
ACTA Informatica Manuscript-Nr.
(will be inserted by hand later)

Efficiently building a parse tree from a regular expression?
Danny Dubé and Marc Feeley??
Universit́e de Montŕeal C.P. 6128, succ. centre-ville, Montréal Canada H3C 3J7

Received: — / Accepted: —

Abstract. We show in this paper that parsing with regular expressions instead of
context-free grammars, when it is possible, is desirable. We present efficient algorithms
for performing different tasks that concern parsing: producing the external representa-
tion and the internal representation of parse trees; producing all possible parse trees or
a single one. Each of our algorithms to produce a parse tree from an input string has
an optimal time complexity, linear with the length of the string. Moreover, ambiguous
regular expressions can be used.

Key words: regular expression – parse tree – parsing – context-free grammar – ambi-
guity – time complexity

1. Introduction

In language theory, regular expressions and context-free grammars are among the most
important tools used to recognize languages. These are simple models and efficient
algorithms exist to make them practical. Finite deterministic and non-deterministic
automata, push-down automata,LL(k) andLR(k) parsers are all part of this technology.

In many application fields, such as compiling, the interest is not only inrecognizing
languages, but also in parsing them. That is, given a grammar and a string that it
generates, constructing a parse tree for the string which indicates how the string can be
derived from the grammar. The task of parsing is traditionally done using context-free
grammars. Still there are cases where a kind of parsing with regular expressions is
desired. For example, it is the case when one wants to recover a floating point number
from a string like-1.234e5 . The string as a whole matches the regular expression
describing floating point numbers, but parts of it (sign, integer andfraction, exponent)? Research supported in part by the Natural Sciences and Engineering Research Council of Canada.?? E-mail:fdube,feeley g@IRO.UMontreal.CA .

2 D. Dub́e and M. Feeley

must be extracted in order to obtain useful information. For single regular expressions,
such extraction is usually done in anad hocway.

Parsing is often done using algorithms with linear complexity based on LR(k) orLL(k) grammars. Unfortunately, the set of regular expressions does not fall in the class
of LR(k) grammars1; ambiguous regular expressions are notLR(k).

To be able to parse with any grammar, even an ambiguous one, we must use general
tools such as Earley’s parser ([E70]) or the dynamic programming method (see [HU79],
CYK algorithm). These algorithms have cubic complexity in the worst case.

There are some tools which allow to parse specifically with regular expressions. In
theRegexp package (see [RE87]) and in the regular expression tools included in theEmacs text editor (see [Emacs]), one can mark a sub-expression of a regular expression
to indicate that a substring matching the marked sub-expression is desired. The result
is either the substring itself or a range (pair of integers) indicating where the characters
can be found in the original string. If the sub-expression is matchedmany times, there
is a substring for each match (or for only one of them). This facility isnot completely
satisfactory. It can pose problems when more than one sub-expression is marked (using
‘ \(’ and ‘\) ’), like in:

(a+\(c\)?b+\(c\)?)*

It is not possible to unambiguously determine where the ‘c’s appear in the repetitions,
even if all the occurrences of ‘c’ are noted. For example, the strings ‘aacbcab’ and
‘abcacbb’ both cause the same informations to be saved: one ‘c’ string per mark. So,
extraction by marks (and byad hoctechniques) is not powerful enough to provide a
clean and general solution.

What we show in this paper is that complete parsing with general regular expressions
can be done in linear time. We present a set of techniques that provide complete parse
trees and that do not impose restrictions on the kind of regular expressions one can use.
The techniques are efficient in the sense that they have a linear time complexity in the
length of the string to parse. Our approach is interesting since there aremany cases
where regular expressions are the most natural description one has.

Indeed, although the set of regular languages is smaller than the set ofLR(k)
languages, many useful languages are regular. Configuration files for many systems
can be described by regular expressions. In some cases, assembly source filescan
be regular. If the assembler does not support advanced features like macros,sources
files basically contain lines with an optional label, an operator and its operands, plus
some assembler directives and sectioning commands. All this gives a regular language.
Finally, in the processing of natural languages, regular expressions sometimes are the
most appropriate tools. They can be used in various lexicon-related tasks, in robust
parsing, and in automatic language identification. They can be used as an approximate
definition of the language to recognize, allowing fast processing due to their regularity.
In some situations, like in the processing of Finnish, where the words don’t have a
specific order, they are a good solution to an otherwise difficult problem (see [LJN85]).
One can find more complete descriptions of the use of regular expressions in natural
language processing in [MN97] and [GM89].

We present our techniques in the following order. Section 2 presents definitions and
conventions that we use. Among which is the description of the parse trees themselves.

1 Strictly speaking, the regular expressions are not context-free grammars. But we can give to a regular
expression a natural equivalent grammar. For example,r = r0jr00 can be transformed into the substitution
rulesTr ! Tr0 j Tr00 , andr = r0�, intoTr ! � j Tr0Tr .

Regular expressions and parse trees 3

We give them anexternaland aninternal representation. Section 3 presents a non-
deterministic automaton used to generate the external representation of a parse tree
and Section 4 presents another one for the internal representation. The second is the
most useful but the first is simpler. Section 5 presents an improvement of the preceding
techniques using deterministic automata. Finally, Section 6 presents a technique to
obtain an implicit representation of the set of all parse trees. This technique is needed
when a regular expression is ambiguous and there are many parse trees corresponding
to different parses of the same string.

We present many observations and properties throughout the text. Forbrevity, we do
not include their proof. The proofs are usually simple but long andtedious. We believe
the reader should easily be able to convince himself of the truth of the statements.

2. Definitions, conventions and tools

2.1. Notation

Let� be the set of symbols used to write the strings that we parse. We denote the empty
string as�. The length of a stringw is jwj. Strings are concatenated by writing them one
after the other.

