
Demand-Driven Type Analysis:an IntrodutionDanny Dub�e Mar FeeleyDIROUniversit�e de Montr�ealfdube, feeleyg�iro.umontreal.a
AbstratWe propose a new demand-driven approah to eÆientlydrive a powerful type analysis for a dynamially-typed fun-tional language. The analyzer has the advantage of beingontrollable by a bound on the time that it an put into theanalysis. When given enough time, it an provide results ofvery high quality. The analysis is based on a exible analysisframework that allows the abstrat modeling of the ompu-tation to be modi�ed while the analysis is performed. Theapproah onsists in generating initial demands from reliablehints in the program and proessing these demands to pur-posefully guide the modi�ations of the abstrat model. Ourproposed approah has not been implemented fully, but wesketh a prototype implementation of demand-driven anal-ysis whih is based on simple pattern-mathing.1 IntrodutionProgram analyses are widely used in ompilation. Theyrange from ommon sub-expression detetion analysis [2℄ topointer analysis [10℄. There are analyses intended more forlow-level languages suh as C and others more intended forhigh-level languages suh as Sheme. The analyses have atendeny to beome more essential and more omplex asthe languages they are intended for beome advaned. Tworeasons might help to explain that. First, a higher-level lan-guage o�ers more general servies to the programmer, whihoften inur a penalty in ode eÆieny if a ompilation isdone without a ertain e�ort in analysis and optimization.Seond, the properties that must be disovered in order todo a good ompilation are generally more omplex. Unfor-tunately, more omplex analyses usually imply more ostlyanalyses.When a ompiler implementer is faed with the prob-lem of gathering a ertain kind of information, he often hasto hoose among a wide spetrum of approahes, espeiallywhen the problem is omplex. The tradeo� is normally be-tween the time (and/or spae) taken by the analysis and theauray of the information to gather. Most of the time, theimplementer hooses a ertain approah and glues it to hisompiler. But on what basis should a partiular approahbe hosen?1.1 Choosing the \best" analysisThe hoie is usually done onsidering the average needs ofthe target users. Most of the time, the hosen approah has awell-de�ned behavior in terms of its auray, running time,

and required spae. Of ourse, the hoies made annotsatisfy every user in every situation: one user may �nd it tooslow; another, too inaurate. This is the ase even if severaloptimizations levels are implemented in the ompiler. Let ussketh the possibilities that are available to the implementer.Traditional analysesFast analyses are popular. There are many: ontrol-owanalysis [14, 15℄, numeri range analysis [8℄, abstrat refer-ene ounting analysis [11℄, et.They manipulate a well-de�ned abstration (or model) ofthe program and its omputations. The size of the model isin diret relation with the size of the program and the timerequired to ompute the analyses is always in O(nk) for a krarely greater than 3. The amount of resoures required iswell under ontrol. And they obtain results that are quiteaeptable most of the time and provided that the programontains typial ode.Unfortunately, the polynomial time bound often ausesserious limitations in the leverness of these analyses. Some-times, even very ordinary programming styles an misleadthe analyses and make them produe poor results. As an ex-ample, Jagannathan and Weeks mention in [12℄ that ontrol-ow analyses that use all-strings to disambiguate abstratevaluation environments (suh as the k-fa) get onfused bythe use of the map funtion alled with di�erent argumenttypes. Suh an example is showed in Figure 1. The ode isstraightforward and yet, the k-fa or a similar analysis willfail to show that there is no type error, no matter whih kis used. This is beause, after k reursive alls of map toitself, the all-string is invariably the same. At that point,all the funtions and all the pairs that are passed to map aremerged together, whih makes the analysis believe that thewrong operator may be applied to the wrong list.In more general terms, we ould say that the limitationsof the k-fa ome primarily from the fat that it uses unre-liable hints to distinguish the abstrat evaluation environ-ments; namely, the all-strings. For example, in Sheme, thebody of a funtion has no means of omputing the syntatiposition where the all to the funtion ourred. Neitherdoes there exist tests to determine where a partiular pairwas reated. On the other hand, there exist type tests andprimitives to inspet the ontents of the objets. In the bestof ases, all-strings and onrete omputations are merelyorrelated, whereas types and values are diretly involved inthe omputations. For these reasons, we onsider all-stringsto be unreliable hints for an analysis.Many of the traditional analyses an be fooled by a pro-1

(define (map f l)(if (null? l)'()(ons (f (ar l))(map f (dr l)))))(map (lambda (n) (- n)) '(1 2 3 ...))(map (lambda (p) (ar p)) '((1) (2) ...))Figure 1: DiÆult ode for the k-fagramming style that is not onvoluted. This an be frustrat-ing for a user that has a program that he knows is orretbut that is beyond the limited power of the available an-alyzer. He may be willing to give the analyzer plenty ofresoures in order to obtain better results but the analyzerwill not take advantage of this to improve the analysis.More aurate analysesTo avoid the limitations of the traditional analyses, one aninstead hoose an analysis that uses \the Right Hints" in or-der to distinguish various abstrat environments. The righthints an be the type of the objets that are passed to theproedures, for example. This has a true orrespondenewith the onrete omputations that our in the program:an expression in aller position should return a funtion, theargument to ar should be a pair, et. We will expand onthis later.While we should expet better analysis results from suhan analysis, we should expet atastrophi time and spaeonsumption in ertain ases. To see why, it suÆes to on-sider an expression loated inside a funtion of high arityor inside many nested �-expressions (say, n variables in thelexial environment) and an analysis that distinguishes theabstrat evaluation environments based on the type of theobjets bound to the variables (say, k di�erent types). Thisanalysis immediately exhibits exponential behavior (kn dif-ferent abstrat environments).If a user has to use a ompiler that features suh a (poten-tially) ostly analysis instead of a traditional one, it wouldbe just as frustrating for the user as in the other ase. He anonly hoose between disabling the analysis, if it is possible,and waiting for days for a single ompilation.Stati modelIt is lear that it is diÆult to �nd the \right" balane be-tween speed and auray when the time omes to hoose ananalysis model. Even when the \best" ompromise has sup-posedly been hosen, when a individual program is ompiled,it is tempting to believe that another ompromise wouldhave been \better". Having said that, we laim that thisambiguity omes from the fat that the model is stati. Ofourse, it depends on the program, but in a very simple man-ner and it remains the same during the whole ompilationof the program.Sine the analyzer is ommitted to an abstrat model, itneessarily exposes itself to be either too simplisti or tooheavy for partiular programs. It results either in too poorauray or in good results that have been obtained witha vastly too great e�ort. It an even be both for the same

