
A Taxonomy of Distributed DebuggersBased on Execution Replay 1Carl Dionne Marc Feeley Jocelyn DesbiensAlex Informatique Universit�e de Montr�eal INRS-T�el�ecommunicationsLachine (Qu�ebec) Montr�eal (Qu�ebec) Iles-des-Soeurs (Qu�ebec)Canada Canada Canadadionne@alex.qc.ca feeley@iro.umontreal.ca desbiens@inrs-telecom.uquebec.caAbstractThis paper presents a taxonomy of parallel and distributed debug-gers based on execution replay. Programming of distributed and pa-rallel systems is a complex task. Amongst the many factors contri-buting to this complexity, the nondeterminacy of these systems isan important one. Execution replay is a technique developed tofacilitate the debugging of nondeterministic programs.Execution replay has very broad applications and not every algo-rithm is applicable in every situation. This taxonomy provides aprecise classi�cation of replay debuggers using nine criteria. Fromthis classi�cation, it is easier to determine a debugger's scope ofapplication, outline its strengths and weaknesses and compare itwith others. This taxonomy is illustrated and validated using acollection of existing replay debuggers.Keywords: debugging, nondeterminism, execution replay1 IntroductionIt is well known that programming of distributed and parallel applications is a complextask. Furthermore, very few parallel programming tools are available to support theprogrammer. In particular, debugging tools are often not well suited or simply lacking.Tools used in sequential programming environments may not scale appropriately todistributed and parallel environments. Mellor-Crummey cites four reasons that makedebugging parallel systems more problematic: lack of global time, nondeterminism,multiple threads of control and complex patterns of interactions [10]. Innovative stra-tegies have to be developed to build tools well adapted to these di�culties. Executionreplay is a strategy proposed to facilitate debugging of nondeterministic programs.1Proceedings of the International Conference on Parallel and Distributed Processing Techniquesand Applications (PDPTA'96), Sunnyvale, California, August 9{11, 1996



1.1 Related workOur taxonomy aims at providing a terminology of replay debugger characteristics. Theneed for a debugging terminology has been formally identi�ed in the conclusion tothe 1988 workshop on distributed and parallel debugging by Sopka and Redell. Bothconcluded that we lacked a theory and a terminology for debugging [10].Regarding replay debugging more speci�cally, important work has been accompli-shed since, but we are still far from a general theory and terminology. Netzer proposeda taxonomy of race conditions [12], extended by Helmbold and McDowell in 1994 [7].A better comprehension of race condition properties lead to replay algorithms optimalin terms of the quantity of logged information [11, 13].Our taxonomy widens the scope of these race condition taxonomies, by caracterizingother aspects of a replay debugger. We cover the characteristics of the replayed system,the replay algorithm (where the type of race condition replayed is included), the inte-gration of the replay debugger into the replayed system as well as the characteristics ofthe resulting replay itself.2 Terminology2.1 Execution replayExecution replay aims at providing an e�ective method to debug nondeterministic pro-grams. We say that a program P has a nondeterministic behavior if two executionswith the same input may di�er. With execution replay, information is gathered duringan execution E and used to control another execution E 0, called replay, in such a waythat E 0 is identical to E at some level of abstraction. Clearly, the replay E 0 is notidentical to E at all levels: one produces information while the other uses it. However,this replay helps to locate the fault if:� Information may be gathered during the replay. This information may be obtainedfrom additional instructions in the code (e.g printf), using standard sequentialdebuggers or with more sophisticated tools. Further, the information should begathered at a level of abstraction where executions are identical.� The information gathered at this level of abstraction is su�cient to locate thefault.We illustrate these requirements with two examples. The �rst example illustrates auseless replay debugger. At a very high level of abstraction, it simply reproduces theoutput of an execution of a program: if the execution outputs the result 5, the replaysimply returns 5. This is a correct replay at a very high level of abstraction. At thislevel of abstraction, the only information that can be gathered is its output, and thisinformation is useless to debug the program. Furthermore, even if some informationcould be gathered at a lower level of abstraction, this information would be useless sincethe executions di�er at this lower level of abstraction.The second example illustrates a situation where replay is useful. Replay debuggersgenerally operate at a level of abstraction corresponding to that of the primitive ope-



