
Running Scheme on a PIC microcontroller
Marc Feeley (Université de Montréal) and Danny Dubé (Université Laval)

• Objective: create a Scheme system for PIC that is R4RS conformant (except for file I/O)

• The PIC is an inexpensive single-chip general purpose computer with little RAM

Model Pins MIPS ROM RAM Price

PIC12C508 8 1 512 × 12 bits 25 × 8 bits $0.90
PIC16F628 18 5 2048 × 14 bits 224 × 8 bits $2.00
PIC18F1320 18 10 4096 × 16 bits 256 × 8 bits $3.25
PIC18F6520 64 10 16384 × 16 bits 2048 × 8 bits $6.50
PIC18F8720 80 6.25 65536 × 16 bits 3840 × 8 bits $11.03

• Series of 3 different implementations that target different memory sizes:

• BIT (1996): H8/3292 µcontr., 2.5 KB ≤ RAM ≤ 64 KB, 8.5 KB ≤ ROM

• PICBIT (2003): PIC18F6720 µcontr., 0.25 KB ≤ RAM ≤ 3.5 KB, 22 KB ≤ ROM

• PICOBIT (2003): PIC18F1320 µcontr., 0.1 KB ≤ RAM ≤ 0.5 KB, ≈4 KB ≤ ROM

• All 3 systems have compilers that eliminate dead code through a whole-program analysis

and the library is compact thanks to higher-order functions

• BIT: was ported to the LEGO MINDSTORMS and Z8 Encore! platforms,
rather slow execution (≈8000 byte-codes per second)
VM: stack based, stack is a chain of heap cells (this causes high pressure
on the GC)
Memory management: real-time GC, mark-compact type, 16 bit words,
smallest object = 8 bytes, stationary handles & movable bodies

• PICBIT: targets high-end PICs, takes into account that RAM is the crit-
ical resource, ≈2 × faster than BIT, requires little RAM but large ROM
VM: register based (reduces allocation rate for continuations), safe-for-
space, optimizing compiler
Memory management: mark-sweep blocking GC (Deutsch-Schorr-Waite
marking algo), 11 bit words, all objects = 3 bytes, 2 refs per object

• PICOBIT: **work in progress**, targets mid-level PICs
VM: written in assembler-level macro language, stack based (stack cache

overflowing to the heap), not safe-for-space, simple compiler, multi-

threading implemented on top of continuations
Memory management: like PICBIT except: 8 bit words, all objects = 4
bytes, 3 refs per object, this takes less RAM and ROM space, RAM
and ROM objects have different representations

0

256

384

128

heap

one cell

RAM

stack

globals

globals

temp
16

ROM
vector = 3 + n bytespair = 3 bytes

pair = 4 bytes
vector = balanced tree

old
pc

old

cont

old

self

old

cont

old

self

heap

stack

selfcont
sp

...

... ...

old
pc

pc 4

#f 1 2

5 6 7

v2v1 3

⇒ Results from a simulator:

24 bit cells 32 bit cells
Byte- RAM Byte- RAM

Program code needed code needed

empty 79 0 79 0
traffic 164 24 164 20
photovore 363 99 310 96
(fib 20) 113 294 113 228
1-thread 217 54 216 44
10-thread 253 84 252 84