program when some of its interesting properties are veryeasy to disover while the others are more hallenging.Dynamially hanging modelWhat we believe to be more appropriate is to have an ab-strat model that an dynamially hange. That is, it shouldadapt to the level of diÆulty of analysis of the partiularprogram to analyze.Here is a sketh of an analysis using a dynamially hang-ing model. At the start, the strategy is to hoose an initialmodel that is oarse. Sine oarse analyses do quite well inthe typial ase, a signi�ant part of the interesting proper-ties may already be found by this �rst analysis. Then, themodel ought to be re�ned, in order to be better equippedto attak the remaining, more diÆult properties. It mayresult in having some more properties to be found. Thenthe model is re�ned again. And so on. . .Of ourse, this raises many questions: How do we identifythe so-alled \interesting" properties? What should a re�ne-ment of the model be? How an we automatially updatean abstrat model? And more importantly, what should a\better equipped model" be? Before we start to bring an-swers to these questions, we must desribe our goal in moredetail.1.2 The objetiveWe intend to develop an adaptable-power type analysis for apurely funtional, appliative, and dynamially typed mini-language. We assume that the entire program is available.The analysis must have the potential to be very preise.However, the user should have the ontrol over the amountof e�ort that is put into the analysis of his program. Thisway, during development, he an request a fast and oarseanalysis, and, at the �nal ompilation, invest an appropriateamount of time to obtain a high-quality analysis.1The analyzer has to be able to deal with a bound on theamount of work it an do. When given little time, it mustterminate quikly, delivering results that are potentially ofpoor quality. When given a lot more time, it must eitherterminate prematurely if ompletely satisfying results areobtained or, in the usual ase, ontinue to improve the qual-ity of the results until the time is up. We do not want to relyon programmer annotations. These may be erroneous and,onsequently, annot be trusted. To trust any annotationwould ontradit the priniple of safety that omes with ahigh-level language.2 Only a safe analysis should provideresults that are to be used for optimization purpose.The abstrat model used by the analyzer must be ex-ible. The ruial part of our objetive is to �nd an \intel-ligent" driver that is able to oordinate the re-analysis andmodel-update yle to try to obtain the best results withinthe time bound that is given. The driver must re�ne themodel when it seems pro�table, but refrain to do so when itseems useless. Note that, as intelligent as the driver mightbe, we do not want to do true AI, not even an expert system.We want a driver that proeeds in a more systemati way.1What we onsider as a fast and oarse analysis is something sim-ilar to the 0-fa. A higher-quality analysis would neessarily be moreostly. For very long programs, the ost may be prohibitive, even fora fast analysis, onsidering that 0-fa has ubi omplexity in worstase.2Moreover, if the program ontains an expression suh as (ar x),it already means that the programmer believes that x an only bebound to pairs.2

Exp := el e 2 Exp0; l 2 LabExp0 := #fx x 2 Var(e1 e2) e1; e2 2 Exp(�x. e1) x 2 Var; e1 2 Exp(if e1 e2 e3) e1; e2; e3 2 Exp(ons e1 e2) e1; e2 2 Exp(ar e1) e1 2 Exp(dr e1) e1 2 Exp(pair? e1) e1 2 ExpLab := LabelsVar := VariablesFigure 2: Language syntaxIn order to ahieve our goal, we use a exible analy-sis framework that is presented in Setion 2 along with themini-language. This framework an support very powerfulanalyses and, so, an help to prove interesting but diÆultproperties of the program. Setion 3 presents an intuitiveintrodution to the demand-driven analysis. It is the de-mands that enompass the required \intelligent" driver forthe analyzer. The idea is quite simple: interesting proper-ties an be found with the help of hints present in the pro-gram; these properties are likely to be true and if they are,then may happen to be provable, mathematially speaking;it follows that they might be provable inside our frameworkand maybe in reasonable time. Setion 4 skethes a basidemand-driven analysis implementation. It is based on pat-terns. Finally, Setion 5 onludes with a brief mention ofthe researh that is the losest to our own and with the nextlogial steps in our researh.2 Notation and de�nitions2.1 A small languageThe language we use in this paper is presented in Figure 2.It is a small subset of Sheme with a few modi�ations. It ispurely funtional, appliative, dynamially typed, and eval-uation proeeds from left to right. The only types availableare the booleans, with #f as the sole element, the pairs andthe proedures having one parameter. The modi�ationsare: all the pair-related primitives are syntati forms and,when the pair? expression must evaluate to a true value, itsevaluates to the same pair as its argument. All these detailsan be found in the semantis of the language in Figure 3.3Despite the fat that the language is small, it is omplexenough to allow the onstrution of programs that are asdiÆult to analyze as one an desire. A simple �-alulusprovides only one \type": the funtions. In the presentase, the variety of types ombined to the fat that ertainexpressions require objets of a spei� type reates the ne-essary ompliations. The all expression and the ar anddr expressions require the �rst sub-expression to be of apartiular type (a simple implementation would perform adynami type test to guarantee safety).Throughout the paper, we assume that a program in thislanguage has no free variables, is �-onverted4, and prop-erly labeled5. To keep things simple, we onsider that the3The \ _[" sign denotes the disjoint union. That is, A = B _[C ifand only if A = B [C and B \ C = ;.4All variables in the program have a distint name.5Eah expression in the program has a distint label.

Val" := Err _[ValErr := ErrorsVal := ValB _[ValC _[ValPValB := f#fg BooleansValC := Val! Val" ClosuresValP := Val�Val PairsEnv := Var! ValE : Exp! Env! Val" Evaluation funtionE [[#f℄℄ � = #fE [[x℄℄ � = � xE [[(e1 e2)℄℄ � = C (E [[e1℄℄ �)(�v1: C (E [[e2℄℄ �) (A v1))E [[(�x. e1)℄℄ � = �v: E [[e1℄℄ �[x 7! v℄E [[(if e1 e2 e3)℄℄ � = C (E [[e1℄℄ �)(�v: v 6= #f ? E [[e2℄℄ � : E [[e3℄℄ �)E [[(ons e1 e2)℄℄ � = C (E [[e1℄℄ �)(�v1: C (E [[e2℄℄ �) (�v2: (v1; v2)))E [[(ar e1)℄℄ � = C (E [[e1℄℄ �)(�v: v = (v1; v2) ? v1 : error)E [[(dr e1)℄℄ � = C (E [[e1℄℄ �)(�v: v = (v1; v2) ? v2 : error)E [[(pair? e1)℄℄ � = C (E [[e1℄℄ �)(�v: v 2 ValP ? v : #f)A : Val! Val! Val" Apply funtionA f v = f 2 ValC ? f v : errorC : Val" ! (Val! Val")! Val" Chek funtionC v k = v 2 Err ? v : k vFigure 3: Language semantispurpose of our type analysis is to ollet information thatallows the ompiler to remove as many dynami type testsas possible.2.2 A generi analysis frameworkIn the introdution, we insisted on the fat that an ana-lyzer should have the ability to modify the abstrat modelthat it uses to analyze the program. This requires the in-trodution of a generi analysis framework. The frameworkby itself is not a omplete analysis proedure; it requiresmany parameters to beome an instaniation of an analysis.The parameters may be assimilated to the model itself. Theframework imposes very few onstraints on the model.Instantiation parametersFigure 4 presents the parameters and a brief desriptionof eah. First, the framework expets sets of abstrat val-ues. These are given by three �nite non-empty disjoint sets.Seond, another �nite set provides the ontours. Note thatno other onstraint exists on what these sets might be. Fi-nally, the framework expets abstrat omputation funtions.These mimi the onrete omputations done by the pro-gram. There is one for the reation of losures, one for thereation of pairs and one to selet ontours assoiated withthe abstrat evaluation environments.Funtion reeives the label l of an expression and theurrent ontour k and returns an abstrat losure. Funtionp reeives the label l where a pair ontaining v1 and v2 isreated in ontour k, and returns an abstrat pair. Funtionall reeives a label l where a funtion f is applied to value3