rations of the language. A regular sequential debugger is usually available to gatherinformation. Functions like printf could also be added to the code to gather informa-tion. If the replay is correct at the language level, information is gathered at a levelof abstraction where executions are identical. This information is useful to debug theprogram. Of course, nondeterminism is not the only di�culty of parallel and distribu-ted debugging: lack of global time, multiple threads of control and complex patternsof interaction might make it complex to track down the fault using the informationgathered. Other debugging techniques should then be used in conjunction with replay,but further analysis is beyond the scope of this paper.2.2 Other terms related to replayExecution replay is applied to a particular language or system. We call that languageor system the replayed system.We also distinguish between replay algorithm and replay debugger. A replay algo-rithm describes how a particular set of instructions is replayed. A replay debuggerincorporates one or more replay algorithms, as well as more practical aspects such asthe integration into the replayed system.A replay debugger is also often a component of a more complete debugging system:execution replay is helpful in debugging if additional information is given during thereplay, this information being gathered by the other components of the debuggingsystem.3 Existing Replay SystemsBefore proceeding with the taxonomy itself, we �rst present a survey of existing replaydebuggers. These debuggers will be used to illustrate the various classi�cation criteria.Their classi�cation is summarized in table 1.RD 1 (BugNet [1]) BugNet is a replay debugger developed by Curtis and Wittie.It is used to replay applications running on a workstation cluster. The application'stasks communicate through interprocess communication (IPC), where unpredictablecommunication delays cause nondeterminism. All I/O and IPC data exchanges arecaptured, their data recorded and used to create the replay.RD 2 (Recap [14]) Recap is a debugger that provides the illusion of reverse execu-tion. It logs and replays the results of systems calls and shared-memory read, as wellas the time when asynchronous events (signals) occur. Given (1) an initial executionpassing through states tc, tp and tn, (2) a checkpoint of the execution state at tc and (3)a replay stopped at tn, it creates the illusion of reverse execution to time tp by replaying(forward) the execution from tc to tp.RD 3 (Instant Replay [9]) Instant Replay is an algorithm developed by Leblanc andMellor-Crummey to replay shared-memory parallel programs. Instant Replay assumesthat all accesses to shared variables are guarded. The replay is guaranteed by recordingthe order in which the variables are accessed, rather than recording the data that is



accessed. Several adaptations of Instant Replay were proposed to debug other types ofnondeterministic constructs (RD 8, 9).RD 4 (SYN-Sequence [16]) Tai, Carver and Obaid proposed a replay debugger forconcurrent Ada programs. Given a program P , source-to-source transformations pro-duce the programs P 0 and P 00, such that (1) the execution of P 0 records a sequence ofsynchronization events (SYN-Sequence) and (2) P 00 uses this SYN-Sequence to producea correct replay. Their debugger is concerned with all nondeterministic Ada constructs,except accesses to shared-variables: it is assumed that these accesses will be guardedusing other Ada constructs.RD 5 (Optimal Tracing of Shared Memory Accesses [11]) Netzer proposed anenhancement to the original Instant Replay algorithm. This enhancement is basedon the observation that it is usually more expensive to record all log entries than tocompute a subset of them that is su�cient to guarantee replay. With Instant Replay, allaccesses to shared variables are logged. Netzer proposes an algorithm that computes,dynamically, a subset of accesses that is su�cient to guarantee a correct replay, andshows that this subset is minimal.RD 6 (Optimal Tracing of Messages [13]) Based on the previous observation, Net-zer and Miller proposed an algorithm applicable to message-passing programs that dy-namically computes the minimal subset of events that needs to be recorded.RD 7 (Mostly Functional Language [6]) Halstead and Krantz proposed a replayalgorithm adapted to mostly functional parallel programs. The algorithm has beenimplemented for Multilisp, a parallel variant of Scheme. Like Instant Replay, theiralgorithm reproduces the order in which shared-variables are accessed. But it exploitscharacteristics of mostly functional languages to reduce the intrusiveness of the debug-ger: no tracing overhead is imposed on read accesses to variables (even shared-variables),only a small amount of tracing overhead is imposed to Multilisp's touch operation, butgreater overhead is added to side-e�ect operations, that are presumed to be rare.RD 8 (Concurrent Logic Language [15]) Shen and Gregory extended Instant Re-play to concurrent logic programs. Their replay debugger is applied to KLIC. Commit-ted choice concurrent logic programming languages have several properties that theyexploit in order to simplify the replay algorithm. The most important property is thatKLIC's processes communicate through single-assignment shared-variables. Nondeter-minism of KLIC's executions occurs because the clause to which each goal (or process)commits during an execution is nondeterministic. Tracing this information is su�cientto create a correct replay.RD 9 (Actor Language [3]) Dionne proposed a replay debugger applied to CLAP[2],an actor extension of C++. CLAP's multi-threaded actors communicate through bothshared-variables and messages. This replay debugger reproduces some nondeterministicinstructions of CLAP with an extension of Instant Replay, and combines the loggingof data to reproduce other nondeterministic instructions such as clock accesses or userinput.



