammar into
S-expressions which are fed to a Scheme LALR parser gen-
erator, and the resulting parsing tables are pretty printed
as JS arrays. A hand written scanner and a LALR parser
driver complete the parser.
The AST is then traversed to compute some properties

(scope of variables, set of free variables, set of variables de-
clared in a function, use of eval and arguments variables
within a function, etc). The AST is also transformed to

• add debugging code when this is requested (for exam-
ple tracing function entry and return),

• rewrite some constructions into a canonical form, such
as transforming obj.prop into obj["prop"], and trans-
forming variable declarations into assignments,

• rewrite formal parameters accesses to indexing of the
arguments object, when the arguments variable is ac-
cessed in the function.

3.3 Intermediate Representation
After the AST transformations, the AST is translated into

the IR. This IR is in SSA form [5]. It comprises low-level
type annotations which were inspired by those of LLVM [9].
We have chosen an SSA-based IR because such an IR is
closer to machine code and we expect it will be efficient for
recompilations to be done directly on the IR without having
to restart the compilation at the AST level. The Tachyon IR
is loosely divided into HIR and LIR layers, which are both
refinements of a generic SSA-based IR. ASTs are initially
translated into the HIR, and the HIR code is later translated
into the LIR.
Each function compiled by Tachyon has an associated

CFG divided into basic blocks. At the beginning of each
basic block is a possibly empty list of phi nodes implement-
ing parallel conditional assignments. These phi nodes are
followed by a series of instructions, each of which produces
zero or one output value. Branch instructions are only al-
lowed at the end of basic blocks. These can either be return
instructions, direct jumps, if-test instructions with two pos-
sible targets, throw instructions, or call instructions. Call
instructions can have a regular continuation target and an
exception target, making exception control-flow explicit.
The HIR comprises high-level operations meant to repre-

sent dynamically-typed JS operators directly. It comprises
add and subtract primitives, for example, which represent
the JS + and - operators, and can thus operate on any JS
type. The HIR is easy to analyze in terms of JS semantics,
but remains abstract. It is eventually transformed into the
LIR, which translates fairly directly to machine code.
The LIR is meant to closely represent the kinds of oper-

ations that most modern computer processors implement.
It is more verbose but also more expressive. By controlling
how specific instances of HIR constructs are translated into
LIR based on type information, the code can be specialized
and optimized. The LIR exposes some low-level types such
as pointers, garbage-collected references and machine inte-
gers. It is close to the expressiveness level of C code, and
comprises instructions for native integer, floating-point and
pointer arithmetic.

We have chosen to express these low-level operations in
the IR so as to allow further optimizations on the LIR to
be implemented in a portable way in the front-end. De-
spite being closer to machine code, the LIR remains rela-
tively machine-agnostic. It is in SSA form and does not
expose highly machine-specific details such as machine reg-
isters, stack frame formats and calling conventions. These
are to be specified by a back-end tailored to the target ar-
chitecture.

3.4 Optimizations
The front-end currently implements several commonplace

optimizations which can operate on both the HIR and LIR.
These include function inlining, Sparse Conditional Con-
stant Propagation (SCCP) [19], Common Subexpression
Elimination (CSE) as well as dead code elimination, strength
reduction and peephole optimization patterns. The opti-
mization patterns simplify control flow graphs by eliminat-
ing known patterns of redundant phi nodes, branches and
instructions.

The optimizations we have implemented are fairly basic.
They help improve the quality of the code generated by
Tachyon, but do not yet attack the more critical perfor-
mance issues involved in optimizing JS code. In particu-
lar, they are unable to optimize for more likely code paths,
optimize based on type information, or reduce the cost of
property accesses. We aim to implement more advanced
analyses and optimizations in the future, such as optimistic
optimization techniques and inlining (see Section 7).

3.5 JS Extensions
The JS language lacks some of the low-level functionality

required to implement a JIT compiler. More specifically, it
does not allow accessing raw memory directly, nor does it
allow the execution of arbitrary code, or even file system
access. As such, Tachyon is not written in pure JS, but
instead in an extended dialect of the language.

One obvious way to extend JS was to implement a For-
eign Function Interface (FFI) to allow Tachyon to call C
functions. Once such an interface is in place, JS code can
be made to call C code to implement the functionality that
JS itself does not provide. One possible design choice would
have been to make no further extensions to JavaScript and
implement all the missing functionality required to write a
JIT compiler in C. However, this would imply the implemen-
tation of significant portions of the compiler in C directly,
which could be both difficult to maintain and problematic
for performance, as FFI function calls are costly, opaque and
non-inlinable.

Since Tachyon compiles JS code to a low-level IR that has
an expressive power similar to that of C, we have been able to
further extend JS with typed variables directly representing
pointers and machine integers. By default, all variables in
Tachyon have a boxed dynamic type, which can store any
JS value, but functions can be annotated to say that they
take typed variables as arguments (e.g.: 32 bit integer, raw
pointer). External C primitives that take typed variables as
input and return typed values can also be called.