The techniques described here are based primarily on automata. The automata are
simply represented by graphs. The start state is indicated by a “>” sign. The accepting
states are depicted as double circles. Every edge has a string attached to it, indicating
what prefix of the input string should be consumed when a transition is made through
the edge. Aw-transition is a transition that consumesw. Most of the automata that we
introduce are non-deterministic. Their nodes are usually denoted usingthe lettersp, q
or s. For a deterministic automaton, we use a hat on the node labels (as in ˆp).L(r) is the language of the regular expressionr.L(G) is the language of the context-
free grammarG. L(A(r)) is the language accepted by the automatonA(r).

Paths in a graph are denoted by writing the sequence of node labels. We separate
labels by dashes if there can be confusion between them. Concatenated paths are written
one after the other and separated by dots (�). In a concatenation, the last node of a path
must be the same as the first node of the following path.

In general, we try to use distinct letters to denote different things; such asv andw
for strings andr for regular expressions.

2.2. Regular expressions

We define the setR of regular expressions as the smallest set such that the following
hold: RB � f�g [� [f(r) j r 2 REgRF � RB [fr� j r 2 RBgRT � RF [fr0r1 : : : rn�1 j n � 2^ ri 2 RF;8 0� i < ngRE � RT [fr0jr1j : : : jrn�1 j n � 2^ ri 2 RT;8 0� i < ngR � RE

4 D. Dub́e and M. Feeley

We prefer to define the set of regular expressions with set inequalities rather than
with a context-free grammar because it simplifies the remaining of the presentation.

The set of regular expressions that we consider is almost the standard one. We omit
the positive closure (r+) and the optional operator (r?) which are simple modifications of
the Kleene closure (r�). Note also that we did not introduce the empty regular expression
(;), which corresponds to the empty language. First, the problem of finding a parse tree
for a stringw matching; never occurs. Second, a complex expression containing the
expression; can easily be reduced to the expression; itself or to an expression that
does not contain;.
2.3. Parse trees

We first describe the kind of parse trees that our automata should create from a string.
An important issue is that a regular expression may represent an ambiguous context-free
grammar. The expression (ajbjab)� is ambiguous because some strings such asaab have
more than one possible parse tree.

LetT denote the set of all possible trees andT : R��� ! 2T the function giving
the set of valid parse trees from a regular expression and a string. Thatis, T (r; w) is
the set of all valid parse trees coming from the decomposition ofw according to the
grammar represented by the regular expressionr. For our purpose, parse trees are built
with symbols of�, with lists, and with selectors. More formally, we can defineT as
the smallest set such that: c 2 T ; 8c 2 �

#i : t 2 T ; 8i 2 N; 8t 2 T
[t0; t1; : : : ; tn�1] 2 T ; 8n � 0; 8ti 2 T ; 0� i < n

Let us describe formally the parse trees inT (r; w). Note thatT (r; w) 6= ; if and only
if w 2 L(r). T (�; w) =

� f[]g; if w = �;; otherwiseT (c; w) =

� fcg; if w = c (wherec 2 �);; otherwiseT ((r0); w) = T (r0; w)T (r0�; w) =

8><>: [t0; : : : ; tn�1]

n � 0^80� i < n; 9wi 2 ��, s.t.w = w0 : : : wn�1 ^ti 2 T (r0; wi);80� i < n 9>=>;T (r0 : : : rn�1; w) =

8<: [t0; : : : ; tn�1]
80� i < n; 9wi 2 ��, s.t.w = w0 : : : wn�1 ^ti 2 T (ri; wi);80� i < n 9=;T (r0j : : : jrn�1; w) = f#i : ti j 0� i < n ^ ti 2 T (ri; w)g

This is the meaning of each case:

– Caser = �. The corresponding parse tree is the empty list: [].

Regular expressions and parse trees 5

– Caser = c 2 �. The parse tree returned in this case is the symbolc itself.
– Caser = (r0). The parentheses are used only to override the priority of the operators.

They do not affect the shape of the parse trees.
– Caser = r0�. The parse tree returned in this case is a list containing sub-trees. That

is, if r matchesw, thenw is a concatenation of substringswi all matchingr0, and
there is one sub-tree per sub-match.

– Caser = r0 : : : rn�1. A parse tree is a list of lengthn. Each sub-tree of that list is a
parse tree of a substringwi of w according tori.

– Caser = r0j : : : jrn�1. Each parse tree is a selector indicating which subexpression
has permitted a match and in which way.

It is obvious that a parse tree gives a complete description of a particular match.
Given the regular expression used in the match, we can interpret the parsetree and find
a derivation for the string. Note that with our parse tree representation two different
regular expressions both matching the same string can have the same setof parse trees.
For example,T (a�; aaa) = T (aaa; aaa) = f[a; a; a]g; in the first case, the list comes
from a repetition; in the second case, the list comes from a concatenation. Onthe other
hand, parse trees coming from two different strings must be different since a parse tree
contains all the symbols of the string in order.

Here are a few examples. The last two show ambiguous regular expressions. The
last one shows a regular expression for which all the strings in itslanguage have an
infinite number of parse trees.T (ajbjc; b) = f#1 : bgT (a�b�c�; aabbbcc) = f[[a; a]; [b; b; b]; [c; c]]gT ((ajaa)�; aa) = f[#0 : a; #0 : a]; [#1 : [a; a]]gT ((a�)�; �) = f[] ; [[]] ; [[] ; []] ; [[] ; [] ; []] ; : : :g
2.4. External representation of parse trees

Note that the parse trees inT are only mathematically defined and we have not given
them an actual representation. They first have an external representation. Thatrepresen-
tation consists in writing them down as strings.

We choose that their textual representation is identical to the one we usedin the text
before. The alphabet that we use to write them is� [f‘[’ ; ‘ ;’ ; ‘]’ ; ‘#’ ; ‘:’ g [D, whereD is the set of digits in a certain base. For example,D = f0; 1; 2; 3g in base 4.

Lists are written as a finite sequence of elements between square brackets ([and])
and separated by commas, such as [a; b; c]. Selectors are written as a natural number
and a parse tree, each of these being preceded by # and :, respectively, as in #3 : [c; a].