ValB 6= ; Abstrat booleansValC 6= ; Abstrat losuresValP 6= ; Abstrat pairsCont 6= ; Contoursk0 2 Cont Main ontour : Lab� Cont ! ValC Abstrat losure reationp : Lab�Val �Val � Cont ! ValPAbstrat pair reationall : Lab�ValC � Val � Cont ! ContContour seletionwhere Val := ValB _[ValC _[ValPFigure 4: Instantiation parameters of the analysis frame-workv in ontour k; it returns the ontour in whih the bodyof has to be evaluated. These funtions must be de�nedon all their domain and, of ourse, respet their type. Ontop of that, one of the ontours must be identi�ed as themain ontour, that is, it is the ontour in whih the top-level expression el0 of the program is evaluated.The ase of the abstrat booleans deserves a short ex-planation. It is obvious that the framework does not allowas muh parameterization for the booleans as for the othertypes. There an be more than one abstrat boolean, ofourse, but no boolean reation funtion is expeted by theframework. There ould be, sine the #f and pair? expres-sions an evaluate to a boolean. However, sine there isonly one onrete boolean, we did not feel the need to pro-vide the tools to manipulate distint abstrat booleans. Infat, we do not know if it would be useful at all. However,support for distint boolean manipulation ould be addedin the framework with little e�ort.Note that, although the abstrat evaluation funtionsmust be de�ned on all their domain, not all input ombina-tions make sense. For example, the result of the funtiondoes not make sense when the label that it is passed is notthe label of a �-expression. However, the analysis will neveruse this result either, so an return any element of ValCwithout onsequenes. This approah is simpler than hav-ing the set of labels partitioned into �-expression labels, alllabels, et.Analysis variablesOne the parameters are passed to the analysis framework,a omplete analyzer is instaniated. Here we present thematries of abstrat variables that are used by this analyzer.Figure 5 briey enumerates them.The � matrix ontains the abstrat values to whih eahexpression evaluates in eah ontour. A partiular entry �l;kmay be empty. It ours if the expression el does not getevaluated in the abstrat environment represented by theontour k. The � matrix ontains the values bound to eahvariable in eah ontour. When the body of the expression(�lx. el0) is evaluated in a ontour k, a referene to thevariable x refers to the entry �x;k. An entry �x;k may beempty, too, for similar reasons as with �l;k. An entry ;kof the matrix ontains the values that are returned by thelosure when its body has been evaluated in the ontourk. One again, it may be empty. An entry Æl;k is basiallya ag. It indiates whether or not el gets evaluated in theontour k. Its ontents is not important; only the fat thatit is empty or not. Non-emptyness of Æl;k implies evaluation.

Value of el in k:�l;k � Val l 2 Lab, k 2 ContContents of x in k:�x;k � Val x 2 Var, k 2 ContReturn value of with its body in k:;k � Val 2 ValC, k 2 ContFlag indiating evaluation of el in k:Æl;k � Val l 2 Lab, k 2 ContCreation irumstanes of :� � �1() 2 ValCCreation irumstanes of p:�p � p�1(p) p 2 ValPCirumstanes leading to k:�k � all�1(k) k 2 ContFigure 5: Matries ontaining the results of an analysisThe meaning of the remaining three matries is less ob-vious. They provide a kind of log of the origins of theabstrat values. As an example, let us onsider an ab-strat pair p 2 ValP . p ould be reated by any tuple inp�1(p) = f(l; v1; v2; k) j p(l; v1; v2; k) = pg. However, thelog entry �p onserves only the tuples that the analyzer hase�etively enountered during the (maybe numerous) re-ations of p. These logs allow the analyzer to avoid being tooonservative.The analysis is sound, in the sense that the analyzerats onservatively with the abstrat values. That is, everyonrete evaluation environment in whih an expression eltruly evaluates is modeled by abstrat values in a ertainabstrat ontour. Every onrete value that exists in theonrete evaluation is represented by an abstrat value inthe analysis results. The onrete value that is returned bya ertain losure at a ertain step in the onrete evaluationhas an abstrat ounter-part that is returned by an abstratlosure in a ertain abstrat step (the ontour). And so on.The soundness property an be formally proven, but we donot do so in this paper.Evaluation and safety onstraintsGiven a program and the instantiation parameters, our fra-mework performs the analysis of the program using the eval-uation onstraints presented in Figure 6. Basially, a setof onstraints on the analysis variables is generated for theprogram. Any solution to this set of onstraints provides avalid analysis result. Naturally, we are always interested inthe least solution to the system of onstraints. A solution al-ways exists beause, despite the variety of the generated on-straints, they an all be deomposed into basi onstraintsof the form: v1 2 �i1;1;:::;i1;n1 ^ : : : ^ vm 2 �im;1;:::;im;nm)v 2 �j1;:::jk . So the saturation of all analysis variables givesa trivial valid solution.The evaluation onstraints are quite standard and do notdeserve muh more explanation. Exept maybe the mainte-nane of the log matries. For example, eah time a pair pis reated at a ons expression, the tuple (l; v1; v2; k) repre-senting the label of the expression, both values to pak inthe pair, and the urrent ontour is logged in the variable �p.The logged tuples are later used by various omputations todisover the origins of the abstrat values. For example, thear expression uses the log �p (and not p�1(p)) to enu-merate to values that may be found in the ar �eld of the4

Evaluation onstraints for program el0 are:[k2Cont E [[el0 ℄℄ k [fÆl0;k0 � ValBg , whereE [[#fl℄℄ k =fÆl;k 6= ;) �l;k � ValBgE [[xl℄℄ k =fÆl;k 6= ;) �l;k � ref(x; l; k)gE [[(lel1 el2)℄℄ k =fÆl1;k � Æl;k; Æl2;k � Æl;kg [E [[el1 ℄℄ k [E [[el2 ℄℄ k [(�x;k0 3 v;�l;k � ;k0 ;�k0 3 (l; ; v; k) 2 �l1;k \ ValC; v 2 �l2;k;k0 = all(l; ; v; k);(l0; k00) 2 �; el0 = (�l0x. el00))E [[(�lx. el1)℄℄ k =�Æl;k 6= ;) �l;k 3 (l; k) ^ �(l;k) 3 (l; k)	 [fÆl1;k � �x;kg [E [[el1 ℄℄ k [f;k � �l1;k j 2 ValC; (l; k0) 2 �gE [[(ifl el1 el2 el3)℄℄ k =fÆl1;k � Æl;kg [E [[el1 ℄℄ k [fÆl2;k � �l1;k \ (ValC [ValP)g [fÆl3;k � �l1;k \ ValBg [E [[el2 ℄℄ k [E [[el3 ℄℄ k [f�l;k � �l2;k [�l3;kgE [[(onsl el1 el2)℄℄ k =fÆl1;k � Æl;k; Æl2;k � Æl;kg [E [[el1 ℄℄ k [E [[el2 ℄℄ k [��l;k 3 p;�p 3 (l; v1; v2; k) v1 2 �l1;k; v2 2 �l2;k;p = p(l; v1; v2; k) �E [[(arl el1)℄℄ k =fÆl1;k � Æl;kg [E [[el1 ℄℄ k [��l;k 3 v1 p 2 �l1;k \ ValP ; (l; v1; v2; k0) 2 �p 	E [[(drl el1)℄℄ k =fÆl1;k � Æl;kg [E [[el1 ℄℄ k [��l;k 3 v2 p 2 �l1;k \ ValP ; (l; v1; v2; k0) 2 �p 	E [[(pair?l el1)℄℄ k =fÆl1;k � Æl;kg [E [[el1 ℄℄ k [f�l;k � �l1;k \ ValPg [f�l1;k \ (ValB [ValC) 6= ;) �l;k � ValBgref(x; l; k) = 8>>>><>>>>: ref(x; l0; k); if el0 6= (�l0y. el)�x;k; if el0 = (�l0x. el)[k0ref(x; l0; k0); if el0 = (�l0y. el),(l00; ; v; k00) 2 �k;(l0; k0) 2 �where l0 = parent(l)Figure 6: Evaluation onstraints