The C primitives exposed to Tachyon only implement low-
level operations (e.g.: malloc/free, file and console I/O,
timing functions). To implement Tachyon primitives need-
ing direct access to memory or lower-level hardware capa-
bilities, we directly expose LIR instructions to JS code, in

Inline IR (IIR), a concept similar to inline assembly. Com-
pared to inline assembly, however, Inline IR code is more
machine-agnostic and more readable. It makes it possible,
for example, to call the LIR load and store instructions as if
they were JS functions when one needs to read or write to
memory.
The snippet of code below shows the readConsole C func-

tion being registered with Tachyon:

regFFI(new CFunction(
’readConsole’,
[new CStringAsBox()],
new CStringAsBox(),
params

));

The function readConsole takes a prompt string as argu-
ment and reads a user-input string from the console, which
is returned. The snippet of code shown creates a proxy func-
tion that will convert a boxed string argument (JS string)
into a char* string pointer for the C function, and perform
the reverse conversion on its return value. The readConsole
function is then used in Tachyon’s read-eval-print loop as if
it were an ordinary JS function.
For the inline IR, we have designed a syntax that can be

parsed by an unmodified JS parser. The example in Fig-
ure 2 shows a function used to convert C ASCII strings
into JS strings usable by Tachyon. This function uses the
iir.load instruction to read character values directly from
the C string, and casts them into 16-bit UTF-16 characters
using the iir.icast instruction. The iir.load instruction
is annotated to say that the value it is loading is a single
byte (i8 type). The output value of the instruction is thus
not a boxed value, but a typed LIR value.

function cStringToBox(strPtr)
{

"tachyon:static"; // Statically-linked func.
"tachyon:noglobal"; // No global object access
"tachyon:arg strPtr rptr"; // strPtr is a raw pointer

// If the string pointer is NULL, return the JS null
if (strPtr === NULL_PTR)

return null;

// Compute the string length
for (var strLen = pint(0); ; strLen++)
{

var ch = iir.load(IRType.i8, strPtr, strLen);
if (ch === i8(0))

break;
}

// Allocate a string object
var strObj = alloc_str(strLen);

// For each character
for (var i = pint(0); i < strLen; i++)
{

var cCh = iir.load(IRType.i8, strPtr, i);
var ch = iir.icast(IRType.u16, cCh);
set_str_data(strObj, i, ch);

}

// Compute the hash code for the new string
compStrHash(strObj);

// Attempt to find the string in the string table
return getTableStr(strObj);

}

Figure 2: Function using Inline IR (IIR).

3.6 Implementation of the Primitives
Tachyon implements the JS semantics by mapping the

primitive operations of the JS language to HIR instructions
which can be translated into one or more LIR instructions.
This translation is currently done in a very straightforward
way: each HIR instruction maps to a call to a primitive func-
tion, which may or may not be inlined as the HIR is trans-
lated into LIR. The primitive functions may or may not use
inline IR functionality to implement their semantics. The
add primitive, for example, makes use of an LIR instruction
implementing a machine addition with an overflow check so
that integer additions can be optimized.

The primitive functions getProp, putProp and hasProp
implement object property access. Other primitives imple-
ment basic operations on string and array objects. Because
it would be tedious to constantly have to perform pointer
arithmetic and invoke LIR instructions to access the mem-
ory layouts of these objects, we have chosen to take a help-
ful shortcut. Memory layouts are described in Tachyon us-
ing layout objects, which store mappings of field types and
names to memory offsets. These are similar to C structs.
We then use metaprogramming to auto-generate extended
JS code (inlinable setter and getter methods) to access each
field of a given layout. This greatly improves the readability
and maintainability of our runtime implementation.

It is possible to use extended JS anywhere inside the
Tachyon code, however, we have made a conscious effort
to try and limit its use to the implementation of low-level
primitives. Tachyon’s implementation of the JS standard li-
brary, as well as most of Tachyon’s implementation remains
mostly written in pure JS code. This gives us the added
benefit that the Tachyon LIR can be changed without an
enormous refactoring effort being required.

3.7 Register Allocation
The most important compromise to be made when design-

ing a register allocation algorithm is between compilation
speed and quality of the resulting code, namely maximizing
usage of registers for the most frequently executed instruc-
tions and minimizing the number of moves between registers
and memory. Although earlier work was biased toward the
latter, recent algorithms targeted at JIT compilers now give
more weight to the former.

We initially chose to implement the Linear Scan (LS) reg-
ister allocator [12], specialized for the SSA representation
[20] as it seemed well-suited to our choice of IR and was
reported to produce code competitive with a graph-coloring
algorithm. However, in improving the implementation, we
remarked that operating on live intervals instead of directly
on the CFG makes the task of modelling the target archi-
tecture constraints more difficult. This motivated the im-
plementation of a second, On-The-Fly (OTF) allocator, also
operating on the SSA representation. Both algorithms use
the Most Distantly Used heuristic for spilling.

Although a detailed analysis has yet to be performed, ini-
tial tests on simple benchmarks suggest that our OTF im-
plementation is simpler, faster and produces code of similar
or better quality than our LS algorithm. The current imple-
mentation of Tachyon can use either interchangeably.

3.8 Calling Convention and Register Usage
To our knowledge, no systematic exploration of the de-

sign space has been done concerning calling conventions and

register usage for compiled dynamic languages. From the
very beginning, we anticipated using Tachyon to identify
the most promising ideas. To accommodate such flexibility,
the number and the nature of registers available for register
allocation as well as for passing arguments to functions can
be varied by modifying a single configuration object. We
chose to reserve for a future time the factorization necessary
for other possibilities such as using callee-save registers and
using a register to pass the return address.
Exploration of the different possibilities is planned for the

near future. Currently, Tachyon uses a single configuration
corresponding to our educated guess of what would be faster.
Moreover, the same register usage and calling convention are
used on both x86 and x86-64. Those choices are motivated
by the desire to obtain a working compiler faster with the
intention of revisiting the choices made in the future if they
become a bottleneck for the execution speed.
The current calling convention uses four registers to pass

arguments to a function, respectively for passing the closure
pointer, the this object and the first two parameters of
the function. The stack is used to pass the return address
and the remaining parameters. A location on the context
object (see Section 4.1) is used for passing the argument
count. For performance reasons, direct support for C calls is
implemented both for x86 and x86-64. Stack alignment and
proper argument passing is inlined in the generated code.
The current register usage on x86 reserves five registers

for register allocation, and three registers respectively for
keeping a reference to the context object, the stack pointer
and a scratch register. The latter is used as a temporary
measure to lessen the constraints on register allocation but
we intend to eliminate it eventually.