2.5. Internal representation of parse trees

The parse trees inT also have an internal representation. That representation consists
in building trees using data structures. This section describes those data structures.

The data structures needed are: the empty list, pairs, symbols and selector-pairs.
Pairs are simply the traditional two-field data structures used to build lists. However, we
will use a non-traditional representation of lists: last-to-first lists. That is, the last element

6 D. Dub́e and M. Feeley

of a list is immediately accessible while an access to the first requires the traversal of
all the pairs of the list. This representation is unusual but it is as easyto implement
as the traditional one. We use it for technical reasons explained in Section 4.2. In our
representation of lists, the first field of a pair references an element of the list (the last
element) and the second field references the rest of the list (the first elements). When
we need to build a pair, we use the following function:makepair(t1; t2), wheret1 is an
element added at the end of the listt2.

A selector-pair has two fields. The first contains an integer which represents
the number of the alternative chosen in a match. To build a selector-pair, we use:
makeselector(i; t).

To evaluate the complexity of our algorithms, we assume that the basic operations
on these data structures can be done in constant time.

3. External representation non-deterministic automaton

This section describes how to build a non-deterministic automaton and how to use it to
build the external representation of the parse trees, and explains some of its properties.
The automaton is very similar to the finite non-deterministic automaton that we use in
language theory to recognize a regular language. The main difference is the addition of
output strings to some edges of the automaton. When the automaton makesa transition
through such an edge, it outputs the string that is indicated.

We start by explaining the process of producing a parse tree using theautoma-
ton. Then we present the construction rules and an example. Next, we mention some
properties related to the automaton. Finally, we discuss performance issues.

3.1. Obtaining a parse tree

Let w be generated byr and letAE(r) be the external representation automaton cor-
responding tor. In order to describe precisely the computations happening with our
automaton, we useconfigurations. A configuration is a tuple (p; w; v) that indicates that
the automaton is currently in statep, that there is still the stringw to be read from the
input, and thatv is the string that has been output until now.

The initial configuration of the automaton is (q0; w; �), whereq0 is the start state. As
with a finite state automaton, a transition can be made using an edge if: the edge starts
from the current state; and, the (input) string associated with the edgeis a prefix of the
remaining input. So, let us assume that our automaton is in configuration (p; wp; vp)
and there exists an edgee from p to q that consumesw0 and outputsv0 (if there is no
output string,� is the default). Ifw0 is a prefix ofwp, that is, if there existwq such
thatwp = w0wq , then the edge can be taken. By doing so, the automaton goes into the
configuration (q; wq; vq), wherevq = vpv0.

The automaton has successfully output a parse tree if we can make transitions up to
a configuration (qf ; �; v), whereqf is the accepting state. In such a case,v is the desired
parse tree. In cases wherer is ambiguous andw has many derivations,v is only one of
the possible parse trees.

3.2. Construction

Figure 1 presents the construction rules for the external representation automatonAE(r)
corresponding to a regular expressionr. The construction rules are described in a

Regular expressions and parse trees 7AE(�): ����> -�������p q�
[]AE(c): ����> �������-p qccAE((r0)): ���> �������AE (r0)p qAE(r0�): ����> @@ -��� ���6 ����� @@R�������p qp0 q0AE (r0)�
[]�

[�; �
]AE(r0 : : : rm) (wherem = n� 1 andn � 2):����> -��� ���- -��� ��� -�������� � �AE(r0) AE (rm)p qp0 q0 pm qm�

[

�; �
]AE(r0j : : : jrm):

(wherem = n� 1
andn � 2) ����> �� -��� ��� @@R@@ -��� ��� ����������...

AE(r0)AE (rm)

p qp0 q0pm qm�
#0 :�
#m :

��
Fig. 1.Construction rules for the external representation automaton.

recursive manner. These rules are similar to those presented in [ASU86] and [HU79]
with the exception that we add output strings on the edges. Note that the start and
accepting states of an automaton included in a bigger one lose their special meaning.

3.3. Example

Let us see an example to help understand the way the automaton works. We will consider
the regular expressionr = (ajbjab)� and the stringw = ab. Clearly,r is ambiguous andw
has more than one derivation. In fact, there are two different parse trees forw according
to r: T ((ajbjab)�; ab) = f[#2 : [a; b]] ; [#0 : a; #1 : b]g
The first corresponds to the derivation where the Kleene closure causes one repeti-
tion of the internal expression andab is chosen among the three choices. The second
corresponds to the derivation where two repetitions occur and firsta, thenb are chosen.

Figure 2 shows the automatonAE(r). Each path from state 0 to state 1 that consumesw will cause a parse tree to be output. One can see that there are exactly two such paths.
Those are 0 – 2 – 8 – 10 – 11 – 12 – 13 – 9 – 3 – 1 and 0 – 2 – 4 – 5 – 3 – 2 – 6 – 7 – 3
– 1.

8 D. Dub́e and M. Feeley

i> 0���� @@@@R�
[]-�

[
i2����#0 :

i4 -aa i5@@R�-�
#1 :
i6 -bb i7 -�@@R�#2 : i8 -�

[
i10 -aa i11 -�; i12 -bb i13 -�

]
i9���� i36 �; -�

]
im1

Fig. 2.The external non-deterministic automaton associated to (ajbjab)�.

First path Second path

(0; ab; �) (0; ab; �)
(2; ab; [) (2; ab; [)
(8; ab; [#2 :) (4; ab; [#0 :)

(10; ab; [#2 : [) (5; b; [#0 : a)
(11; b; [#2 : [a) (3; b; [#0 : a)
(12; b; [#2 : [a;) (2; b; [#0 : a;)
(13; �; [#2 : [a; b) (6; b; [#0 : a; #1 :)
(9; �; [#2 : [a; b]) (7; �; [#0 : a; #1 : b)
(3; �; [#2 : [a; b]) (3; �; [#0 : a; #1 : b)
(1; �; [#2 : [a; b]]) (1; �; [#0 : a; #1 : b])

Result: [#2 : [a; b]] Result: [#0 :a;#1 : b]
Fig. 3.Two traces ofAE((ajbjab)�) onab.

