Running Scheme on a PI C microcontroller

Marc Feeley (Université de Montréal) and Danny Dubé (Université Laval)

Objective: create a Scheme system for PIC that is R?RS conformant (except for file I/O)

The PIC is an inexpensive single-chip general purpose computer with little RAM

Model Pins MIPS ROM RAM Price =
PIC12C508 B 1 512 x 12 bits 25 x 8 bits $0.90
PIC16F628 18 5 2048 X 14 bits 224 x 8 bits $2.00
PIC18F1320 18 10 4096 x 16 bits 256 x 8 bits $3.25
PIC18F6520 64 10 16384 x 16 bits 2048 x 8 bits $6.50
PIC18F8720 80 6.25 65536 x 16 bits 3840 X 8 bits $11.03

Series of 3 different implementations that target different memory sizes:

o BIT (1996): H8/3292 pcontr., 2.5 KB < RAM < 64 KB, 8.5 KB < ROM
e PICBIT (2003): PIC18F6720 pcontr., 0.25 KB < RAM < 3.5 KB, 22 KB < ROM

e PICOBIT (2003): PIC18F1320 ucontr., 0.1 KB < RAM < 0.5 KB, ~4 KB < ROM

All 3 systems have compilers that eliminate dead code through a whole-program analysis

and the library is compact thanks to higher-order functions

BIT: was ported to the LEGO MINDSTORMS and Z8 Encore! platforms,
rather slow execution (~8000 byte-codes per second)

VM: stack based, stack is a chain of heap cells (this causes high pressure
on the GC)

Memory management: real-time GC, mark-compact type, 16 bit words,
smallest object = 8 bytes, stationary handles & movable bodies

PICBIT: targets high-end PICs, takes into account that RAM is the crit-
ical resource, ~2 x faster than BIT, requires little RAM but large ROM
VM: register based (reduces allocation rate for continuations), safe-for-
space, optimizing compiler

Memory management: mark-sweep blocking GC (Deutsch-Schorr-Waite
marking algo), 11 bit words, all objects = 3 bytes, 2 refs per object

PICOBIT: **work in progress*™*, targets mid-level PICs

VM: written in assembler-level macro language, stack based (stack cache
overflowing to the heap), not safe-for-space, simple compiler, multi-
threading implemented on top of continuations

Memory management: like PICBIT except: 8 bit words, all objects = 4
bytes, 3 refs per object, this takes less RAM and ROM space, RAM
and ROM objects have different representations

RAM

||
T_1

O ew

128 [o
256

[T hep

] Program

N
‘alﬂ‘o\d‘mu‘ ‘#f‘l‘z‘
=% oc | cont [selr

= Results from a simulator:

24 bit cells

Byte-
code

RAM
needed

32 bit cells

Byte-
code

RAM
needed

]
[T]
]
]

3% s 1 empty

one cell n traffic
\e:;:ri?::m tree photovore
ROM (fib 20)
pair = 3 bytes vector = 3 + n bytes 1-thread
5 7 K
o OTT1TTT “ .H. s 10-thread

cont sel f

79
164
363
113
217
253

0
24
99

294
54
84

79
164
310
113
216
252

0
20
96

228
44
84