Safety onstraints for program el0 are:[k2ContS [[el0 ℄℄ k, whereS [[#fl℄℄ k = ;S [[xl℄℄ k = ;S [[(lel1 el2)℄℄ k = f�l1;k � ValCg [S [[el1 ℄℄ k [S [[el2 ℄℄ kS [[(�lx. el1)℄℄ k = S [[el1 ℄℄ kS [[(ifl el1 el2 el3)℄℄ k = S [[el1 ℄℄ k [S [[el2 ℄℄ k [S [[el3 ℄℄ kS [[(onsl el1 el2)℄℄ k = S [[el1 ℄℄ k [S [[el2 ℄℄ kS [[(arl el1)℄℄ k = f�l1;k � ValPg [S [[el1 ℄℄ kS [[(drl el1)℄℄ k = f�l1;k � ValPg [S [[el1 ℄℄ kS [[(pair?l el1)℄℄ k = S [[el1 ℄℄ kFigure 7: Safety onstraintspair p. Finally, note that the extra onstraint Æl0;k0 � ValBis added to ensure that the evaluation of the program getsstarted.The reader may have noted that the evaluation on-straints do not take errors into aount and manipulate onlythe values that are legal. This is beause we separate theevaluation onstraints from the safety onstraints. Figure 7presents the safety onstraints that are generated for a pro-gram el0 . These onstraints are straightforward. The rea-son we keep these separated is that one we add the safetyonstraints to the set of evaluation onstraints, there maybe no solution to the system. If there is a solution to thejoined sets of onstraints, that means that the model (theparameters) provides a proof that the program is type-safe.The usual way to analyze a program is to solve thesystem of evaluation onstraints, whih leaves the analy-sis results in the analysis variables, then onfront the re-sults to the safety onstraints, and see whih onstraintsare violated. The latter indiate where dynami type testsare required. For example, the violation of the onstraint�l0;k 6� ValC for a ertain sub-expression el0 (whose parentis a all expression el) and ontour k, indiates that theremust be a dynami test at el to ensure that the result of el0is indeed a losure6.Power and generiity of the frameworkThe parameterization of the framework allows it to be a verypowerful analysis tool. Here are some of its harateristis.We do not give proofs here, though.� The parameters representing a model, as little on-strained as they might be, are still �nitely representa-ble. One might ask whether it is possible to automat-ially deide whether there exists a model that allowsthe analyzer to demonstrate that a program is type-safe. Unfortunately, this problem is undeidable; it ispossible to redue the termination problem to this one.� For every program that terminates normally, there ex-ists a model that demonstrates that it is type-safe. A6This explanation assumes that there is only one all expression elgenerated by the ompiler in the exeutable ode. This assumptionmay be too simplisti. A good optimizing ompiler may generatemore than one all expression instane of el, eah orresponding toa ontour (or to many). In this ase, the instanes assoiated toontours where no violation ours do not require a dynami typetest. However, the topi of produing good exeutable ode fromanalysis results is beyond the sope of this paper.5

trivial model that does so onsists in mimiking theonrete evaluation of the program. It introdues oneabstrat value for eah onrete value. However, it isgenerally impossible to know that the program termi-nates normally, in the �rst plae.� For every program that terminates with an error, allmodels lead to a violation onstraint. This is due tothe soundness of the analysis. Unfortunately, an un-suessful model attempt generally does not bring anyinformation as to whether the program must neessar-ily terminate with an error.� Among the programs that loop, some have a modelproving they are type-safe, some do not. Note thatthey are type-safe. We believe that an important limi-tation to the power of the framework onerns programonstruts where the safety depends on some mathe-matial invariant. Generally, this annot be desribedby our kind of models.The liberty in the hoie of the framework parametersallows this one to simulate many traditional analyses. Forexample, all-string ontours as in [15℄ an be easily imitatedby a proper de�nition of all. Basi set-based analysis [9℄,being equivalent to the 0-fa an be imitated, too.The ontours presented in [13℄ are based on polymorphisplitting. Values reated in let-bindings an be speializedaording to whih variable referene aesses the values.Simply stated, an abstrat value bound to a variable in alet-binding mutates di�erently depending on where the ref-erene to the variable is loated. Our framework does notallow suh a thing. However, a trivial soure-to-soure trans-formation of the program and appropriate model seletionmake it possible to obtain a similar analysis.3 Demand-driven analysisHere is an informal introdution to demand-driven analysis.First, we illustrate the approah with an example. Then,an overview of what a omplete demand-driven approahshould inlude is presented. Next, the diÆulty of dealingwith the all and onditional expressions is exposed. Finally,many hallenges to make a demand-driven approah workare mentioned.3.1 An exampleTo illustrate what demands might be, where they ome from,and how they an be proessed, we use a small example.Suppose that this �-expression appears somewhere in a pro-gram: (�1x. (if2 x3 (ar4 (pair?5 x6)) #f7))Suppose also that a preliminary analysis has been done andthat, aording to its results, the �-expression eventuallygets evaluated, resulting in a losure, and that the losureis alled many times with di�erent pairs and with #f.Note that a na��ve ompilation of �-expression e1 wouldimmediately produe good ode exept for the (only) dy-nami test oming from the ar expression. It would bebetter if we ould remove that test. Let us see how thisan be done. We need to prove that e5 returns nothing elsethan pairs. Now, as far as the preliminary analysis of theprogram an tell, e5 an evaluate to pairs and #f (rememberthat, when e evaluates to a pair or to a non-pair, (pair?