Figure 3 shows the sequence of configurations that the automaton goes through
for each of these paths. It is important to note in each sequence the first configuration
(0; w; �) and the last (1; �; v).

3.4. Observations

We can make many observations about the automatonAE(r) created fromr:
Correct language: The automaton accepts the same language as the one generated by

the regular expression, that is:L(AE(r)) = L(r). Indeed, our method is similar to
that presented in many papers (see [ASU86, HU79]).

Linear size: The size of the automaton (the number of states and edges) growslinearly
with the size of the regular expression. We measure the size ofr in elementary
symbols: ‘�’, ‘ c’ (c 2 �), ‘(’, ‘)’, ‘ �’ and ‘j’.

Soundness: The parse trees for a string output using the automaton are correct parse
trees for the string. More formally, if� is a path from the start state to the accepting
state ofAE(r) and� consumesw, then� causes a valid parse treet 2 T (r; w) to
be output.

Exhaustiveness: The automaton can output any of the valid parse trees. Lett 2 T (r; w),
then there exists a path� going from the start state to the accepting state ofAE(r)
and consumingw that causest to be output.

Regular expressions and parse trees 9

Uniqueness: There is only one way to produce a particular tree. Let�1 6= �2, two
different paths traversingAE(r). Then the treest1 andt2 that are output during the
two traversals are different.

Note that the last three properties concernAE(r) for r in general. That is, they are
true even ifr is a sub-expression of another expression. It implies that a path traversingAE(r) may cause the consumption of just a part of the input string that is fed into the
global automaton. Similarly, it may cause the production of just a sub-tree of the whole
tree. This fact is important if one wants to prove these properties.

3.5. Complexity

We have not yet given a totally complete method to produce a parse tree. The non-
deterministic automaton creates a valid parse tree as long as we have found apath that
fulfills all the conditions. We describe a method to find such a path in the next paragraphs
and another one in Section 5.

In order to find an appropriate path, we simply forget momentarily that there are out-
put strings on the edges and use an algorithm simulating a non-deterministic automaton
such as the one described in [HU79]. Then, by following the path and outputting the
strings, we get our parse tree.

We do not repeat the description of the simulation technique here. What isimportant
to us is its complexity. The technique finds a path in timeO(jwj � n), wherew is the
string that we want to parse andn is the number of states of the automaton. Since we
know that the number of states of the automaton grows linearly with thesize of the
corresponding regular expressionr, the technique takes a time inO(jwj � jrj).

When we have found an appropriate path, we simply have to follow it throughAE(r)
and output the strings indicated on the edges. It takesO(jwj � jrj) to follow the path
and to output the parse tree.

So, the whole process of writing a parse tree by simulation takesO(jwj � jrj) in
time. In situations wherer is known, we can consider that the technique takesO(jwj)
in time. Still, the hidden constant heavily depends onr.

Even if the steps of finding a path and following it both have aO(jwj�jrj) complexity,
it is reasonable to think that the search for a path has a greater hidden constant in the
average case. It could be profitable to get a faster algorithm for finding a valid path.
Section 5 presents a method to search for a path in timeO(jwj), where the hidden
constant does not depend onr, althoughr must be known a priori.

4. Internal representation non-deterministic automaton

Section 3 describes an automaton that we can use to output the external representation
of a parse tree from a string generated by a regular expression. What we want to do here
is to build the internal representation of a parse tree using data structures. So, instead of
adding output strings to some edges of the automaton, we add construction commands.
When a path traverses the automaton and consumes the whole input string, the sequence
of commands that is emitted forms arecipeto build a parse tree.

We start by describing the instrumentation that is required to build internal parse
trees. Then we present the construction rules and an example. We omit to list the
properties of this automaton because they are very similar to those of the previous
automaton.

10 D. Dub́e and M. Feeley

4.1. Instrumentation

In order to build the internal representation of a parse tree, we augment the automaton
with a stackand somestack operations.

4.1.1. The stack

The function of the stack is to contain the different pieces of the parse tree under
construction. This stack does not turn the automaton into a push-down automaton. The
automaton can only send commands (stack operations) to it and cannot read from it.

On most edges of our automaton there are stack operations to perform. So, when a
transition is made through an edge, a part of the input string may be consumed and a
stack operation may be performed on the stack. The automaton is built in such a way
that, if a path is followed from the start state to the accepting state and if that path has
caused the consumption of the input string then the resulting effect onthe stack is that
a valid parse tree has been pushed on it.

Now, we define the stack functions. The three basic stack functions arepush, pop
andtop.

push(t; s) returns the stacks with the new treet added on top.
pop(s) returnss without its top element. The argument stacks is not altered by this

operation.
top(s) returns the top element of the stacks.
4.1.2. The stack operations

The operations that can be found on the edges of the automata arepush , snoc , and
sel . Push adds a tree on top of the stack. Thepush operator always has a constant
tree as first argument. For example,push [] is an operator that takes a stack and
pushes the empty list on top of it.Snoc 2 takes the top two elements of the stack, groups
them in a pair and places the result back on top of the stack. One can see that we can
build arbitrarily long lists on the stack with successivepush andsnoc operators.Sel
takes the top element of the stack and encapsulates it in a selector. Thesel operator
always has a constant integer as first argument.

(push t)(s) = push(t; s)
snoc (s) = push(makepair(top(s); top(pop(s))); pop(pop(s)))

(sel i)(s) = push(makeselector(i; top(s)); pop(s))
4.2. Construction

Figure 4 presents the construction of the internal representation non-deterministic au-
tomaton. The functionAI returns the internal automaton associated to a regular expres-
sion.

2 This name is the reverse ofcons , which is a common name for the function that adds an element in
front of a list. We usesnoc in reference to our reversed implementation of lists.