RD 10 (Distributed Training System [4]) Dionne proposed a debugger to replayexecutions of a distributed training system composed of a user interface, a simulationengine and a collection of arti�cial agents. The replay debugger is applied to messagessent across the system: their data is recorded and used to replay a process by simulatingits interactions with other processes.Debugger Instructions Task Alg Inst. traced Int. Time Proc.(RD 1) 1b, input 2a 3a 4a 5b 8b 9c(RD 2) 1b, input 2a 3a 4a 5b 8b 9c(RD 3) 1a 2a 3b 4a 5a 8a 9a(RD 4) 1a, 1b 2a 3a 4a 5a 8a 9a(RD 5) 1a 2a 3b 4b (races) 5a 8a 9a(RD 6) 1b 2a 3b 4b (races) 5b 8a 9a(RD 7) 1a 2b 3b 4b (side e�ects) 5b 8a 9a(RD 8) goal commitment 2b 3b 4a 5b 8a 9a(RD 9) 1a, 1b, input 2b 3b,3a 4a 5a 8a 9a(RD 10) 1b 2a 3a 4a 5bp 8a 9cTable 1: Classi�cation of some replay debuggers. Two criteria were omitted: the failureof the replay (criterion 6) is not a concern in most debugger papers, but we believe thatmost debuggers are of the type 6b, and all debuggers are of type 7a regarding the classof instrumented instructions (criterion 7).4 TaxonomyThe taxonomy we are proposing is composed of nine criteria, describing a debugger fromfour di�erent perspectives: the characteristics of the replayed system, the characteristicsof the replay algorithms used by the debugger, the integration of the replay debuggerinto the replayed system and the characteristics of the resulting replay.We consider that the integration of the replay debugger into a larger scale debuggingsystem is not a characteristic of the replay debugger, but rather of the debugging system.Thus, aspects such as the interface to visualization packages, user interface and so onare not relevant in this classi�cation.The replay debuggers previously described illustrate the classi�cation criteria.4.1 Characteristics of the replayed systemThis �rst perspective captures the aspects of the replayed system relevant to the clas-si�cation of a replay debugger.Criterion 1 (Type of instruction) We �rst classify the replay debuggers accordingto the type of instructions they replay. The value set de�ned by this criterion is notformally introduced. Typically, either accesses to shared-variables (1a) or message ex-changes (1b) are the instructions that provoke nondeterminism, and thus the instruc-tions replayed.