e) evaluates to that pair or to #f, respetively). So, for themoment, the dynami test must stay there. In order to tryto hange this, we will emit and proess demands. These,in turn, may lead to an update of the model suh that itwill reate an instane of an analysis that an provide thedesired proof.Obviously, we need a �rst demand. Why not go forthe simplest solution? That is, make the following request:\show that e5 always evaluates to pairs". Or more preisely:\show that e5 annot evaluate to anything else than pairs".To show that it does not get evaluated at all would not bebad, too. Let us all this demand D1.Now, we have to proess D1 in some way. Note that D1onerns e5, whih is a not a simple expression. The valueof e5 strongly depends on the value of its sub-expressione6. If we ould rewrite D1 into another demand related tothe simpler e6, we would have made some progress. Thisnew demand D2 ould be: \show that e6 annot evaluateto anything else than pairs". Clearly, D2, if it is positivelyanswered, would have the same desirable onsequenes asD1.What an we do to respond to D2? Note that the prelim-inary analysis says that x may be bound to #f (and supposethat it is truly the ase). A reasonable approah is to proessD2 in two steps: �rst, we should separate the ase where xis bound to a pair from the ase where it is not; then, if xstill evaluates to #f in the seond ase, we should request ademonstration that that evaluation annot happen. Whatit means is that we emit a new demand D3 and then, ifneessary, another new demand D4.Let us �rst take are of D3. In more preise terms, D3is: \split the urrent ontour in order to separate the aseswhere x is bound to a pair from the ases where x is bound to#f". That is perfetly possible, as we explain shortly. So letus onsider that the previous ontour k has been e�etivelysplit into k0 (pair ase) and k00 (#f ase). There is ertainlyno more problems with the evaluation in ontour k0 sine xmust be bound to a pair, so e5 must return a pair, and so e4annot go wrong. But what about evaluation in ontour k00?Sine x must be bound to #f in k00, the test in e2 is alwaysfalse, the then-branh is never exeuted and, onsequentlythe ar aess is never made. Conlusion: in every ase,there is no need to perform a dynami type test in e4. Theinitial demand has been positively answered. That is, wehave emitted demands, proessed them, and they have leadto an update of the model that was suÆient to demonstratethat the dynami test is unneessary.Before we onlude this example, we need to explain whywe said that it was easy to separate the ases where x isbound to a pair from the ases where x is bound to some-thing else. This is beause of our abstrat model. The allparameter selets the ontour in whih the body of a lo-sure evaluates. Let us refer to the losure generated by e1as and to the ontour in whih the body evaluates as kin the old model. To keep things simple, we suppose thatthey are unique. That means that all(l; ; v; k�) = k forany label l, argument v, and ontour k�. In other words,when is alled, its body is always evaluated in the ontourk. Changing the model to make the required split simplymeans de�ning a new modeling funtion all0 suh that:8l 2 Lab; v 2 Val; k� 2 Cont;all0(l; ; v; k�) = � k0; if v 2 ValPk00; otherwise6

3.2 OverviewAs we mention in the introdution, our demand-driven anal-ysis should be able to produe some results in a short time, ifneessary, and be able to improve them ontinuously if it isallowed to ontinue longer. In order to behave this way, thedemand-driven analyzer proeeds in two phases: the prelim-inary analysis, the demand-driven phase; as skethed in theintrodution. The preliminary analysis is similar to a tra-ditional analysis; its purpose is to ollet initial informationusing a stati model. Typially, this information is goodenough to allow the removal of many dynami type test butnot all of them. During the demand-driven phase, demandsare generated and proessed in order to perform the model-update/re-analysis phase. This phase ontinues until all thedemands have been positively answered or, usually, until thebound on the analysis time is reahed.The hoie of the model in the preliminary analysis iswhat we disuss �rst. Next, we present a list of demandsthat seem vital to guide the demand-driven analysis. Fi-nally, we present typial proessing of many kinds of de-mands.Initial model and initial demandsThe hoie of the initial model must be the result of a om-promise between the time spent during the preliminary anal-ysis and the quality of the preliminary analysis results. Amodel that is too omplex will make the preliminary analysisostly, making even the fastest ompilation with analysis toolong. A model that is too oarse may render the preliminaryanalysis \blind", its results sometimes being overestimatedto the point of being useless, thus leaving the whole task ofreal analysis to the demand-driven part, whih is neessarilyless eÆient.We believe that having an initial model with one ab-strat pair, one abstrat losure per �-expression, and oneontour (or one ontour per losure body) would be of areasonable ost and provide preliminary analysis results ofrelatively good quality. Suh a model instantiates a mono-variant analysis that is omparable to the 0-fa. Sine, inthe typial ase, analyses like 0-fa perform relatively well,muh fewer demands are generated in the demand-drivenpart.Choosing a oarser model having only a single abstratlosure to represent all onrete losures would lead to ex-essively poor results. Exept in the most trivial of ases,the abstrat losure would be found to return everything,leaving all the analysis work to the demand-driven part.The only advantage of this hoie would be a preliminaryanalysis with linear omplexity.Choosing a �ner model would inrease signi�antly thepreliminary analysis time without any guarantee as to whe-ther the a priori re�nements would bring any help for thedynami tests that would still remain after a 0-fa-style anal-ysis.One the preliminary analysis is done, formulating theinitial demands is trivial. Expressed in terms of analysisvariables, it takes the form of a list of \show �l;k � ValC"and \show �l0;k0 � ValP" demands.Typial demandsThe most natural demand type is like the initial demands.We shall all these bound-demands. Sine they an so easilybe reformulated in terms of other, more fundamental de-

mands, bound-demands only involve an � matrix entry anda simple bound set.One of these fundamental demand types is the split-demand. We mentioned that kind of demand in the examplein Setion 3.1. It says: \split something aording to some-thing". The thing to split may be an abstration in themodel or an analysis variable. As an example of the �rstase, the demand ould be \split P aording to the labelwhere it is reated", where P is the unique abstrat pair.That would trigger a straightforward update of the funtionp. As an example for the seond ase, the demand ould be\split ;k aording to the membership to the set of pairs".That means that the return values of losure when its bodyis evaluated in ontour k have to be split into pairs and non-pairs. The onsequenes in ase of a suessful response arethat the abstrat losure , the ontour k, and anything elseif neessary will have to be split in suh a way that for all 0speializing and for all k0 speializing k, 0;k0 will ontaineither only pairs or no pair at all.Split-demands diretly on the model or on �, �, or entries are reasonable demands. However, we believe thatsplit-demands on Æ entries should not exist sine they makeno sense. The only interesting onern with Æ entries iswhether they are empty or not. As for the \log" variables, itmay make sense to want to split them, but maybe not to try.This is beause they plainly desribe how the abstrationfuntions have been used during the analysis. They have avery indiret (and passive) e�et on the abstrat evaluationof the program. In order to have an e�et on these entries,a demand would ertainly have to be reformulated in termsof demands onerning entities on whih it is lear that wean have an e�et.A third type of demand onsists in requesting a demon-stration that some expression annot get evaluated in someontour. We shall all these never-demands and obviouslythey an be formulated formally by \show Æl;k = ;". Suhdemands typially arise when a ertain evaluation neessar-ily leads to an error. To make a variation on the example ofSetion 3.1, if the sub-expression e5 of the expression (ar4e5) in the non-pair ontour k00 would have still returnedsome values, it would have been neessary to emit a never-demand on Æ5;k00 . Obviously, a split is not neessary sinethere are no good ases (pairs) to separate from the badases (non-pairs).We touh a ruial issue, here: good ases and bad ases.When there are only good ases, everything is �ne, nothinghas to be done. When there are only bad ases, we haveto emit a never-demand but at least everything is lear.When there are good and bad ases together, normally split-demands have to emitted before emitting never-demands.Otherwise, if we are asking a demonstration that suh anevaluation annot our, we may ask the impossible sinethe good ases may reet atual onrete evaluations inthe program. This priniple must be kept in mind when wepropose proessing tehniques for the demands.A fourth type of demand that seems vital is the no-all-demand. A no-all-demand basially means: \show thatlosure annot be alled on argument v in all site l whenthe ontour is k". It typially may be emitted due to theproessing of a never-demand. To ontinue with our varia-tion on the example, a never-demand on Æ5;k00 may eventu-ally require that we show that the losure is never alledwith a non-pair argument. This translates into one or moreno-all-demands.Although an implementation of demand-driven analysismay formulate other types of demands, the ones that we just7