Regular expressions and parse trees 11AI (�): ����> -�������p q�
push []AI (c): ����> �������-p qc

push cAI ((r0)): ���> �������AI (r0)p qAI (r0�): ����> @@ -��� ���6 ����� @@R�������p qp0 q0AI (r0)�
push []�

push [] �
snoc

�
snocAI (r0 : : : rm) (wherem = n� 1 andn � 2):����> -��� ���- -��� ��� -�������� � �AI (r0) AI (rm)p qp0 q0 pm qm�

push []

�
snoc

�
snocAI (r0j : : : jrm):

(wherem = n� 1
andn � 2) ����> �� -��� ��� @@R@@ -��� ��� ����������...

AI (r0)AI (rm)

p qp0 q0pm qm�� �
sel 0�
sel m

Fig. 4.Construction rules for the internal representation automaton.

The rules forr = r0� andr = r0 : : : rn�1 are those involved in the creation of lists.
It is because of these rules and the fact thatAI (r) reads its input from left to right (i.e.
normally) that we require a special implementation of lists (see Section 2.5). It would
be possible to use only traditional lists if we changed the two rulesmentioned above
and made the automaton read its input backwards (from right to left).

4.3. Example

We illustrate the operation of the automaton with the same regular expression and string
as in the example for the external representation automaton:r = (ajbjab)� andw = ab.
Figure 5 showsAI (r).

There are two paths that consumew: 0 – 2 – 8 – 10 – 11 – 12 – 13 – 9 – 3 – 1 and 0
– 2 – 4 – 5 – 3 – 2 – 6 – 7 – 3 – 1. Figure 6 shows the sequence of configurations that
the automaton goes through along each path. The first path is particularly illustrative of
the importance of using the reversed implementation of lists.

12 D. Dub́e and M. Feeley

i> 0���� @@@@R�
push []-�

push[]
i2���� i4 -a

push a i5@@R�sel 0-� i6 -b
push b i7 -�

sel 1@@R� i8 -�
push[]
i10 -a
push a i11 -�

snoc
i12 -b

push b i13 -�
snoc
i9����sel 2

i36 �
snoc

-�
snoc
im1

Fig. 5.The internal non-deterministic automaton associated to (ajbjab)�.

First path Second path

(0; ab; []) (0; ab; [])
(2; ab; [[]]) (2; ab; [[]])
(8; ab; [[]]) (4; ab; [[]])

(10; ab; [[] ; []]) (5; b; [a; []])
(11; b; [a; [] ; []]) (3; b; [#0 : a; []])
(12; b; [[a]; []]) (2; b; [[#0 : a]])
(13; �; [b; [a]; []]) (6; b; [[#0 : a]])
(9; �; [[a; b]; []]) (7; �; [b; [#0 : a]])
(3; �; [#2 : [a; b]; []]) (3; �; [#1 : b; [#0 : a]])
(1; �; [[#2 : [a; b]]]) (1; �; [[#0 : a; #1 : b]])

Result: [#2 : [a; b]] Result: [#0 :a; #1 : b]
Fig. 6.Two traces ofAI ((ajbjab)�) onab.

5. Deterministic automaton

As explained in previous sections, we expect the search for a valid path ina non-
deterministic automaton to be quite expensive. So we develop here a deterministic
equivalent to the non-deterministic automaton generated for a regular expressionr. We
arbitrarily choose to give the explanations using the internal automaton, but these also
apply to the external automaton.

The algorithm using the deterministic automaton can find a valid path intimeO(jwj).
Note the path itself has generally a length inO(jrj � jwj). The reason why it takes less
time to find the path than it would take tooutputit is because the algorithm only creates
a skeletonof the real path. It only returns the identity of numerous sub-paths.The
concatenation of those sub-paths would give the desired path.

5.1. Construction

Basically, the construction of the deterministic automaton is almost identical to the usual
construction used in language theory ([ASU86, HU79]), so we will not rewrite it here.
The difference resides in the fact that we collect some information about the relation
between the deterministic automaton and the non-deterministic one. We explain what
is the nature of this information, but we do not formally describe the way it should be
computed. We assume it is sufficiently straightforward.

Regular expressions and parse trees 13

We must keep two matrices of information, which we denote as functions here:f (p̂; c; q) where ˆp is a deterministic state (corresponding to a set of non-deterministic
states),c 2 � andq a non-deterministic state. The functionf returns a path� from
some statep in p̂ to the stateq that goes through ac-transition first, and then, through
zero or more�-transitions. It is easy to identifyp because it is the first state in�.g(q) whereq is a non-deterministic state. The functiong returns a path� from the
non-deterministic start state toq that goes through�-transitions only.

In order to describe the usage of the automaton, we first introduce some variables.
We have a stringw = c0 : : : cn�1, whereci 2 � for 0� i � n�1.pstart andqacc are the
start state and the accepting state of the non-deterministicautomatonAI (r), respectively.
The deterministic start state is ˆpstart. The deterministic states are distinguished by the
hat they have on their name. Naturally, ˆpstart is the�-closure ofpstart.

The first step in using the deterministic automaton consists in processing the input
stringw with it. One has to note each state in which the automaton goes into. Let uscallp̂0, : : : , p̂n those states. Note thatpstart 2 p̂start = p̂0 andqacc 2 p̂n.

The second step consists in recovering the complete path traversingAI (r) and con-
sumingw. We do this by findingn+ 1 sub-paths,�0 to�n, in reverse and concatenating
them together.�i consumesci�1, 1 � i � n. �0 starts atpstart and�n ends atqacc.
Here is the technique:

– Initialize the tail of the path. pn = qacc
– Find the sub-path�i that consumesci�1.�i = f (p̂i�1; ci�1; pi)pi�1 = the first state in�i � i = n; n� 1; : : : ; 1
– Find the sub-path going top0. �0 = g(p0)

– Recover the whole path. � = �0 � : : : � �n
By taking care of just keeping a reference to each sub-path and not copying them

entirely, we then have a skeleton of a valid path through the non-deterministic automaton
in time O(n) (where the hidden constant does not depend onr). Subsequently, the
skeleton allows one to make a traversal of the real path in timeO(n� jrj).

