
Closure generation based on viewing LAMBDA asEPSILON plus COMPILEMarc FeeleyComputer Science Dept.Brandeis University415 South StreetWaltham, MA 02254Guy LapalmeD�epartement d'informatique et de recherche op�erationnelle,Universit�e de Montr�ealP.O.B. 6128, Station A,Montr�eal, Qu�ebec, H3C 3J7 (Canada)AbstractThis paper describes a way of expressing �{expressions (which produce closures) interms of �{expressions (�{expressions containing only local and global variable references)and calls to an interactive compiler that compiles �{expressions. This point of view isan interesting way of describing the semantics of �{expressions and closure generation.It also leads to an e�cient closure implementation both in time and space. A closureis uniformly represented as a piece of code instead of a compound object containing acode and environment pointer. This method can also be used to simulate closures inconventional dialects of Lisp.KEY WORDS Closure implementation Compiling Lisp Scheme

Published in: Journal of Computer Languages, Vol. 17, No. 4, pp. 251-267,Pergamon Press, 1992.

1

1 INTRODUCTIONIn many lexically scoped dialects of Lisp, e.g. Scheme[1-3], T[4,5] and Common Lisp[6],procedures are �rst class objects. They are de�ned by �{expressions of the form (lambdaformal{argument{list body). The formal argument list declares the variables that will containthe actual argument values when the procedure is later called and the body indicates theexpression that will be evaluated to compute the result. The evaluation of a �{expressionreturns a procedure that \remembers" the current state of the environment (i.e. the set ofcurrent variable bindings).1This operation is called closure. We speak of the resulting procedure as being a closure.In fact, we shall consider them to be synonymous in this paper.Closures are a useful programming feature. They can be used to express data abstrac-tions[1], to implement actors[7,8] and also to implement classes and provide data protec-tion[9]. The work of Atkinson and Morrison[10] discusses their usefulness in implementingmodules, separate compilation and database views. Closures have also been used to representcode in a Scheme compiler [11,12].Unfortunately, �{expressions give little insight into the method used to allocate andreference formal argument variables and into the way closures are represented and generated.This abstraction is �ne from the user's point of view, but a more precise de�nition wouldbe useful for implementing such languages and as a formal de�nition of the semantics of�{expressions.Our proposal is to express �{expressions in terms of simpler constructs of the sourcelanguage in an e�ort to make their evaluation mechanism more explicit and comprehensible.We are mainly concerned in evaluating this method in the context of a compiler based system.For the purpose of this paper, we shall choose Scheme as the source language. We assumethe reader is familiar with Lisp or with one of its dialects.Our approach uses �{expressions (degenerate �{expressions) and calls to an interactivecompilation procedure to express �{expressions. Compilation of �{expressions consists ofsource to source transformations followed by the compilation of the resulting simpler forms.This is similar to the way macros are processed in many Lisp compilers[3,13,14]. Compilationis performed at two levels: statically for the compilation of the �{expression and dynamicallyfor each evaluation of the �{expression (i.e. in the generation of each closure). Each closuregenerated is actually a piece of code. This clearly departs from the conventional represen-tation of closures as data structures. This paper discusses this approach and analyzes itscharacteristics.Before explaining our method further, we introduce a few concepts pertaining to closures.2 DEFINITIONS2.1 VariablesThe possibility of naming computed values in order to ease their manipulation is a funda-mental aspect of programming languages. This feature is provided by variables. A variable1�{expression evaluation should not be confused with the invocation of the procedure it produces. InCommon Lisp, �{expression evaluation is written as (function (lambda ...)).2