3.9 Function arguments handling
The flexibility gained by having variadic functions by de-

fault incurs a run-time overhead when the caller does not
know the expected number of parameters for a variadic func-
tion. The current implementation uses an assembly lan-
guage handler prepended at the entry point of each function.
This handler manipulates the call stack to match the num-
ber of expected parameters. Extra arguments are removed
and missing arguments are initialized to the undefined value.
As a special case, when the compiler generates calls to

primitive functions, since the number of arguments and the
non-usage of the arguments object are known at compile-
time, a fast entry point is used which avoids passing and
checking the argument count at run-time.
The arguments object also incurs a run-time cost because

the object in question needs to be constructed. For functions
using it, all arguments passed on the stack are copied in
an array, before the check for the number of arguments is
performed and the stack frame is manipulated. A handler for
creating the arguments object is prepended to the variadic
function handler for functions making use of the feature.
Note that the arguments object contains function argu-

ments, but also a reference to the callee function object.
This information is available to functions because the func-
tion object is a hidden argument in our default calling con-
vention. Some JavaScript implementations also include a
reference to the caller function in the arguments object.
Tachyon does not provide this because it is not part of the
ES5 standard. We do not believe it would be difficult or
costly to implement, however.

3.10 Instruction Selection
Instruction selection is done after register allocation. It

tries to exploit faster and/or smaller instructions when pos-
sible. For example, when performing an addition with an im-
mediate value of 1, the inc instruction will be used instead
of the regular add instruction. Most of the work concerns
ensuring the proper location of operands with regard to x86
operand conventions, such as not having two operands in
memory and having one of the operands being the destina-
tion of the instruction.

Instruction selection notation uses regular JS mixed with a
selected subset designed to mimic the GNU assembler syn-
tax. Inside regular code, an assembly language context is
initiated by referring to the assembler object, asm by con-
vention. Then, using $ as an immediate value constructor,
mem as a memory address constructor, variable names to re-
fer to register objects, as well as cascading function calls [4],
namely methods returning the this object, allows to write
assembly code in the style shown below:

asm.
mov(eax, ebx). // 000000 89 c3 movl %eax,%ebx
add($(1), ebx). // 000002 83 c3 01 addl $1,%ebx
add(mem(0,esp), ebx). // 000005 67 03 1c 24 addl (%esp),%ebx
ret(); // 000009 c3 ret

This has proved helpful in working at different levels of
abstraction, all within the same language. For example,
JS can be used as a metaprogramming language for writing
assembly code by defining cascading functions implementing
common idioms. The following example illustrates copying
values from the stack to an array, using a for loop generator
pattern:

var i = eax;

asm.
forLoop(i, ">=", $(0), function () // for (;i >= 0; --i)
{

this.
mov(mem(0, sp, i), temp). // temp = sp[i]
mov(temp, mem(0, arr, i)); // arr[i] = temp

}).
ret();

Interleaving assembly instructions with generator patterns
makes assembly writing more convenient and arguably easier
to read than with a regular assembler.

3.11 Assembly
Once a partial encoding for instructions has been gener-

ated by the instruction selection phase, a fixpoint on the
assembly code generated is performed to find the minimal
length encoding for the given assembly language instruc-
tions. This is necessary because the encoding length for
some instructions varies as a function of the value of some
operands. For example, encoding a relative jump with an
8-bit displacement uses only two bytes instead of five for a
32-bit displacement.

3.12 Compilation Example

function add1(n)
{

return n + 1;
}

Above is the source code for a simple JS function which
computes n+1. Due to the generic nature of the + operator,

Program ("ex.js"@1.1-1.36:)
|-var= add1 [global] ("ex.js"@1.1-1.36:)
|-func= add1 [global] ("ex.js"@1.1-1.36:)
|-block=
| BlockStatement ("ex.js"@1.1-1.36:)
| |-statements=
| | FunctionDeclaration ("ex.js"@1.1-1.35:)
| | |-id= add1 [global] ("ex.js"@1.1-1.36:)
| | |-funct=
| | | FunctionExpr ("ex.js"@1.1-1.35:)
| | | |-param= n ("ex.js"@1.15-1.16:)
| | | |-var= n [local] ("ex.js"@1.1-1.35:)
| | | |-body=
| | | | ReturnStatement ("ex.js"@1.20-1.33:)
| | | | |-expr=
| | | | | OpExpr ("ex.js"@1.27-1.32:)
| | | | | |-op= "x + y"
| | | | | |-exprs=
| | | | | | Ref ("ex.js"@1.27-1.28:)
| | | | | | |-id= n [local] ("ex.js"@1.1-1.35:)
| | | | | | Literal ("ex.js"@1.31-1.32:)
| | | | | | |-value= 1