Not every instruction of the replayed system has to be considered. We distinguishthree classes of instructions2:� Deterministic instructions: instructions that always produce a deterministic e�ect(do not require replay at all);� Weakly nondeterministic instructions: instructions that produce a deterministice�ect if they are executed in a particular order;� Strongly nondeterministic instructions: instructions that do not produce a deter-ministic e�ect.Replay debuggers are not concerned with deterministic instructions. Strongly non-deterministic instructions occur both in parallel and in sequential programs: access toa timer, user input, etc. Some debuggers do consider them (RD 1, 2, 9), but they areoften ignored. Weakly nondeterministic instructions are generally the ones that makedebugging parallel programs such a hard task. Replay debugging has mostly been ap-plied to this class of instructions. Typically, replay debuggers deal with instructionsrelated to shared-variables accesses (RD 3, 5, 7, 9) or to messages exchanges (RD 1,2, 4, 6, 9, 10). Some systems consider a di�erent set of instructions: KLIC's (RD 8)reproduces the commitment of a goal to a clause, CLAP's (RD 9) deals with message-passing and shared-variable access, but also with instructions related to control of theactor's behavior.As more complex distributed applications are developed, execution replay may haveto be applied to systems where a wider set of instructions cause nondeterminism. Accessto more complex shared ressources (databases, �les) and complex user interactions areexamples of instructions that may have to be dealt with in the future.Criterion 2 (Task creation model) The replayed system's task creation model is animportant classi�cation criterion. It describes whether the replay debugger requires astatic task creation (2a), or handles a dynamic task creation (2b).We distinguish two task creation models: static and dynamic. In systems wheretask creation is static, the number of tasks is known when the program is started.In systems where it is dynamic, that number may change during the execution. Theimplementation of a replay debugger that handles the dynamic creation of tasks is morecomplex.Replay debuggers for CLAP (RD 9), Multilisp (RD 7) and KLIC (RD 8) supportdynamic task creation. It is a fundamental aspect of the systems that they replay:in CLAP, an actor processes messages with new threads, in Multilisp, parallelism isexpressed with an expression resulting in the creation of a new task (a short executioncould result in tens of thousands of tasks being created) and in KLIC, every goalcorresponds to a task and additional tasks are created as subgoals are found.The replay debuggers proposed by Netzer (RD 5, 6) rely on a �xed number of tasks:every shared ressource is associated with a vector of size t, where t is the number oftasks. If tasks are dynamically created, the value of t changes. Thus, debuggers (RD5, 6) require a static task creation model.2A formal de�nition of these three classes of instruction may be found in [3]



The replay debugger (RD 10) does not handle dynamic task creation. It was notrequired since the underlying communication system does not permit the attachment orcreation of tasks. If dynamic task creation was allowed, the event identi�cation methodwould have to be adapted accordingly. In general, an event is uniquely identi�ed withina speci�c context. This context is usually the task: events of di�erent tasks are loggedinto di�erent �les, or the event identi�cation within the log �le describes the task fromwhich the event originated. The identi�cation of every task or the association of everytask to a log �le is usually easy when tasks are statically created. But this might benondeterministic when tasks are dynamically created. This adds to the complexity ofthe debugger.In the case of the other debuggers (RD 1, 2, 3, 4), it is not clearly indicated whetherthey support dynamic task creation or not. They do not attach a vector of informationto the shared ressources, but dynamic task creation is not fundamental to the replayedsystem. A fair assumption would be that the previous discussion about (RD 10) holdstrue for these debuggers.4.2 Type of algorithmWe have discussed the characteristics of the replayed system. We now focus on thereplay algorithm itself. A replay debugger could combine many replay algorithms.Such a replay debugger would be described by the characterization of every algorithmit employs.Criterion 3 (Data or synchronization replay) Replay algorithms are either basedon the data (3a) or the synchronization (3b) of the instructions.Data replay was the �rst technique used, by BugNet (RD 1). It is also the techniqueused in (RD 2). Since synchronization replay is usually more e�cient, it is the techniqueused by most recent algorithms (RD 3, 4, 5, 6, 7, 8, 9). One of these debuggers (RD 9)also employs a data replay algorithm to replay nondeterministic instructions (that, byde�nition, require data replay).Unfortunately, synchronization algorithms require that all tasks be replayed, acondition that is not always feasible. For example, in (RD 10), a component of thesystem (a simulation engine) could not be replayed. Thus a data algorithm was requi-red.Criterion 4 (Class of traced instructions) This criterion describes the relation-ship between the instrumented instructions and the traced instructions: whether in-formation is traced upon the execution of every instruction instrumented (4a), or onlyupon the execution of a subset of these instructions (4b).Run-time knowledge of the execution may drastically reduce the size of the log.Two approaches are illustrated in the debuggers we use as examples: (RD 5, 6) do notlog unecessary information upon the execution of instructions inherently ordered, while(RD 7) optimizes the replay of mostly functional programs by considering that mostaccesses are read accesses, and that only information about variables that were writtenneeds to be logged. The other debuggers log information upon the execution of everyinstruction that is instrumented.