designates a location where a value can be stored. A variable's value can be accessed throughthe use of the variable reference and assignment operations. Variable reference consists offetching a value from the location designated by the variable and variable assignment consistsof storing a value in it. Certain constructs are used to create new variables and give themnames. These are known as the binding constructs. In Scheme, the most fundamental bindingconstruct is the lambda special form (i.e. �{expression). All other binding constructs, suchas the let, letrec, define and do special forms, can be described in terms of �{expressions.Without any loss of generality, we shall consider that the only binding construct availableis the �{expression. �{expressions are of the form (lambda formal{argument{list body).The formal argument list indicates the name of the variables that are created. In accor-dance with lexical scoping rules, the only region of the program where these name{variableassociations are e�ective is the body of the �{expression that declares them. Any use of aname, in a variable access, refers to the variable associated with this name in the innermost�{expression that binds the name and contains the use. Distinct variables can have the samename. However, at most one of these variables is accessible at a given place in the programaccording to the previous rule.Variables are either bound or free with respect to each particular �{expression. A variableis bound with respect to a �{expression if it is declared in the formal argument list of the �{expression in question, otherwise, it is free. We shall say that a variable reference is midwaywith respect to a �{expression if it is declared by an enclosing �{expression. A variable thatis free with respect to all �{expressions is said to be global. In this paper, a variable all ofwhose accesses are directly surrounded by the �{expression that binds the variable is calleda local variable. A variable that has at least one access that is midway with respect to the�{expression directly surrounding each access is called a closed variable. Global variablesare usually declared by define special forms entered at top{level whereas local and closedvariables are declared in the formal argument list of �{expressions. Global, local and closedvariables form distinct classes and every variable is a member of one and only one of theseclasses. For example, in the expression:(define (f x y)(list x y (lambda (z) (+ x z))))f, list and + are global variables, y and z are local variables and x is a closed variable(because it is midway with respect to the inner �{expression in which x is accessed).22.2 EnvironmentsThe set of all name{variable associations in e�ect at some point in the program is known asthe environment in e�ect at that point. The environment is used to �nd the variable thatis currently associated with a particular name when variable reference and assignment areperformed. However, this does not mean that the structure representing the environmentnecessarily contains the names of the variables currently accessible. All that matters is thatthe variable currently associated with a given name can be found at the same place relative to2The form (define (name ...) body) is just a more elegant way of writing the equivalent form(define name (lambda (...) body)). 3

the structure representing the environment. The classical way of implementing environmentsfor lexically scoped languages is with a linked chain of frames[15,16]. At a given time, eachframe contained in the chain corresponds to one of the �{expressions in which the currentexecution point is lexically nested. The frames are ordered in the chain by decreasing nestinglevel of the �{expression to which they correspond. Each frame contains the values of theformal argument variables of the corresponding �{expression as well as a pointer to thefollowing frame in the chain (known as the static link). The last frame of the chain containsthe global variables. When new variables are created (that is when a procedure, the valueof a �{expression, is invoked), a new frame containing the initial values of the variables isadded at the front of the environment chain. For example, consider the following expressionentered at top{level: (define (g f x)(lambda (y)((lambda (z) (f z z)) (+ x y))))When the expression ((g * 1) 2) is evaluated (resulting in the value 9), the environmentin which the expression (f z z) is evaluated is: procedure *qqqprocedure +procedure ...+*g1procedure *fx2y - -3z -- nil
Formal argument variables are accessed by going through the chain to the appropriatedepth and accessing the appropriate slot of the frame obtained. For each particular variableaccess the depth and slot at which the variable is found does not change from one evaluationto the next. In the previous example, referencing the variable f in the body of the innermost�{expression would involve going through the chain to the third frame and fetching thesecond slot. Since the time required to get to a frame is proportional to its depth in thechain this method can be expensive if the nesting level of �{expressions is great. This can bealleviated by using a vector of pointers to the frames (known as a display) instead of linkingthem with static links[17]. Variable access then consists of an indirect addressing throughthe appropriate display pointer. Using a display, the environment of the previous examplewould be:

procedure *qqqprocedure +procedure ...+*g1procedure *fx2y3z ��	���� @@R@@@@?- ?
4