Figure 3: AST for the add1 function.

this either adds one if n is a number, or converts n to a
string, if it isn’t already one, and concatenates the string
"1" to it.
Figure 3 illustrates the AST produced by our parser for

the add1 function. This AST includes the function declara-
tion, the block of statements inside the function body, the
variables and their scope, as well as the operator expression
adding n to 1, wrapped inside a return statement. The HIR
produced for this function is shown below:

entry:
box n = arg 2;
box $t_4 = call <fn "add">, undef, undef, n, box:1;
ret $t_4;

As can be seen, this representation is rather concise and
abstract. The value of the argument n is assigned to an
SSA temporary. The primitive add function is then called
to implement the behavior of the + operator applied to n and
1. The result of this call is then returned. The two undef
arguments to the call represent the closure and this object
references, which are undefined in the case of primitive calls.

entry:
box n = arg 2;
pint $t_4 = and_box_pint n, pint:3;
if $t_4 === pint:0 then cmp_true else if_false;

cmp_true:
box $t_14 = add_ovf n, box:1 normal call_res overflow ovf;

call_res:
box phires = phi [$t_11 ovf], [$t_19 if_false], [$t_14 cmp_true];
ret phires;

ovf:
ref $t_9 = get_ctx;
box global_2 = load_box $t_9, pint:36;
box $t_11 = call <fn "addOverflow">, undef, global_2, n, box:1;
jump call_res;

if_false:
ref $t_17 = get_ctx;
box global_3 = load_box $t_17, pint:36;
box $t_19 = call <fn "addGeneral">, undef, global_3, n, box:1;
jump call_res;

Figure 4: LIR for the add1 function.

The LIR for add1 is produced by inlining the call to the
primitive add function (see Figure 4). This results in many
basic blocks being added to add1. This code implements
the multiple semantics of the + operator. The tag bits of
the operand values are first tested to see if both operands
are integers. The test of the tag bits of the constant are
eliminated by constant propagation. If n is an integer, we
use the add_ovf instruction to perform an integer add with
an overflow check directly on the bits of the values.

If the result overflows, the add_ovf instruction will branch
to the ovf basic block, in which the addOverflow function
is called to handle this case. If n was not an integer to
begin with, the addGeneral function is called to implement
the generic addition semantics, which may result in a string
concatenation, for example. In all cases, the control-flow
eventually reaches the call_res block and the final result
of the addition is passed to the phires phi node, whose value
is then returned.

0000 <fn:add1>
/* stack adjustment prelude removed */
0051 entry:
0051 89 c7 movl %eax,%edi
0053 83 e7 03 andl $3,%edi
0056 85 ff testl %edi,%edi
0058 75 3b jne if_false
005a eb 00 jmp cmp_true
005c
005c cmp_true:
005c 89 c7 movl %eax,%edi
005e 83 c7 04 addl $4,%edi
0061 71 02 jno call_res
0063 eb 08 jmp ovf
0065
0065 call_res:
0065 83 c4 04 addl $4,%esp
0068 89 f8 movl %edi,%eax
006a c2 00 00 ret $0
006d
006d ovf:
006d 89 ce movl %ecx,%esi
006f 8b 76 24 movl 36(%esi),%esi
0072 89 fb movl %edi,%ebx
0074 89 1c 24 movl %ebx,(%esp)
0077 bf 00 00 00 00 movl <addOverflow_fast>,%edi
007c 89 f5 movl %esi,%ebp
007e be 04 00 00 00 movl $4,%esi
0083 ba 19 00 00 00 movl $25,%edx
0088 c7 41 04 04 00 00 00 movl $4,4(%ecx)
008f ff d7 call *%edi
0091 89 c7 movl %eax,%edi
0093 eb d0 jmp call_res
0095
0095 if_false:
0095 89 cf movl %ecx,%edi
0097 8b 7f 24 movl 36(%edi),%edi
009a 83 ec 04 subl $4,%esp
009d 89 3c 24 movl %edi,(%esp)
00a0 bf 00 00 00 00 movl <addGeneral_fast>,%edi
00a5 8b 2c 24 movl (%esp),%ebp
00a8 ba 19 00 00 00 movl $25,%edx
00ad be 04 00 00 00 movl $4,%esi
00b2 c7 41 04 04 00 00 00 movl $4,4(%ecx)
00b9 ff d7 call *%edi
00bb 83 c4 04 addl $4,%esp
00be 89 c7 movl %eax,%edi
00c0 eb a3 jmp call_res

Figure 5: x86 assembler for the add1 function.

Finally, the x86 assembler code (32-bit) produced for the
add1 function is shown in Figure 5. For brevity, this snippet
is missing the prelude that adjusts the stack frame if the
number of arguments is different than expected. The ma-

chine code is generated based on the LIR. The basic blocks
are ordered so as to try to linearize the most likely code
paths. Basic LIR instructions typically require very few ma-
chine instructions. For example, add_ovf is implemented as
a machine add followed by a jump that tests the overflow
condition flag. The x86 code for the add1 function fits within
194 bytes.