4.3 Integration into the replayed systemThe next family of criteria describes the integration of the replay debugger into thereplayed system.Criterion 5 (Integration method) This criterion caracterizes the method used tointegrate the replay debugger into the system: the integration is manual (5a) or auto-matic (5b). We further distinguish between complete (5bc) and partial (5bp) automaticintegration.Integration is manual when the user is involved in the instrumentation of the pro-gram. In this case, it is the responsibility of the programmer to identify nondetermi-nistic instructions in the program. When integration is manual, it is not possible toguarantee that the replay is always correct: the user could have forgotten to identifyan instruction, for example. This type of integration is paradoxical in the sense thatthe debugger relies on the premise that the program is free of a certain type of bug.Integration is automatic when the user is not involved in the instrumentation pro-cess. In this case, the integration might be done during the compilation (by a preproces-sor, the compiler or the interpreter), or at run-time (by instrumenting the library). Withautomatic integration, programs will be replayed without extra e�ort from the user. Inthe case where integration is automatic, we further distinguish between complete andpartial automatic integration. If integration is complete, then replay is guaranteed forany valid program of the given language.Debuggers of the type 1a usually require manual integration. In (RD 9), shared-variables have to be instances of a particular class, and standard C++ access methodsare overloaded and instrumented. In (RD 3, 4, 5), shared-variable accesses are guardedwith particular instructions. As an exception to this rule, (RD 7) is automaticallyintegrated into the language.Debuggers of type 1b usually provide automatic integration. This is true of (RD 1,2, 6, 10). (RD 4, 9) belong to both types 1a and 1b. Their integration is automaticwith respect to the message exchange instructions, but manual with respect to shared-variable accesses. Overall, their integration is manual since the user's intervention isrequired. (RD 8) is of neither type and is automatically integrated.Most papers on replay debuggers are concerned with the instructions that theyreplay, and do not mention those that they do not replay. Therefore, the classi�cationof debuggers into the types 5bc and 5bp is usually not possible. We believe that mostdebuggers, if not all, are only partially integrated.Criterion 6 (Failure of the replay) Only a replay debugger with complete automa-tic integration (of type 5bc) may guarantee a correct replay of any program. Generally,there exists programs and situations such that the replay may fail. This criterion cha-racterizes the failure detection: whether it is never detected (6a), sometimes signaled tothe user (6b) or always signaled to the user (6c).The failure of the replay debugger is a concern that very often remains unanswered.Most papers on debuggers describe the replayed instructions, how the replay is achievedand what type of replay is achieved. Sometimes, the integration of the replay debugger



into the replayed system is described. But most of the time, the behavior of the debuggerwhen the replay fails is not described.The failure may occur in many situations. Where integration is manual, the usercould have forgotten to identify a nondeterministic instruction. Where integration isautomatic but incomplete, the execution of a particular instruction might cause thereplay to fail. This includes simple cases such as inputs that are not taken care of, butalso less trivial cases, such as memory exhaustion occuring only during the replay.A failure of the replay in (RD 9, 10) will sometimes be signaled to the user, but thisis not guaranteed. The failure is detected when an access to the log is performed, andif the event parameters do not match the original ones (for example, event types do notmatch).Criterion 7 (Class of instrumented instructions) This criterion describes the re-lation between the program and the instrumented instructions. It indicates whether allinstuctions of a given type are instrumented (7a), or if only a subset of these instructionsare instrumented (7b).Run-time information analysis leads to debuggers of type 4b, that do not traceevery instrumented instruction. Static analysis of the program may reduce the numberof instructions that need to be instrumented. This analysis is particularly importantwhen a high proportion of the instructions of a given type do not have to be traced (butnot all of them, since we assume that some of these instructions are nondeterministic).A good example of such instruction types are accesses to variables: instances of accessesto shared-variables are weakly nondeterministic and need to be traced, while instancesof accesses to variables that are not shared are deterministic, and do not need to betraced. A static analysis of the program could be used to determine which variablesare shared and which are not, and enable the restriction of the instrumentation to onlythe subset of accesses performed to a shared-variable.Of the debuggers we use as examples, none use static information to reduce theproportion of instrumented instructions. This is not an important feature for debuggersthat replay instructions that almost always have to be instrumented (message-passinginstructions, for example). But it is interesting to see how instrumentation of shared-variables accesses is performed. Most debuggers operating on shared-variables requirethem to be protected (RD 3, 5, 9, 4). Thus the responsability of identifying shared-variables belongs to the user. In (RD 7), all variable accesses are instrumented, butrun-time information is used to distinguish those that really need to be traced.To our knowledge, static information has not yet been used to distinguish instruc-tions that need to be instrumented. But we believe that as automatically integrateddebuggers replaying shared-variable languages are built, debuggers using static infor-mation will start to appear.4.4 Resulting ReplayThe last family of criteria categorizes the type of replay obtained with the debugger.A replay occurs in two di�erent dimensions: in time and in task space. These twodimensions are used to de�ne two classi�cation criteria.