and a reference to the variable f would consist of fetching the �rst slot of the frame to whichthe third entry of the display points to.2.3 ClosuresThe main operations permitted on closures are creation and invocation. Creation is obtainedby the evaluation of a de�nition, which is a �{expression. The result of the evaluation is aclosure. Like other objects, closures can be stored in variables and data structures, passed asarguments to procedures, returned as the result of procedures, etc... Invocation is obtained bythe evaluation of a combination. A combination is a list of the form (operator operand1...)whose �rst element is not the keyword of a special form.3The evaluation of the expression operator must result in a closure. The result of the invo-cation is the result of the evaluation of the body of the closure's de�nition in an environmentconsisting of the environment which was in e�ect when the closure was created augmentedby new name{variable associations. These new name{variable associations consist of eachname in the formal argument list of the closure's de�nition associated with a newly createdvariable initialized to the corresponding operand value of the combination. In case of nameconicts, the new association overrides the one which was in e�ect when the closure wascreated.The environment which was in e�ect when the closure's de�nition was evaluated is usedwhen the de�nition's body is evaluated. Consequently, there must be a way to recover it whenthe closure is invoked. The classical way of implementing closures is with a data structureconsisting of two parts. The �rst part is the code to evaluate the body of the closure, andthe second part is an environment. Closure generation consists of the packaging of thesetwo parts into a new object. In order to save space, the \code" part is actually a pointerto the code since it remains the same for all closures created for the same de�nition. Theenvironment part is the environment which was in e�ect when the closure was created. Forinstance, if we assume that environments are implemented as a linked chain of frames, aclosure generated by the evaluation of the innermost �{expression of the previous examplewould be:
procedure *qqqprocedure +procedure ...+*g1procedure *fx2y - -- XXzXXXXX��:����� code to evaluate (f z z) nil

When this closure is invoked, a new environment is constructed by allocating and linking aframe containing a single slot in front of the closure's environment. This slot, corresponding3Invocation can also be performed by using the apply procedure or, in Common Lisp, by the form(funcall operator operand1...) 5

to the variable z, is initialized to the value of the operand that is passed to the closure.This new environment is passed to the code evaluating the closure's body in order for it toaccess the variables f and z. Frame allocation for the variables of the formal argument listcan also be performed by the closure's code, in which case the operand values in additionto the closure's environment must be passed to it. Note that the environment in which theclosure's body is evaluated has nothing to do with the environment in e�ect when the closureis invoked. This is not the case of dynamically scoped dialects of Lisp which, in a sense,allocate the frame containing the formal argument variables in front of the environment ine�ect when the closure is invoked.2.4 E�ciency considerationsClosures, like all other objects, have inde�nite extent. They exist until it is no longer possibleto reference them. This implies that closures, as well as the environments they contain, mustgenerally be allocated from a heap. This often leads to ine�cient implementations due tothe cost involved in allocating and maintaining variables on the heap. This ine�ciencycan be avoided in certain situations by allocating environments on the control stack. Thiscan be performed by a clever compiler when it detects that the environment's existence isbounded[3,7]. Consider the expression:(lambda (x)((lambda (z) z)(lambda (y) (+ x y))))When the closure resulting from the evaluation of this expression is called, a closure thatuses the closed variable x is returned. The frame containing the variable x must be allocatedfrom the heap because there is always a possibility that this last closure be invoked afterthe outer �{expression's body is evaluated. For example, the closure could be stored in avariable and called much later. Now consider the following expression, obtained by replacingthe reference to the variable z by (z 1) in the previous expression:(lambda (x)((lambda (z) (z 1))(lambda (y) (+ x y))))The closure referencing the variable x, i.e. the closure created by the evaluation of the�{expression (lambda (y) (+ x y)), can not be accessed outside the �{expression thatdeclares the variable x. This means that the only moment that the variable x can be accessedis during the execution of the body of the closure that allocated it. Consequently, it is possibleto allocate the variable x on the control stack and deallocate it upon exit of the closure. Toperform such an optimization, the compiler must have some knowledge of the semanticsof �{expressions, closure invocation and data manipulation primitives. Another possibleoptimization is to consistently allocate environments on the control stack and to move themto the heap only when necessary[18]. This last method is particularly well suited for aninterpreter based system because the decision to move the environment to the heap can betaken at run time. 6