4. RUNTIME

4.1 VM and Program Execution Model
The evolution of dynamic languages shows a trend toward

late-binding more and more elements of the language. Ac-
cordingly, the implementation of those languages also shows
an increasing complexity in their run-time behavior. The
availability of the compiler at run-time allows it to manipu-
late runtime structures required by the program being com-
piled. This makes for an execution model for the VM that
blends compile-time and run-time behaviors. This section
explains the particular choices made for the execution model
of Tachyon. We introduce the following definitions to sim-
plify reasoning about the execution model in the context of
meta-circularity: we refer to the environment in which the
compiler executes as the host environment, and the envi-
ronment in which the compiled code executes as the client
environment.
During execution, a Tachyon program executing in the

client environment needs access to a number of data struc-
tures. Those data structures are accessed through a context
structure. It holds references to the JS global object, a string
table and heap allocation pointers. The context structure is
an implementation artefact, not accessible as a JS object.
During compilation, the compiler accesses the client envi-

ronment to initialize resources needed by the compiled code.
We chose to create strings in the client environment to avoid
maintaining a compile-time string table that would duplicate
the runtime string table used by the executing program and
avoid the run-time cost of internalizing strings. To be able to
inline primitive implementations in the generated code, the
compiler needs access to the IR of those primitives. These
are maintained in the host environment. Also, the compiler
needs access to the OS API functionalities not exposed in JS
such as allocating executable memory. This is done through
proxies.
The result of a successful compilation is an executable

machine code block (MCB), which will be referred after ini-
tialization by a JS function object in the client environment.
Tachyon also maintains the IR of the function in the host en-
vironment to allow recompilation, but this feature has not
been used yet. The execution model is illustrated in Fig-
ure 6.
Tachyon creates runtime strings during compilation, this

technique could also be applied more generally for the cre-
ation of runtime function objects maintaining compilation
information and manipulation of the global object by the
compiler.
When executing on an existing JS implementation, the

host environment is necessarily different from the client en-
vironment. Once bootstrapped, it would be beneficial to
have the host and client environment be the same as this
allows sharing of resources between the compiler and com-
piled code, such as the string table. To keep the implemen-
tation simple, however, the compiler currently still executes

Host environment Client environment

Compiler

Proxies

OS API

Context

Structure
Global Object

String TableFunction

MCB

Reference

Legend

Figure 6: Execution model.

in a different environment. Sections 4.2 and 5 respectively
explain the initialization of the client environment and the
bootstrap process.

4.2 Initialization Process
We have designed Tachyon to self-initialize. The host en-

vironment compiles code to be run in the client environment.
The client code is then able to initialize its own objects in
its own heap. The host environment never has direct access
to the objects in the client heap. This method was chosen
because it avoids the need for an interface layer between the
host and client object representations. Only the client code
needs to know how to manipulate objects inside its heap.

Initialization of the client environment requires a heap in
which allocation of objects can occur, a context structure
to maintain bookkeeping information and runtime services
such as a string table.

The very first operation consists in requesting a contigu-
ous memory space for allocation (heap) from the operating
system. This is done through a C malloc call.

Next, the compiler needs access to the IR of primitives. To
obtain them, the primitives are recompiled from source code
and their IR representation are stored on the configuration
object in the host environment. This is in turn sufficient
to compile bridges between the host environment and the
client environment. Bridges reuse the FFI implementation
and use C as a common interface language between the host
environment and the client environment.

Once the heap, the IR of primitives and bridges are avail-
able, the client environment is initialized by allocating the
context structure through a FFI call. Since allocation of the
context structure requires a context structure, the recursion
is avoided by partially initializing the context to allow it to
be allocated through the regular allocation mechanism.

Now that object allocation is possible in the client envi-
ronment, the string table is initialized. Note that all the
primitives needed for the previous phases cannot rely on
strings for correct behavior since those are not available un-
til this point. However, they might still reference them as
long as the code is not executed. At this point, strings used
by primitives are allocated in the string table and references
are linked in the executable code.

The client global object is then allocated and initialized in
the client environment. This allows compilation and initial-
ization of the standard library. Once the standard library
is initialized and the system is ready to compile client code,
the initialization process is finished.

4.3 Bridges
Tachyon needs to be able to make calls to the client code

it compiles in order to initialize it and run it. This process is
non-trivial because when Tachyon runs under its host plat-
form, the code it needs to call into uses a calling convention
that is not supported by the host platform. Furthermore,
even if Tachyon was running independently of a host plat-
form, we may want to change the Tachyon calling convention
for a new bootstrap, which would result in a similar scenario.
Tachyon may use a different calling convention from the code
it is compiling.

Host environment Client environment

ProxyCaller

C to C

Legend (calling conventions)

Figure 7: Calling convention bridge.

To resolve this issue, we have designed a mechanism we
call a bridge. The Tachyon back-end provides support for
calling C functions. It is also able to generate functions that
are callable using the C convention. The current Tachyon
host platform (Google V8) supports calling into C functions
as well. This allows us to implement a system that can call
client functions from the host environment by using the C
calling convention. We do this by creating a proxy support-
ing incoming C calls on the client side, and another proxy
that exposes the client proxy using the host calling conven-
tion on the host side. The host function can then call into
its proxy using the host calling convention, which calls the
client proxy using the C calling convention, which finally
calls into the client function using the client calling conven-
tion. This is illustrated in Figure 7.
Bridges are not like the mirrors of Klein [18], which allow

reflective access to objects residing in a remote VM. Rather,
they are a lower-level mechanism that allows us to call func-
tions residing in another VM while properly handling the
discrepancies in calling conventions and argument type con-
versions. Tachyon uses them to initialize a new VM during
the bootstrap process. We may eventually use bridges as a
tool in implementing mirror-like facilities.