One might worry, with reason, about the size of the matrix forf . In the worst case,
the argument ˆp can take 2O(jrj) values, the argumentc, j�j values andq, O(jrj) values.
Each answer can be of lengthO(jrj). In practice, though, ˆp takes much less than 2O(jrj)
values. Nevertheless, it is possible to re-expressf in terms of three smaller matrices.3

It is also possible to use table compression onf as it tends to be sparse and as many of
its defined entries are similar. Such approaches are beyond the scope of thispaper.

3 Smaller in the sense of being only one- or two-dimensional, instead of three-dimensional asf .

14 D. Dub́e and M. Feeley

5.2. Example

The following example illustrates the way the deterministic automaton works. Letr = (ab)� andw = abab. ThenAI (r) is:i> 0�� @@R�
push[]-�

push[]
i2 -�
push[]
i4 -a
push a i5 -�

snoc
i6 -b

push b i7 -�
snoc
i36 �

snoc

-�
snoc
im1

The deterministic automaton̂AI (r) we can build fromAI (r) is:�������> -����@ ���������@�	0̂ 1̂ 2̂
a ba where

0̂ = f0; 1; 2; 4g
1̂ = f5; 6g
2̂ = f1; 2; 3; 4; 7g

The functionsf andg associated to the deterministic automaton are:

f =

0̂ 1̂ 2̂a b a b a b
0 ? ? ? ? ? ?
1 ? ? ? 6731 ? ?
2 ? ? ? 6732 ? ?
3 ? ? ? 673 ? ?
4 ? ? ? 67324 ? ?
5 45 ? ? ? 45 ?
6 456 ? ? ? 456 ?
7 ? ? ? 67 ? ? g =

0 0
1 01
2 02
3 ?
4 024
5 ?
6 ?
7 ?

If we feedÂI (r) with the input stringw, the automaton goes through this sequence
of states: p̂0 = 0̂; p̂1 = 1̂; p̂2 = 2̂; p̂3 = 1̂; p̂4 = 2̂

We recover the path� in AI (r) this way:�4 = f (p̂3; b; 1) = 6� 7� 3� 1 (p3 = 6)�3 = f (p̂2; a; p3) = 4� 5� 6 (p2 = 4)�2 = f (p̂1; b; p2) = 6� 7� 3� 2� 4 (p1 = 6)�1 = f (p̂0; a; p1) = 4� 5� 6 (p0 = 4)�0 = g(p0) = 0� 2� 4� = �0 � �1 � �2 � �3 � �4

= 0� 2� 4� 5� 6� 7� 3� 2� 4� 5� 6� 7� 3� 1

It is easy to verify that this path goes from the start state to the acceptingstate, consumesw and causes the push of the valid parse tree.

Regular expressions and parse trees 15

6. Representation of the set of parse trees

The previous sections describe ways to obtain a parse tree representing the decomposi-
tion of a stringw according to a regular expressionr. However, only one of the possible
parse trees is built. In cases where there are more than one possible parsetree for a
string, one might be interested in obtaining the complete set of trees.That is, obtainingT (r; w) instead of a certaint 2 T (r; w).

6.1. Considerations

There are some important considerations we must take into account if we intend to get
an algorithm able to returnT (r; w). First, it is unrealistic to try to return anexplicit
representation ofT (r; w). The set is, in general, too big. For example, the cardinality ofT ((a�)�; �) is infinite, that ofT ((aja)�; an) is exponential, and that ofT ((a�)k+1; an) is
polynomial of degreek. So, it is clear that we must return animplicit representation ofT (r; w).

Second, existing techniques for context-free grammars such as dynamic program-
ming and the Earley parsing (see [HU79] and [E70]) produce an implicitrepresentation
of the set of parse trees. It is a tree-like representation: each “node” of thistree contains
the set of all the different “sub-trees” that could be referenced by the node. That is, there
is a node for the set of parse trees of each non-terminal and each substring ofthe input
string. We say that the node compacts all the parse trees of a substring generated by a
non-terminal (see [JM93]). Unfortunately, both algorithms have atime complexity ofO(jwj3), wherew is the string to parse. In particular, they still exhibit this timecom-
plexity even if we restrict the context-free grammars to be only translations of regular
expressions.

Since our interest is in efficiency and since we restrict ourselves to regular ex-
pressions, we are able to present an algorithm producing an implicit representation ofT (r; w) in linear time. It takes the form of a context-free grammar which generates the
set of parse trees. That is, the grammarGr;w produced is such thatL(Gr;w) = T (r; w).
For the sake of simplicity, we present an algorithm producing a grammarthat generates
the external representation of the trees.

6.2. Construction

We describe how to produce the context-free grammarGr;w such thatL(Gr;w) =T (r; w). The idea behind the algorithm producing it is simple. Letr 2 R, w 2 L(r)
andAE(r). The grammar is created in such a way that itmimicsAE(r) consuming
the input stringw. That is, doing a substitution using a rule corresponds to makinga
transition in the automaton. Figure 7 gives the algorithm. The algorithm first produces
rules simulating�-transitions andc-transitions, respectively. The main non-terminal
corresponds to the initial configuration. Finally, the last rule is the only one that can end
a derivation, which is equivalent to recognizing the reaching of the acceptingstate after
the consumption of the input string.

The indices ofPi;p mean thati symbols of the input string have been consumed and
thatAE(r) is in statep. The set of strings thatPi;p can generate is the set of strings
thatAE(r) can output if it is in statep and has already consumed the firsti symbols

16 D. Dub́e and M. Feeley

Make-Grammar(AE (r); w)f Supposew = c0 : : : cn�1, whereci 2 � gf Supposepstart andpacc are the start and accepting states ofAE (r) g
For i = 0 ton (inclusive)

For each edgee in AE(r)f e = i - ip qwinwout g
If win = � Then

Produce rulePi;p ! woutPi;q
Else If i < n Andwin = ci Then

Produce rulePi;p ! woutPi+1;q
Mark P0;pstart as the main non-terminal
Produce rulePn;pacc ! �

Fig. 7.Algorithm producing a context-free grammar that generatesan implicit representation forT (r;w).

of w. Formally, here is the relation between the non-terminals of the grammarand the
configurations in whichAE(r) can be:vPi;p corresponds to (p; w00; v) where9w0 s.t.w = w0w00 andjw0j = i
This relation allows us to easily obtain many properties of the grammar bytranslating
properties of the external representation automaton.