Certain implementation tricks can be used to represent environments more e�ciently.Global variables, for example, can be implemented e�ciently by using a slot in the recordof the symbol that represents the variable. This is possible because there exists only oneglobal environment (i.e. global variables designate a single location throughout the entireprogram). Allocation is performed when the symbol is �rst introduced and access can be assimple as indirect addressing of the symbol pointer. Local variables can also be implementede�ciently by allocating them on the control stack or even in registers. This is possiblebecause, by de�nition, such a variable is never accessed by another closure than the one thatallocated it. Consequently, the existence of a local variable is limited by the execution of thebody of the closure that declares it and can be deallocated upon return.Thus the environment remembered by a closure is used to access its closed variables. Ifclosed variables were not accessed, closure generation would not be needed since no envi-ronment would have to be remembered. A closure would simply be a pointer to the codeevaluating its body. Invoking closures would be straightforward since no environment wouldhave to be explicitly manipulated. A simple jump would su�ce. In fact this idea can beimplemented as an optimization performed by the compiler. In general though, closures thataccess closed variables contain both a code and environment pointer.Our closure implementation method takes a di�erent point of view unifying the conceptsof environment and closure. Instead of being a data structure containing pointers to thecode and to the environment, a closure is a piece of code which itself contains the requiredenvironment information. Closure generation consists of the generation of this piece of codeinstead of the creation of the code{environment pair. The following section describes howthis can be done by transforming �{expressions into simpler forms. Later on, we will compareour closure implementation method with the one just described in this section.3 TRANSLATING �{EXPRESSIONSThis section describes our closure implementation method which is based on a source tosource translation. We will �rst describe the basic idea and then re�ne it to improve itse�ciency.3.1 Basic methodFor the moment, we do not consider variable assignment to closed variables. This aspect,which brings additional problems, will be considered later on. The target constructs used inthe translation of �{expressions are �{expressions and calls to the compile procedure.As stated above, �{expressions are degenerate �{expressions. They are denoted by thekeyword epsilon instead of lambda and their body can only contain references to localand global variables. All free variables of an �{expression are treated as global variables(i.e. the concept of midway and closed variable does not exist for �{expressions). In away, �{expressions simply denote constant pieces of code (i.e. closures with no environmentinformation) and all evaluations of the same �{expression yield the same procedure. Thereason we use �{expressions in our transformation is that variable allocation and referenceare simple and can be implemented e�ciently. As stated in the previous section, the formalargument variables of �{expressions can be allocated on the control stack or in registers.7

The compile procedure takes a single argument representing an �{expression and re-turns a new procedure that implements the given �{expression in the global environment.For example, the evaluation of the expression (compile '(epsilon (x) (+ x 1))) and(epsilon (x) (+ x 1)) result in equivalent procedures. The compile procedure can bethought of as a procedure constructor. Thus it shares some common points with the evalu-ation of a �{expression which also creates procedures. This aspect will be exploited in ourclosure implementation method.The transformation process uses the �{conversion principle of the �{calculus[19]. The�{conversion principle states that when an abstraction (i.e. the �{calculus equivalent of aprocedure) is applied to some argument, every occurrence of the formal argument in the bodyof the abstraction can be replaced by the actual argument value. This principle permits us toimplement closed variables and, consequently, closures. A �{expression is transformed intoa call to the compile procedure. The argument is the list representation of the �{expressionwith the keyword lambda substituted by epsilon and with each reference to a closed variablereplaced by the quoted current value of the variable. For example, the expression:(define (adder x)(lambda (y) (+ x y)))is transformed into: (define (adder x)(compile`(epsilon (y) (+ ',x y))))Each time it is invoked, the procedure adder constructs the list representation of an �{expression and compiles it. The resulting procedure is perfectly equivalent to the procedurethat would have resulted from the evaluation of the corresponding �{expression. Each timex is referenced, the value which x had when the closure was generated is obtained. This isexactly what is expected. In a way, we could say that the value of the variable x is frozen intothe code of the newly created procedure. This is coherent with the �{conversion principlestated above. In general, all the closed variables accessed in a �{expression are frozen in thecode of the corresponding closure.We might question the e�ciency of this transformation. From the stand point of itsutilization, the execution time of the resulting closure is in a way \optimal" since referencesto closed variables are replaced by references to constants and it is not necessary to perform anenvironment lookup to access their value. On the other hand, closure generation is somewhattime consuming because each time a closure is generated a structure representing an �{expression must be constructed and compiled. Since the structure to compile is arbitrarilycomplex much time and space may be required to generate a closure in this fashion. Themethod may be useful in a context where closures are created rarely and invoked frequently.However, in a more realistic context, a better trade{o� between closure execution time andclosure generation time and space may be preferable.
8