4.4 Object Representation
Heap-allocated structures in Tachyon are referenced

through boxed values whose least significant bits (tag bits)
identify the kind of object being referred to. Those struc-
tures all begin with a 32-bit header that encodes more pre-
cise information about the exact layout and size of the struc-
tures so that they can be traversed by a GC.
JS objects are currently represented in memory in a

straightforward way. The object structure stores a prop-
erty count, a prototype reference and an indirect reference
to another structure which is a hash map of property names
to property values (see Figure 8). This indirect reference is
present so that the property map can be reallocated when
the number of properties grows beyond the current capacity

of the property map. The prototype property refers to the
object’s prototype object. It may be null if the object has
no prototype. It is stored outside of the property map be-
cause every object must have this field and it must not be
directly visible as a property of the object.

LengthHeader

Header

(32 bits)

Property

count

Property

map
Prototype

Figure 8: JS object memory layout.

In JS, it is possible to use arrays and functions as regular
JS objects. That is, named properties can be stored onto
them. They also have a prototype field, just as with regular
objects. Because of this, we have chosen to implement ar-
rays and functions as extensions of regular JS objects. This
means that arrays and functions share a common part of
their memory layout with regular objects. Namely, the pro-
totype, property count and property map fields. They also
possess additional fields specific to their implementation.

CapacityHeader

Header

(32 bits)

Property

count
Length

Element

table

Property

map
Prototype

LengthHeader

Figure 9: Array memory layout.

In the case of arrays, they also store a length field (the
length of the array, or number of indexed values stored) and
a reference to an element table (see Figure 9). The element
table stores a capacity field so that additional space beyond
the length of the array can be reserved for future resizing.
This table will be reallocated if the array size increases be-
yond the capacity.

H

Mutable cells

H H H

LengthHeader

H

Cell count
Header

(32 bits)

Property

count
Code

Property

map
Prototype

Figure 10: Function memory layout.

Function objects in JS are a representation of closure in-
stances. In addition to the normal object fields, they also
store a pointer to the function’s machine code and a fixed
number of references to mutable cells (see Figure 10). Each
mutable cell is heap-allocated and contains a header and
a mutable boxed value field. These mutable cells serve to
store mutable variables captured by the closure. This rep-
resentation of closures is one favored by many Scheme im-

plementations. We plan to eventually optimize our closure
representation by allocating mutable cells only for the cap-
tured variables that are shared among multiple closures.

Length Characters
Header

(32 bits)

Figure 11: String memory layout.

Strings in JS are not objects. They are immutable prim-
itives, and as such, cannot store properties like objects, ar-
rays and functions. Because of this, we have designed a
layout (see Figure 11) for them in which only the length
and the raw UTF-16 character data are stored.

5. BOOTSTRAP
The boostrap process of Tachyon is performed in memory

to avoid the creation of a separate executable or image. This
is a temporary measure until support for an image writer is
added.
We define the hosted compiler to be the compiler exe-

cuting in the host environment, the bootstrapped compiler
to be the compiler produced by the hosted compiler and
executing in the client environment, and the boostrapped
client environment to be the environment initialized with
the bootstrapped compiler. An illustration of the hosted
and bootstrapped compilers is given in Figure 12.

x86

JS

V8

JS

JS x86
Tachyon

JS

JS x86
Tachyon

x86

JS x86
Tachyon

Hosted

Compiler

Bootstrapped

Compiler

Figure 12: Bootstrap stages.

The following steps are performed to achieve a bootstrap
in memory:

1. Initialization of the client environment with the hosted
compiler.

2. Compilation of the Tachyon source code and shell with
the hosted compiler.

3. Initialization of the bootstrapped client environment
with the bootstrapped compiler.

4. Execution of the compiler and shell.

Note that when a bootstrap is performed in memory, the
control never returns to the initial host environment, frames
from the host environment are kept on the stack and the
memory allocated by the host process is still active.

Initialization of the bootstrapped client environment could
be avoided if the client environment was reused instead,
since their run-time behavior is identical. They were kept
separate for simplicity of implementation for this version of
the compiler, although we plan on merging them in the near
future.

6. PERFORMANCE
In this section, we present some performance compar-

isons of Tachyon against other JS implementations. Perfor-
mance has not been an important concern up to this point
in Tachyon’s development. Therefore, these numbers are
meant as ballpark figures only. The benchmark numbers
shown were measured on a computer with quad Intel Xeon
X5650 CPUs, running the Linux 2.6 kernel. Tachyon5 was
compared against Google V8 revision 7878 and WebKit’s in-
terpreter revision 88541. All implementations were compiled
in 64-bit mode.

A large proportion of widely-used JS benchmarks avail-
able rely on features not yet supported by Tachyon, such
as regular expressions, the Date object and floating-point
numbers. We have chosen to use the benchmarks from the
SunSpider JS benchmark suite which can run in Tachyon
without modification to compare our VM against Google
V8 and the WebKit interpreter. The resulting times are
shown in Table 1. Because the original benchmarks run
very quickly (< 10ms), the times measured are for a total of
400 runs of each benchmark.

Benchmark Tachyon Google V8 WebKit Int.
access-binary-trees 20.522 0.473 4.553
access-fannkuck 18.002 2.445 34.871
access-nsieve 4.839 0.686 7.355
bitops-3bit-bits-in-byte 1.890 0.636 9.019
bitops-bits-in-byte 6.301 2.294 11.723
bitops-bitwise-and 30.971 3.436 7.915
bitops-nsieve-bits 7.005 2.347 15.39
controlflow-recursive 6.275 0.739 6.076
crypto-md5 13.789 0.724 7.357
crypto-sha1 15.050 0.870 7.372

Table 1: Running times (in seconds) of SunSpider

benchmarks under Tachyon, Google V8 and the We-
bKit interpreter.