The algorithm has a time complexity inO(jrj� jwj). Thejwj factor comes from the
outer loop, which enumerates each position in the input string. The inner loop iterates
on the edges ofAE(r). Recall that the number of edges inAE(r) grows linearly with
the size ofr. This justifies the factorjrj. Since a production may be produced at each
iteration of the inner loop, the algorithm generates a grammar which hasO(jrj � jwj)
productions.4 Our algorithm is optimal in its time complexity in the followingsense.
Once the regular expression is known, the algorithm is able to generateGr;w in timeO(jwj), which is the best any algorithm can do.

The algorithm generally produces a grammar that is not clean.5 That is, there are
useless and unreachable non-terminals. We could have given an adapted algorithm that
avoids this problem, but it would have been more complex and, as we point out in
Section 6.5.1, it is not a serious problem.

6.3. Example

We illustrate our algorithm with a simple example. Letr = w = abc. Figure 8 showsAE(r). Figure 9 shows the grammarG = Make-Grammar(AE(r); w). In order to make
things clear, we have separated the productions corresponding to the�-transitions and
theci-transitions, the final production and the main non-terminal.

4 The fact that our algorithm creates a grammar withO(jrj � jwj) productions does not automatically
imply that its time complexity isO(jrj � jwj). This is because the right hand side of the productions is not
necessarily bounded in length. In particular, whenwout = #i :, it might be arbitrarily long. It takesO(log i)
to denotei in, say, decimal digits. Nevertheless, this is not a big problem because an easy modification of the
algorithm can eliminate this problem. That is, we can modifyit so that it createsO(jrj � jwj) productions,
each having a right hand side of at most four symbols. It is somehow technical and we won’t present it here.
We consider this problem solved for the remaining of the text.

5 Some authors prefer to talk aboutreducedgrammars.

Regular expressions and parse trees 17i> 0 -�
[
i2 -aa i3 -�; i4 -bb i5 -�; i6 -cc i7 -�

]
im1

Fig. 8.The external representation automaton corresponding to the regular expressionabc.P0;0 ! [P0;2 P1;0 ! [P1;2 P2;0 ! [P2;2 P3;0 ! [P3;2P0;3 ! ; P0;4 P1;3 ! ; P1;4 P2;3 ! ; P2;4 P3;3 ! ; P3;4P0;5 ! ; P0;6 P1;5 ! ; P1;6 P2;5 ! ; P2;6 P3;5 ! ; P3;6P0;7 !]P0;1 P1;7 !]P1;1 P2;7 !]P2;1 P3;7 !]P3;1P0;2 ! aP1;3 P1;4 ! bP2;5 P2;6 ! cP3;7
Main non-terminal:P0;0 P3;1 ! �

Fig. 9.The grammar Make-Grammar(AE (abc); abc).
Note that the productions corresponding to the�-transitions are present for each

position in the input. On the other hand, those corresponding to the d-transitions are
present only for the position where the next input symbol isd. Note also the presence
of useless and unreachable non-terminals. For example,P0;3 is unreachable andP3;6 is
useless. There is only one derivation that we can make with this grammar:P0;0 ! [P0;2 ! [aP1;3 ! [a; P1;4 ! [a; bP2;5! [a; b; P2;6 ! [a; b; cP3;7 ! [a; b; c]P3;1 ! [a; b; c]
The string that is produced by the derivation is effectively the only parse tree inT (r; w).
Note that the path that we can extract from the derivation (0�2�3�4�5�6�7�1)
is a path traversingAE(r) and consumingw that outputs [a; b; c].
6.4. Observations

The correspondence between the paths through an automaton and the derivations with
the grammar allows us to obtain many interesting results quite easily.

Adequacy: Any string generated byGr;w is a valid parse tree ofw according tor, and
conversely. That is:L(Gr;w) = T (r; w).

Unambiguousness: The grammarsGr;w produced by our algorithm are unambiguous.

Notice that the grammars (and the languages they generate) produced by our al-
gorithm are regular. So it should be possible to represent the same languages with
regular expressions or finite automata. However, we prefer context-free grammars for
two reasons. First, we have no guarantee that the smallest regular expression is as short
as its corresponding context-free grammar because regular expressions do not have the
sharing ability that context-free grammars have. Second, even if it is possible to produce
a finite automaton as compact as its corresponding context-free grammar, wewould lose
in clarity due to the necessity to formally describe it.

18 D. Dub́e and M. Feeley

6.5. Use of the grammar

6.5.1. Useless and unreachable non-terminals

The grammars generated by our algorithm have useless and unreachable non-terminals.
The unreachable ones do not pose a real problem since they simply cause a grammar to
have more productions than necessary.

The useless non-terminals are a more serious problem because they may makethe
generation of the set of parse trees more costly. For example, a generation of the trees
by simple recursive descent would lose much time repetitively trying to generate trees
and backtracking from a useless non-terminal.

Of course, one might think of an optimization consisting in noting the non-terminals
that have not generated any sentence. This “optimization” could simply be replaced by
a pre-processing phase of the grammar which consists in detecting and removing the
useless non-terminals. An algorithm to remove those is described in [HU79]. The idea
is to mark every non-terminal that is useful and then to remove the unmarked ones.

The complexity of this cleaning algorithm is inO(L � l), whereL is the number
of productions andl is the length of the longest right-hand side among the productions.
We know that the number of productions in our grammars is inO(jrj � jwj) and that
the length of the right-hand side of our productions is bounded bya constant. So the
overall complexity of the algorithm isO(jrj � jwj).

So the cleaning of a grammar allows the generation of the set of parse trees using a
naive recursive descent algorithm. Under the condition that there is only a finite number
of trees, naturally.