Criterion 8 (Range in time) This criterion indicates whether replay occurs from apredetermined point in time (static time range, 8a) or if the start of the replay may bechanged (dynamic time range, 8b).Replay from a predetermined point in time is usually provided with a mechanism tocreate checkpoints whereupon the program may be restarted. Debuggers characterizedwith a dynamic time range may be used as a support for reverse execution (RD 2).Reverse execution gives the illusion that the ow of execution is reversed, which mightbe a more natural way to track down the reason of a failure. There is no direct relationbetween dynamic time range and reverse execution: (RD 1) is characterized with adynamic time range but does not support reverse execution, and IGOR, although nota replay debugger, supports reverse execution of deterministic programs [5]. We do notdiscriminate replay debuggers according to this criteria (whether they support reverseexecution or not): we consider that it is rather a characteristic of the debugging systemto which the replay debugger belongs.Of the debuggers we use as examples, (RD 1, 2) are characterized with a dynamictime range while the others are characterized with a static time range.Criterion 9 (Range in task space) This last criterion describes the set of tasks col-laborating during the replay: all tasks (9a), a subset (9b) or only one task (9c).Our de�nition of collaboration is based on Lamport's happened before relation [8].We say that tasks collaborate if and only if, for every pair of events ordered in the initialexecution, the ordering relation also holds true in the replay. For example, if two tasks(t1 and t2) initially exchanged a message (m is sent from t1 to t2), and if, during thereplay, m cannot be received by t2 before t1 sends it, we say that the ordering relationholds true for events send(m) and receive(m). If this relation holds true for every pairof events of the replayed tasks, we say that they collaborate. Synchronisation replayrequires that all tasks collaborate during the replay. Most data replay algorithms donot require collaboration between tasks: since the content of m was recorded, there isno need to wait for send(m) before receive(m) is replayed.The replay of a set of collaborative tasks enables information gathering about globalstates (distributed accross many tasks). Replay of a single task requires less resources,but observation of global states is not feasible.(RD 1, 2, 10) are examples of debuggers that replay non collaborative tasks. Weplan to extend (RD 10) in order to replay a subset of collaborative tasks. The otherdebuggers are based on synchronization, and require that all tasks be replayed.5 DiscussionThe juxtaposition of the debuggers survey with the taxonomy enables us to identifyareas of potential research.5.1 Automatic integrationDebuggers with manual integration (5a) present an interesting paradox: they guaranteea correct replay if the user correctly identi�ed the sources of nondeterminism in the code,



that is, the replay is correct only if the program is free of a certain type of bug. Becauseof this paradox, we believe that debuggers should aim for automatic integration (5b).We saw that debuggers for languages where shared variables are the source of non-determinism are particularly hard to integrate automatically, therefore most debuggersof type 1a are also of type 5a.Debuggers of the type 4b start to enable the automatic integration of shared va-riables. An example was shown with (RD 7): (1) this replay debugger is concernedwith shared-variables (1a), (2) an algorithm of type 4b was designed, based on theasumption that the programs are mostly functional, and (3), the debugger is automa-tically integrated to Multilisp programs (5b).Replaying shared-variable programs becomes more and more important with theadvent of new multi-threaded operating systems. We have also seen that automa-tic integration should be aimed for. These two observations imply that future replaydebuggers will be integrated with the compilation of the program, rather than usingspecially instrumented libraries. Shared-variable accesses might be di�cult to distin-guish from nonshared-variable accesses, and implementation of debuggers of type 7bis an alternative that needs to be explored. Since shared-variable accesses are usuallyshort and frequent, the debugger should also be of the type 4b.5.2 Type of instructionReplay systems have mostly been proposed in parallel computing environments. Ho-wever, as the usage of clusters of computers increases, e�ective solutions will also berequired to debug nondeterministic