The results in Table 1 show that the Tachyon JIT cur-
rently produces code that is several times slower on average
than that produced by Google V8’s JIT. We believe this
is largely due to the fact that object property accesses (in-
cluding global variable accesses and global function calls) are
unoptimized in our system. Each such access requires a func-
tion call and a hash table lookup on the object. Benchmarks
which do not involve property accesses, such as bitops-
3bit-bits-in-byte are those where Tachyon compares the
least unfavorably to V8. Conversely, Tachyon does signifi-
cantly worse than both V8 and the WebKit interpreter in
access-binary-trees, a benchmark that is very heavy in
terms of property accesses.

At the time of this writing, the Tachyon source code, ex-
cluding unit tests and automatically generated parser code,
occupies approximately 75 KLOC, compared to around 375
KLOC for V8 and 550 KLOC for SpiderMonkey. Tachyon is

5https://github.com/Tachyon-Team/Tachyon/tree/dls2011

clearly still in its infancy, but since it is a large and complex
piece of software, we have decided to also use the time it
takes Tachyon to compile itself as a benchmark. We believe
this is a more representative measure of Tachyon’s perfor-
mance than the JS microbenchmarks widely used today.

Benchmark Tachyon Google V8
Tachyon compilation time 1991 165

Table 2: Compilation times (in seconds) for Tachyon
under Tachyon and Google V8.

Compilation times for Tachyon, first running under V8
and then running under itself are given in Table 2. These
numbers indicate that Tachyon’s overall performance is about
an order of magnitude slower when compiled by itself than
when running under V8.
We believe that these numbers are encouraging. Tachyon,

despite its limitations, does significantly better than We-
bKit’s bytecode interpreter on several benchmarks. We have
already started work to improve Tachyon’s performance. For
instance, we have started prototyping a code patching mech-
anism to optimize accesses to globals. The substantial per-
formance improvements obtained encourage us to explore
other “low-hanging fruit” optimizations. We believe that we
may soon reach a level of performance that is more compet-
itive with that of V8.

7. FUTURE WORK
The Tachyon bootstrap currently occurs inside a custom

heap allocated inside the Google V8 process. As such, if
one wants to execute Tachyon while bootstrapped, we cur-
rently have to begin the bootstrap compilation of Tachyon
anew. We are currently working on the implementation of a
memory dump of the Tachyon heap (all machine code and
heap data) into an ELF binary image file. This will allow
Tachyon to become truly independent of its host platform.
Tachyon currently has no garbage collector. It has been

built with a compacting, generational GC in mind, but this
GC is not yet complete. This currently imposes a limit on
the amount of memory programs can allocate during their
execution. Work has begun on the implementation of a GC.
This collector will initially be a single-threaded compacting
GC, and will be written in plain C, because of the wide
availability of debugging tools. However, we plan to even-
tually rewrite this in our extended JS dialect. We believe
this will make the GC easier to maintain in the long run,
as C code does not have direct access to the definitions of
memory layouts used by our heap-allocated objects.
Our current object representation is very simple. Each

object stores a hash map of property names to property
values. While easy to implement, this is inefficient both in
terms of running-time and space usage. As such, we plan
to factor out the name of properties and their position by
introducing a layout object, called maps in SELF [3] and
hidden classes in V8. An object then keeps a reference to
its layout object and only stores the values of its properties.
Layout objects can be shared by multiple objects with the
same layout.
The subset of ES5 supported by Tachyon has proven suffi-

cient to compile Tachyon itself. A few features are still miss-
ing, however. Namely floating-point numbers, exceptions,

regular expressions, eval and object property attributes.
We do not foresee any difficulties in implementing the miss-
ing features. The compiler has been designed with support
for features like eval in mind. Once these missing features
are implemented, we believe Tachyon will be able to run
most JS benchmarks currently available.

Besides getting Tachyon to support all of ES5, one of our
medium-term goals is to bring its performance to a compet-
itive level. Our project has thus far been mostly focused on
rapidly achieving a working bootstrap compilation. How-
ever, we believe it is important for our compiler to generate
quality code if we are to compare it to other existing imple-
mentations. As such, we aim to reach a performance level
within a factor of two of the best existing JS implementa-
tions within the next year. Another performance goal is to
improve the speed at which Tachyon compiles source code.
This will be partly achieved by having Tachyon generate
better code when compiling itself.

Since Tachyon is being developed as a research platform,
we intend to use it to experiment with novel ideas. One area
we plan to explore is the use of more aggressive speculative
optimizations. We intend to test the concept of “optimistic”
optimizations: optimizations that are likely to be safe given
the current state of a running program, but are not guar-
anteed safe for its entire execution. Such opportunities for
optimizations can be discovered using combination of pro-
filing and static analysis. Aggressively optimized code will
then be generated under the optimistic assumption that the
said optimizations will remain applicable, but guards need
to be inserted in the code so that it can be deoptimized
should this assumption be invalidated.

Tachyon currently runs inside of the Google V8 shell,
which is a console program. This allows us to implement
the ES5 specification, but does not allow us to use Tachyon
inside a web browser. Since the main use for JS at this
time is within web pages, it is one of our main goals to
eventually integrate Tachyon into a web browser of some
sort. Mozilla Corp. has expressed interest in implement-
ing an HTML DOM tree in JS for an experimental web
browser. We believe this may be a very interesting platform
for Tachyon to integrate into. We are also looking at node.js
as a possible alternative.