presented here form a ore that must be present in one wayor another in order to be able to perform demand-driventype analysis on a language suh as ours.Proessing the demandsDemands originally express the need to demonstrate a \de-sirable" property. A demonstration takes the form of amodel instantiating a partiular analysis that brings theproof that the property is indeed true. If we want to gofrom the original demands to the appropriate model, thesedemands have to be proessed in some way. Note that wehave already impliitly desribed many ases of demand pro-essing.In general, proessing a demand leads to immediate su-ess, to immediate failure, or to emission of new, modi�eddemands. Immediate suess ours when, for example, thedemand is \split �l;k aording to its type" and the expres-sion el is #fl. In this ase, the model trivially onforms tothe demand: k itself is the only ontour that is neessaryin order to have that no two objets of di�erent type resultfrom the evaluation of el in the same ontour k0, for any k0speializing k.Immediate failure, in our partiular ase, is most unom-mon. One spei� demand, however, an lead to immediatefailure: \show Æl0;k0 = ;". That is, trying to show that thewhole program does not get evaluated.Most of the time, as was illustrated in the example ofSetion 3.1, proessing a demand leads to the reation ofnew demands.Even though partiular demand-driven analyses may dif-fer in the way their set of demands are proessed, here wepresent proessing shemas that, almost ertainly, have tobe similar in all ases.� Original bound-demands, \show �l;k � hseti", expressproperties that, if they are not trivially satis�ed nortrivially ontradited, may �rst be re-expressed as asplit-demand and, upon suess of this �rst sub-de-mand, a never-demand ought to be emitted for eahki speializing k suh that �l;ki 6� hseti. Note that thesplit is intended to \separate the good ases from thebad ones". If the bound-demand property is triviallyrespeted, immediate suess ours. If it is triviallyontradited, a single new demand is emitted: \showÆl;k = ;".� Split-demands on � entries result in an update of themodel and in immediate suess. Sine only the and all funtions determine whih ontour is seleteddepending, in partiular, on the arguments to the lo-sures, a model update is the only way to respond tosuh demands. Of ourse, any split-demand diretlyonerning the model auses an update of the modeland an immediate suess.� A split-demand on a ;k analysis variable an triviallybe reformulated in terms of a new split-demand on the�l;k variable orresponding the result of the body el ofthe losure .� A split-demand on an �l;k variable where el is #fl, xl,(onsl el0 el00), (arl el0), (drl el0), or (pair?l el0)an normally be proessed in a straightforward fash-ion. It beomes, in the �rst ase, an immediate suess,sine it is lear that the sole #f value always falls into asingle \split ategory" aording to the split riterion.In the seond ase, it an trivially be reformulated as a

split-demand on �x;k. In the third ase, depending onthe split riterion, the split may already be done (witha split-on-type riterion, for example) or it may eas-ily be reformulated in terms of split-demands on thesub-expressions. The remaining ases are similar plus,maybe, a diret split-demand on the model to speial-ize abstrat pairs. To make a simplisti observation,we would say that split-demands on � entries have atendeny to propagate from an expression towards itssub-expressions.� A never-demand on a Æl;k variable is proessed a-ounting for the parent expression el0 of el. Most of thetime, the demand is reformulated into a never-demandon Æl0;k. However, if el is the onsequent branh orthe alternate branh of an if expression, the demandmust be reformulated into a bound-demand onto thetest sub-expression. The bound is the set of true val-ues (ValC [ValP) or false values (ValB), respetively.Finally, if el0 is a �-expression, the evaluation is theresult of a all, and it is generally not a simple matterto proess suh a demand. One again, to be simplis-ti, we ould say that never-demands have a tendenyto propagate from an expression towards its parent ex-pression.3.3 DiÆult asesIn the preeding paragraphs, we presented some more orless preise desriptions of what the proessing of variousdemands should be. However, we avoided ertain demandsdeliberately beause they are learly diÆult to proess. Theexistene of diÆult ases has to be expeted sine statiallyproving interesting properties about a program is unom-putable in general, and this unomputability is not going todisappear simply beause we are trying to make the analyzersmarter by using a demand-driven approah. The diÆul-ties ome mainly from the onditional expression and, to agreater extent, from the all expression. We illustrate thepotential problems with two examples.Let us suppose that we have the following expression:(ifl el1 el2 el3). We must proess a split-demand on �l;kaording to the type of the result. Let us suppose, also,that the analysis results under the urrent model indiatethat el2 may evaluate to objets of all types, that el3 mayevaluate only to pairs, and that el1 may evaluate to bothtrue and false values. How an we proess this demand?Note that el evaluates to a set of values that is the unionof the results of both its branhes. Sine el3 already hasa pair-only result, we ould emit a bound-demand on el2to request a demonstration that in fat it evaluates onlyto pairs. Alternatively, we ould emit a bound-demand onel1 to request a demonstration that it evaluates only to #f.Whih strategy is the best?Obviously, the example shows that the diÆulty omesfrom the fat that there are more than one possible dire-tion to ontinue proessing. Moreover, note that neither ofthe two proposed demands is adequate beause they mayinvolve properties that atly ontradit what the onreteomputations are. In suh ases, there would be no hope ofever responding suessfully to the demands.The proessing of demands onerning alls is even morediÆult. Let us onsider the following expression: (lel1 el2).Suppose that the demand is the same as in the if example.Also, suppose that the urrent analysis results tell us that:el1 evaluates to two losures 1 and 2, el2 evaluates to ob-jets of more than one type, the losure 1 returns objets8

of only one type, and 2 returns objets of di�erent types.How should we proeed?The \poly-type" results of el may be explained by thefat that: 2 returns objets of the same type as those thatit reeives, so we should split the value of el2 ; the onretelosure orresponding to 2 returns \mono-type" results, butits poor modeling suggests the ontrary, so we should splitits return value; or no onrete losure orresponding to 2is ever present at el1 during the onrete evaluation, so weshould split the value of el1 , and demand that the ase whereel1 evaluates to 2 be proved impossible.Clearly, proessing in suh a ase is far from obvious sinethe appropriate demands may onern el1 , el2 , the losuresthat are invoked, or a ombination of the three.3.4 ChallengesOn top of the natural diÆulty that omes with the pro-essing of the demands, there are several others that makethings more omplex.As we mentioned above, the proessing of a demand andits sub-demands may last forever. This may happen in par-tiular beause the property that must be demonstratedis not based on legitimate reasons (suh as in the ondi-tional expression example) or simply beause it is beyondthe power of the framework to support the neessary proof.Clearly, there must be a mehanism that ensures that theanalyzer does not get stuk in suh proessing.Sine the attempt to prove a property may last foreverand there are generally more than one property to prove, theoriginal demands annot be proessed one after the other.The amount of time available to the analysis may be ex-hausted by one of the �rst demands, possibly leaving unan-swered many \easy" demands that would have been su-essfully proessed in little time. So the proessing of thedemands must be made using some kind of onurreny.Note that using a bound on the time available to the an-alyzer is learly a neessity but it is also one of its feature.Although unusual in the �eld of program analysis, this on-ept is fairly natural when we think about it. In a way, itorresponds more to the human notion of work than to thealgorithmi omplexity notion of work. While the ideal pa-rameter to an analyzer would be the quality of the results, abound on the available time is probably the losest realistiequivalent.The proessing of an original demand naturally leads to atree of sub-demands. Of ourse, these sub-demands annotall be proessed at the same time. Some have to be put intoa waiting queue until it is their turn. However, during thetime that a demand is in the queue, the model may havebeen re�ned due to the proessing of other demands. Insuh a ase, an \old" demand may refer to abstrations thathave been broken down into more speialized abstrations.Consequently, there must be a mehanism to keep demandsup to date.Finally, an important question relates to the onur-rent demand proessing: should the various proessing treesshare the abstrat model? Remark that they do not haveto. Eah original demand an be responded independently.This is beause that what matters is whih of the originaldemands are suessfully answered. Two distint dynamitests may both be omitted from a program, even if eah hasbeen showed redundant using a distint model.The advantage of sharing the model is that a suessfuldemonstration of property A may have unovered many in-variants of the program that would make the demonstration