distributed systems. We believe that these distribu-ted systems will require the replay of a wider range of instructions than those typicallyaddressed: access to distributed databases, complex interaction with users and so on.It might not be feasible to integrate all instructions that potentially cause nondeter-minism. If complete automatic integration (5bc) is not feasible, then the replay mightdi�er from the initial execution. In this case, the planning of the failure of the replaybecomes an essential feature of the debugger. We believe that debuggers should aim forcriterion 6c, where a failure of the replay is always detected and signaled to the user.Using such a debugger, the user will be noti�ed if the replay fails, and will not makefalse deductions.6 ConclusionIn this paper, we have proposed a taxonomy of replay debuggers. This taxonomyuses four major categories of criteria: the characteristics of the replayed system, theintegration of the replay debugger to the replayed system, the characteristics of thealgorithm as well as the characteristics of the replay itself. A review and classi�cationof existing replay debuggers demonstrates the proposed taxonomy.Nondeterminism is an important problem in parallel and distributed computingand an e�ective replay debugger certainly proves itself very useful. This taxonomy isa classi�cation tool to compare debuggers and measure their e�ectiveness. As such,it is an important indicator of the work accomplished to date and it reveals research



directions that will lead to debugging tools that achieve their real objective: to �ndreal bugs in real systems.References[1] R. Curtis and L. Wittie. BugNet: A debugging system for parallel programming environ-ments. In Proceedings of the Third International Conference on Distributed ComputingSystems, pages 394{399, 1982.[2] J. Desbiens, M. Lavoie, S. Pouzyre�, P. Raymond, T. Tamazouzt, and M. Toulouse.CLAP: An object-oriented programming system for distributed memory parallel ma-chines. In Proceedings of the PARCO'93 Conference, pages 601{604, Grenoble, France,1994.[3] C. Dionne. Un d�evermineur permettant la r�eex�ecution d'un langage de programmationparall�ele de type acteur. Master's thesis, Universit�e de Montr�eal, 1996.[4] C. Dionne, M. Nolette, and D. Gagn�e. Message passing in complex irregular systems. InProceedings of the MPI Developers Conference and Users Group Meeting (MPIDC'96),July 1996.[5] S. I. Feldman and C. B. Brown. IGOR: A system for program debugging via rever-sible execution. Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel andDistributed Debugging, published in ACM SIGPLAN Notices, 24(1):112{123, January1989.[6] R. H. Halstead, Jr. and D. A. Kranz. A replay mechanism for mostly functional parallelprograms. In Proceedings of the International Symposium on Shared Memory Multipro-cessing, pages 119{130, Tokyo, Japan, April 1991.[7] D. P. Helmbold and C. E. McDowell. A taxonomy of race detection algorithms. Techni-cal Report UCSC-CRL-94-35, University of California, Santa Cruz, Computer ResearchLaboratory, September 1994.[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-nications of the ACM, 21(7):558{565, July 1978.[9] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with InstantReplay. IEEE Transactions on Computers, C-36(4):471{482, April 1987.[10] T. J. LeBlanc and B. P. Miller. Workshop summary. In Proceedings of the Workshop ofParallel and Distributed Debugging, pages ix{xxi, Madison, Wisconsin, 1988.[11] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel pro-grams. In Proceedings of ACM/ONR Workshop on Parallel and Distributed Debugging,pages 1{11, San Diego, California, May 1993.[12] R. H. B. Netzer and B. P. Miller. What are race conditions? Some issues and for-malizations. In Proceedings of the ACM/ONR Workshop on Parallel and DistributedDebugging, pages 251{253, Santa Cruz, California, May 1991. [Extended abstract].[13] R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for debugging message-passing parallel programs. In Proceedings of Supercomputing '92, pages 502{511, Min-neapolis, MN, November 1992.[14] D. Z. Pan and M. A. Linton. Supporting reverse execution of parallel programs. Procee-dings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,published in ACM SIGPLAN Notices, 24(1):124{129, January 1989.[15] K. Shen and S. Gregory. Instant Replay debugging of concurrent logic programs. NewGeneration Computing, 14(1):79{107, 1996.[16] K.-C. Tai, R. H. Carver, and E. E. Obaid. Debugging concurrent Ada programs by deter-ministic execution. IEEE Transactions on Software Engineering, 17(1):45{63, January1991.