8. CONCLUSION
JS is currently one of the most widespread dynamic lan-

guages. As web applications become more complex, JS per-
formance is becoming increasingly important. Existing JS
engines, even when they are open-source, are difficult to
modify. A flexible research platform is therefore needed in
order to design, implement and evaluate new compilation
techniques for JS. We have presented Tachyon, a self-hosted
JS virtual machine that aims to fill this void. Tachyon is it-
self written in an extended dialect of JS. We have shown that
this implementation decision allows the system to be quickly
developped and easily modified. Tachyon is thus well-suited
to rapid prototyping of new compilation strategies. For in-
stance, it already supports two different register allocators
and two target architectures. Tachyon currently supports a
subset of the full ES5 specification that is sufficient to enable
the bootstrapping process.

We have shown that the current version of Tachyon, de-
spite not having been optimized for performance of the gen-
erated code, is faster than the WebKit interpreter on some

benchmarks from the popular SunSpider suite. We believe
that, once some straightforward optimizations are added,
the performance of Tachyon will be competitive with exist-
ing JS JIT-based VMs. The flexibility of the compiler will
also allow deeper optimizations to be investigated.
Tachyon is publicly available under a Modified BSD li-

cense on GitHub. Contributions are welcome!

9. ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC), the
Fonds Québécois de la Recherche sur la Nature et les Tech-
nologies (FQRNT) and Mozilla Corporation.

We wish to thank David Haguenauer, Éric Thivierge, Olivier
Matz and Alexandre St-Aubin for reviewing drafts of this
paper.

10. REFERENCES
[1] C. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo.

Tracing the meta-level: PyPy’s tracing JIT compiler.
In Proceedings of the 2009 workshop on the
Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems,
pages 18–25. ACM, 2009.

[2] G. Bracha and D. Ungar. Mirrors: design principles
for meta-level facilities of object-oriented
programming languages. In Proceedings of the 2004
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 331–344, New York, NY, USA, 2004. ACM.

[3] C. Chambers, D. Ungar, and E. Lee. An efficient
implementation of Self, a dynamically-typed
object-oriented language based on prototypes. In
Proceedings of the 1989 ACM SIGPLAN conference
on Object-oriented programming systems, languages
and applications, pages 49–70, New York, NY, USA,
1989. ACM.

[4] D. Crockford. JavaScript: The Good Parts, chapter 4,
page 42. O’Reilly, 2008.

[5] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
F. Zadeck. An efficient method of computing static
single assignment form. In Proceedings of the 1989
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 25–35. ACM, 1989.

[6] A. Gal, B. Eich, M. Shaver, D. Anderson,
D. Mandelin, M. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, et al. Trace-based
just-in-time type specialization for dynamic languages.
In Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation,
pages 465–478. ACM, 2009.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: the story of Squeak, a
practical Smalltalk written in itself. In Proceedings of
the 1997 ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, volume 32, pages 318–326. ACM, ACM
Press, 1997.

[8] E. C. M. A. International. ECMA-262: ECMAScript
Language Specification. ECMA (European Association
for Standardizing Information and Communication

Systems), Geneva, Switzerland, third edition, Dec.
1999.

[9] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. Proceedings of the 2004 IEEE/ACM
international symposium on Code generation and
optimization, 0:75, 2004.

[10] F. Logozzo and H. Venter. RATA: Rapid Atomic Type
Analysis by Abstract Interpretation–Application to
JavaScript Optimization. In Proceedings of the 2010
international conference on Compiler construction,
pages 66–83. Springer, 2010.

[11] F. Loitsch. JavaScript to Scheme compilation. In
Proceedings of the 2005 Workshop on Scheme and
Functional Programming, pages 101–116, september
2005.

[12] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21:895–913, September 1999.

[13] P. Ratanaworabhan, B. Livshits, and B. Zorn.
JSMeter: Comparing the behavior of JavaScript
benchmarks with real Web applications. In Proceedings
of the 2010 USENIX conference on Web application
development, page 3. USENIX Association, 2010.

[14] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do – a large-scale study of the use of
eval in JavaScript applications. In European
Conference on Object-Oriented Programming.
Springer, 2011.

[15] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of JavaScript
programs. In Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and
implementation, pages 1–12. ACM, 2010.

[16] A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In Companion to the 2006
ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications,
pages 944–953. ACM, 2006.

[17] R. Sol, C. Guillon, F. M. Q. a. Pereira, and M. A. S.
Bigonha. Dynamic elimination of overflow tests in a
trace compiler. In Proceedings of the 2011
international conference on Compiler construction,
pages 2–21, Berlin, Heidelberg, 2011. Springer-Verlag.

[18] D. Ungar, A. Spitz, and A. Ausch. Constructing a
metacircular virtual machine in an exploratory
programming environment. In Companion to the 2005
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 11–20, New York, NY, USA, 2005. ACM.

[19] M. Wegman and F. Zadeck. Constant propagation
with conditional branches. ACM Transactions on
Programming Languages and Systems, 13(2):181–210,
1991.

[20] C. Wimmer and M. Franz. Linear scan register
allocation on SSA form. In Proceedings of the 2010
IEEE/ACM international symposium on Code
generation and optimization, pages 170–179, New
York, NY, USA, 2010. ACM.