6.5.2. Infinite sets of parse trees

For certainr 2 R andw 2 L(r), there may be an infinite number of parse trees. In such
a case, it is obviously not possible to generate all the parse trees.

Even if one is ready to enumerate as many trees as necessary to find a particular one,
some care must be taken to make sure that the enumeration eventually reaches every
possible tree. A grammar that has been cleaned before the search allows the search to
proceed without loss of time because of useless substitutions.

Another option is to pay special attention in the design of the regular expressions in
order to avoid situations wherejT (r; w)j = 1. This way, one can enumerate the parse
trees in any order without ever risking to fall into an infinite computation.

6.5.3. Relation between the grammar and the regular expression

Unfortunately, the relation between the grammar generated by our algorithmand its
regular expression is not obvious. The grammar is conceptually related to the automaton
and not to the regular expression. There is no relation between a non-terminal and, say,
a sub-expression of the regular expression.

This may pose a problem in applications where a sophisticated heuristicsearch
through the set of parse trees is used to find a good one instead of bruteforce. In natural
language parsing, for example, plausibility estimation can be done on the basis of the
structure of the regular expression. But it would be difficult to adapt it to work on the
basis of the paths in the automaton.

Regular expressions and parse trees 19

We believe that non-terminals like the following would be more intuitive. The
non-terminalQr0;w0 would generate the trees for the substringw0 of w according to
the sub-expressionr0 of r. That kind of non-terminal is closely related to the regular
expression and, consequently, related to the intention inspiring thedesign of the regular
expression. Unfortunately, a grammar based on these non-terminals would be much
more expensive to generate because the number of non-terminals grows as aquadratic
function of jwj instead of as a linear one. Since we are interested in efficiency, we
consider that an algorithm producing such a grammar is beyond the scope of this article.

6.6. Grammars for the internal representation

It may not be clear what grammars for the internal representation could be since the
internal representation of a parse tree is not even a string. Nevertheless, the grammars
we have described may be adapted to become an implicit representation of the internal
trees.

We know that, in order to produce the internal representation of a parse tree, one
must apply appropriate stack operations on a stack and take the top element. The
appropriate sequences of stack operations are those prescribed by traversalsof the
internal representation automaton. So we can adapt the algorithm of Figure7 to build
grammars generating these sequences of stack operations. From each sequence that is
generated by a grammar, one can build a parse tree.

As with the grammars for the external representation, those for the internal repre-
sentation suffer from the same poor relationship with the original regular expression
and the parse trees. A more intuitive representation would be one similar to the one used
by the dynamic programming and Earley’s parsers: one node for each sub-expressionr0 of r and each substringw0 of w which contains the different parses ofw0 according
to r0. Two mathematical models that could provide such representations are regular
tree automata and regular tree grammars (see [B67] and [H68]). However, such repre-
sentations necessarily have a quadratic number of nodes (states or non-terminals), one
for each substring, and so, they cannot be produced efficiently. We considerthat these
approaches are beyond the scope of this article.

7. Conclusion

In this paper, we have shown that parsing with regular expressions,when it is possible, is
desirable. There are efficient algorithms to do most of the tasks one might be interested
in: external representation vs. internal representation; one parse tree vs. all of them.
Moreover, there is no restriction on the particular regular expressions one might use.

Each of our algorithms to produce parse trees from an input string has a time
complexity that is linear in the length of the string. So they are all optimal. Even
the construction of non-deterministic automata is efficient (but not the construction of
deterministic ones, though).

It is not possible to achieve such efficiency by simply considering a regular expres-
sion as a context-free grammar and using a parsing tool based on grammars.Indeed,
some regular expressions are ambiguous and the fast algorithms based on LL(k) andLR(k) grammars cannot be used. Moreover, the general algorithms such as the Ear-
ley parser and the dynamic programming method show their worst case cubic time

20 D. Dub́e and M. Feeley

complexity on some ambiguous grammars; some of which come directly from regular
expressions.

Unfortunately, one of our results is not completely satisfactory. Thegrammar that
we produce as the implicit representation of the set of parse trees (Section6.5.3) is too
artificial. The link between the original regular expression and the grammar representing
the parse trees of a string is not natural. It might complicate the process of searching
in the set for a parse tree corresponding to a certain criterion. This sacrifice seems
unavoidable to have an algorithm with linear time complexity.

References

[ASU86] Aho, A.V., Sethi, R., Ullman, J.D.:Compilers Principles, Techniques and Tools.Addison-Wesley.
1986

[B67] Brainerd, W.S.:Tree generating systems and tree automata.Ph.D. Thesis. Department of Mathe-
matics, Purdue University. University microfilms, inc. AnnArbor, Michigan. 1967

[E70] Earley, J.: An Efficient Context-Free Parsing Algorithm. InCommunications of the ACM.February
1970

[Emacs] TheEmacstext editor. Provided by Gnu:gnu.org
[GM89] Gazdar, G., Mellish, C.:Natural Language Processing in PROLOG.Addison-Wesley. 1989
[H68] Hossley, R.:Finite-tree automata and!-automata.Technical report 102, Project MAC, Mas-

sachusetts Institute of Technology. Cambridge, Massachusetts. 1968
[HU79] Hopcroft, J.E., Ullman, J.D.:Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley. 1979
[JM93] Jones, E.K., Miller, L.M.:The L� Parsing Algorithm.Technical report CS-TR-93-9. Victoria

University of Wellington. Department of Computer Science.December 1993
[LJN85] Lehtola, A., J̈appinen, H., Nelimarkka, E.: Language-based Environment for Natural Language

Parsing. InProceedings of the2nd Conference of the European Chapter of the Association for
Computational Linguistics.98–106. 1985

[MN97] Mitkov, R., Nicolov, N.:Recent Advances in Natural Language Processing.Amsterdam, Philadel-
phia: John Benjamins. 1997

[RE87] Spencer, H.:TheRegexp package.A regular expression package written in C, forUnix, available
on the Internet

This article was processed by the author using the LaTEX style file pljour1 from Springer-Verlag.