of property B easier. The inonveniene is that if all up-dates our in the same model then almost every demandthat goes in the waiting list has to be speialized to followthe numerous �ner abstrations introdued by the updates,resulting in a proliferation of demands.A ompromise that may be interesting onsists in shar-ing eah model with the one used to suessfully answer ademand. What is interesting with suh a model is that itan be redued prior to the sharing with the other mod-els. The idea is the following: during the proessing of atree of demands, all kinds of updates are performed on themodel; eventually, one last update auses the model to pro-vide a proof for the original demand; however, only some ofthe re�nements to the model are really neessary to providethe proof; undoing the unneessary re�nements produes amodel that is as small as possible.4 A basi analysisWe present a prototype of a demand-driven analysis that isbased on patterns. We briey desribe this pattern-basedmodeling and some of the hoies that we have made on-erning the various problems that must be addressed.4.1 Abstrat modelThe modeling of the abstrations is made using patternmathing. A pattern list must be exhaustive and, assoi-ated with eah pattern, there is a partiular abstration in-stead of ode to exeute. For example, a very simple patternmather desribing the abstrat pairs might look like:(#f; Val)) P1(�8; Val)) P2((Val;Val); Val)) P3Obviously, it represents three abstrat pairs, eah being spe-ialized with the type of the objet that it ontains in thear �eld.One important harateristi of our pattern mathing isthat it does not require that a modeling of pairs, for example,has to be the Cartesian produt of all the speializationsfound in the ar with those found in the dr. This is ruialfor the patterns representing ontours sine these are kindsof \lists" that an be as long as the lexial environment inthe program.4.2 DemandsFigure 8 presents the syntax of the demands and that of thepatterns they inlude. The set of demands orresponds ba-sially to what we desribe in Setion 3 exept for split-all ,whih is an auxiliary demand used in the proessing of split-demands on all expressions, and monitor-all , whih is an-other auxiliary demand that tries to prove that alls of er-tain losures on ertain arguments annot our in ertainontours.The syntax of the patterns is desribed by hpati, whihrepresents the splitting patterns, by hsPati, whih are thestati patterns, by htPati, whih are splitting ontour pat-terns, and by hsCtPati, whih are stati ontour patterns. Asplitting pattern ontains one and only one splitting point,indiated by ?. When abstrations are split aording toa pattern, only those that math the pattern are modi�ed,and the modi�ation onsists in adding an \extra-level" ofinspetion at the splitting point. Stati patterns are usedto help desribing the abstrations that are to be modi�ed.9

hdemandi := show �l;k � hboundisplit �l;k hpatisplit �x;k l hpatisplit ;k hpatisplit ValP hpatishow Æl;k = ;split-all l hsCtPati hpatimonitor-all l hsCtPatihboundi := ValB j ValC j ValP j ValTrueshpati := ? j �? j �l htPati(hpati; hsPati) j (hsPati; hpati)hsPati := Val j #f j �8 j �l hsCtPati(hsPati; hsPati)htPati := (hsPati� hpati hsPati�)hsCtPati := (hsPati�)Figure 8: Demand syntaxThe ontours used at an expression el are an abstrat modelof the lexial environment. So ontour patterns are lists ofpatterns that are as long as the lexial environment is at thepoints of the program where they are used.4.3 Bak to the exampleIf we return to the example of Setion 3.1, a pattern-baseddemand-driven analysis proeeds like this. The original de-mand is: show �5;k � ValPwhere k represents (Val : : : Val). That demand is �rstreformulated into a split-demand aording to the type:split �5;k ?Proessing this demand is trivial and it produes anothersplit-demand. It onerns the sub-expression:split �6;k ?This one beomes a split-demand on the variable:split �x;k 6 ?The label 6 is present in order to unambiguously indiatewhih program point requires an update. This is beause kmay be used in more than one funtion body. This demand�nally auses an update in the model of the all funtionin suh a way that a all to the losure an result in theontour (#f Val : : : Val);(�8 Val : : : Val); or((Val;Val) Val : : : Val):The rest of the explanations are similar.4.4 The diÆult asesIn Setion 3, we showed that the diÆult ases are the on-ditional expressions and the all expressions. Also, we listmany other diÆulties. We present some hoies that wemade in our pattern-based analysis.A split-demand on the evaluation results of a onditionalexpression are dealt with in this way: split-demands with the

same pattern are sent to both branhes and another split-demand with the ? pattern is sent to the test. With luk,all three sub-demands sueed, and the split-demand on theonditional is a suess sine eah new ontour neessarilyleads to mono-type evaluation results of the onditional.A split-demand on a all expression proeeds by: split-ting the return value of eah losure (that may be involvedthere) aording to the same pattern; this proessing in-diretly reates an \assoiation" between the output andthe input of the losures; a split-all auxiliary demand thenomputes an \easiest" way to distinguish all situations thatlead to di�erent split ategories; it �nally emits a sequeneof demands on the sub-expressions of the all expressionsthat, if suessfully answered, would omplete the split ofthe all expression.These proessing strategies are generally too aggressivein their generated sub-demands and a major diÆulty isto deal with those that do not sueed. We have inludeda time-out feature to the proessing of sub-demands thatallows their parent to turn to a \bakup plan" when thetime-out is reahed. The bakup plans often resort to sub-demands that are often less legitimate than the ones thathave expired and, so, maybe even more suseptible to beimpossible to aknowledge or at least more diÆult. But, asthe name of these plans says, this is the last reourse.4.5 Pros and onsThe pattern-based demand-driven analysis has the advan-tage of being of manageable omplexity. That is why wehave hosen it as a �rst attempt of demand-driven analysis.However, it has some weaknesses that may onsiderably re-due the power of the whole analysis. Its weaknesses omediretly from its onept: patterns. Patterns an only dis-tinguish objet strutures on the surfae or not very deep.They are fundamentally inapable of distinguishing stru-tures that start to di�er at deep levels, suh as, for example,lists of booleans ending with a boolean and lists of booleansending with a funtion:(#f; (#f; : : : (#f;#f) : : :))(#f; (#f; : : : (#f; �8) : : :))However, we annot say that the pattern-based is justgood enough to \show in greater detail that we still knownothing". If the program manipulates data strutures thatan be distinguished by looking only a few levels deep, thenour analysis has the apability to �nd the harateristisof these data strutures. Figure 9 shows suh an example.Suppose that the program manipulates only lists of booleansand lists of funtions. Then a simple split of the abstratpairs may lead to a perfet desription of the lists. This isdue to the log analysis variables, whih reord the irum-stanes that prevail when abstrat objets are reated. The�gure shows two models, the oarse and the �ner, and theinformation that is onsigned in the logs.5 Conlusion5.1 Related workAs far as we know, there is no work with the same goal.The most losely related researh is the work of Duester-wald et al. [7℄, Agrawal [1℄, and Heintze and Tardieu [10℄.In [7℄, a framework to obtain a demand-driven analysis froma ertain lass of inter-proedural data-ow problems is de-sribed. However, as the authors of [10℄ mention, this lass10

Model Observed results(Val;Val)P analysis) � #ff 2 ValC ; #fP �P+ split ValP (?;Val)(#f ; Val)P1(�? ; Val)P2((Val;Val) ; Val)P3 analysis) � #f ; #fP1 �P1� f 2 ValC ; #fP2 �P2(; ; ;)P3Figure 9: A simple split may unover more omplex stru-turesis restrited and does not even inlude the problem thatthey address: a ow-insensitive, ontext-insensitive pointeranalysis; whih is still elementary. In [1℄, a demand-drivendata-ow analysis that does not require prior all graph in-formation to be present is desribed.What these proposals have in ommon with ours is thefat that demands are generated for some reasons and thenpropagated. That is all. Their goal is simply to take awell-known, traditional analysis and adapt it so that only asubset of the omputations need to be performed in order toprovide answers to ertain requests. Only a few, when notonly one, very simple demand types exist.5.2 Future workInvestigation in this researh should onsider alternatives topatterns for abstrat modeling and formulating demands.First, we should onsider distinguishing pairs by their re-ation expression and ontour rather than by their diret on-tents. We believe that this modeling may be more powerfulthan the pattern-based modeling. However, it is not learhow to express demands in this representation. Seond, arepresentation using regular trees (see [4, 3, 5, 6℄) system-atially may prove to be very powerful. This representationould be used to express demands, too. It may be far fromeÆient, though. Third, we should explore an approah tosystematially ompute demands that is reminisent of logiprogramming. The idea is to give a demand-driven analy-sis interpretation to the expressions. This interpretation isa funtion transforming demands (in the sense of bound-demands) to environment demands. The advantage of thisapproah seems to be the fat that it is systemati but itis not lear if it an be more powerful than pattern-basedanalysis.The biggest problem with our approah is the proess-ing of demands related to onditional and all expressions.Additional informations about fats that are known withertainty, might help to better deide what sub-demands toemit. For example, it ould indiate that ertain demandshave to fail beause a ounter-example has been found. Theertain fats would have to be disovered by an auxiliaryanalysis. The latter would onentrate on trying to provefats that would help the most the demand-driven analyzer.In a more omplex appliation than our type analysis fora mini-language, original demands ould ome from a widervariety of hints. In onsequene, it may be neessary to as-sign a reliability degree to the demands. For example, if weextend our problem to inlude detetion of inlining oppor-tunities, then it would be \desirable" to prove that a ertainall expression an only invoke one partiular losure. Sine

suh a demand originates from a desire on our part and isnot baked by any more solid evidene, then it should reeivea lower reliability degree.Another diretion onsists in extending the sope of theanalysis to be able to deal with a language loser to Sheme,that is, inluding more algebrai types, higher- and variable-arity funtions, ontinuations, I/O, and side-e�ets. Exeptfor ontinuations, we do not expet any serious problems.Dealing with ontinuations probably requires that we intro-due a new type of abstrat objets sine ordinary funtionsannot mimi their behavior. Otherwise, a onversion toCPS may be required. Separate ompilation of programsis not a standard part of Sheme, but it is ommon pra-tie. Unfortunately, we do not see how our demand-drivenapproah ould be adapted to deal with it. Not only doesour analysis has to propagate abstrat objets everywhere inthe program, it also has to propagate demands everywhere(from allee to aller, for example, whih may ome fromdi�erent modules).Finally, other analyses than type analysis should be on-sidered in order to verify how well our demand-driven ap-proah applies outside of type analysis. One suh analysisis range analysis for numerial values. A part of the goal ofthis analysis onsists in removing bound heks in indexabledata struture aesses and removing veri�ations before di-visions and other unsafe numerial operations. Sine theseoperations relate to safety issues, they an be seen as goodhints from whih we an generate initial demands.5.3 ContributionsIn this paper, we presented a proposal of how to perform ahigh-quality type analysis while trying to have a moderatetime and spae omplexity. It is based on a demand-drivenanalysis that uses a very powerful analysis framework. Theexibility of the framework omes from the fat that theabstrat model of the objets an be hanged dynamially.With appropriate models, the framework an emulate thebehavior of many traditional type analyses. Although theway to generate initial demands from hints present in theprogram is similar to what is done in other researh, thepurpose of the demands is radially di�erent. Their gen-eration and proessing guides the suessive updates of theanalysis model that is used in the exible framework, mak-ing suessive analysis instanes that are better equippedto analyze the program at hand. We also give a sketh ofour implementation of a pattern-mathing demand-drivenanalysis.Referenes[1℄ G. Agrawal. Simultaneous demand-driven data-owand all graph analysis. In Proeedings of InternationalConferene on Software Maintainane, pages 453{462,sep 1999.[2℄ A. V. Aho, R. Sethi, and J. D. Ullman. Compil-ers: Priniples, Tehniques and Tools. Addison-Wesley,1986.[3℄ A. Aiken and B. Murphy. Implementing regular treeexpressions. In Funtional Programming and ComputerArhiteture, pages 427{447, aug 1991.[4℄ A. Aiken and B. Murphy. Stati type inferene in adynamially typed language. In ACM, editor, POPL11

'91. Proeedings of the eighteenth annual ACM sympo-sium on Priniples of programming languages, January21{23, 1991, Orlando, FL, pages 279{290, 1991.[5℄ A. Aiken and E. L. Wimmers. Type inlusion on-straints and type inferene. In Proeedings of theConferene on Funtional Programming Languages andComputer Arhiteture, pages 31{41, jun 1993.[6℄ B. Courelle. Fundamental properties of in�nite trees.Theoretial Computer Siene, 25(2):95{169, mar 1983.[7℄ E. Duesterwald, R. Gupta, and M. L. So�a. Demand-driven omputation of interproedural data ow. InSymposium of Priniples of Programming Languages,pages 37{48, jan 1995.[8℄ R. Gupta. Optimizing array bound heks using owanalysis. ACM Letters on Programming Languages andSystems, 2:135{150, 1993.[9℄ N. Heintze. Set based analysis of ML programs(extended abstrat). Tehnial Report CS-93-193,Carnegie Mellon University, Shool of Computer Si-ene, jul 1993.[10℄ N. Heintze and O. Tardieu. Demand-driven pointeranalysis. In Proeedings of SIGPLAN 2001 Confereneon Programming Languages Design and Implementa-tion, ACM SIGPLAN Noties. ACM Press, jun 2001.[11℄ P. Hudak. A semanti model of referene ounting andits abstration (detailed summary). In Proeedings ofthe 1986 ACM Conferene on Lisp and Funtional Pro-gramming, pages 351{363, 1986.[12℄ S. Jagannathan and S. Weeks. A uni�ed treatment ofow analysis in higher-order languages. In 22nd ACMSymposium on Priniples of Programming Languages,pages 392{401, jan 1995.[13℄ S. Jagannathan and A. Wright. E�etive ow analysisfor avoiding run-time heks. Leture Notes in Com-puter Siene, 854:207{224, 1995.[14℄ O. Shivers. Control ow analysis in Sheme. In Proeed-ings of the SIGPLAN '88 Conferene on ProgrammingLanguage Design and Implementation, pages 164{174,jun 1988.[15℄ O. Shivers. The semantis of Sheme ontrol-ow analy-sis. In Proeedings of the Symposium on Partial Evalua-tion and Semantis-based Program Manipulation, pages190{198, jun 1991.

12