3.2 Improved closure generationThe problem discussed in the previous section can be alleviated by observing that most ofthe expression to be compiled remains the same. It can be compiled once and for all and usedas a constant in the translated form. The constant part will take the form of a procedurethat we shall call the B-procedure (i.e. \body procedure"). It is expressed as an �{expressionthat has the same body as the �{expression to transform and has an argument list that is theconcatenation of the variables contained in the argument list of the �{expression with thelist of the closed variables that are referenced in its body. For example, if the �{expression(lambda (v1...vp) body) references the closed variables c1...cq, then the correspondingB-procedure is expressed by the following �{expression:(epsilon (v1...vp c1...cq) body)This has the e�ect of localizing closed variables. What remains to be done is to pass alongthe correct value for each of these variables when the closure is invoked. This is performedby an interface procedure (I-procedure) that is expressed as an �{expression with the sameargument list as the �{expression to transform and that calls the B-procedure. The completetransformation takes the �{expression (lambda (v1...vp) body) and translates it into:(compile`(epsilon (v1...vp)(',(epsilon (v1...vp c1...cq) body) v1...vp ',c1...',cq)))Applying this transformation to our previous example yields:(define (adder x)(compile`(epsilon (y)(',(epsilon (y x) (+ x y)) y ',x))))The �{expression corresponding to the B-procedure (i.e. (epsilon (v1...vp c1...cq) body))is compiled once and is shared by all the closures generated by the transformed �{expression.Compilation needs only to be performed on the �{expression corresponding to the I-procedurewhen a closure is generated. The resulting I-procedure is the closure corresponding to the�{expression that has been transformed. This transformation corresponds to the \lambda-lifting" transformation which is used in supercombinator graph reduction [20]. This articleshows how it can be applied in the environment based approach to programming languageimplementation.3.3 Internal aspect of closure generationTo fully explain the transformation process, consider the code that needs to be generatedwhen a closure is created. The code produced is for a hypothetical stack based architecturewith the following procedure invocation convention:� on entry to a procedure of n arguments, the n topmost stack locations contain theactual argument values (the last is on top of the stack).9

� the continuation (i.e. return address) of the procedure is located, on the stack, directlybelow the actual argument values.Therefore, on entry to the I-procedure, the p + 1 topmost stack locations contain thecontinuation and the values of the variables v1...vp. For instance, on entry to the closurereturned by the call (adder 3), the stack has the following format:value of xcontinuation Top of stackqqqOn the other hand, the B-procedure expects the p+ q+1 topmost stack locations to containthe continuation and the values of the variables v1...vp and c1...cq. Since the call to theB-procedure is the last in the body of the I-procedure, the B-procedure's continuation isidentical to the one passed to the I-procedure. Consequently, the I-procedure needs only topush the values corresponding to the closed variables c1...cq on the stack and to jump to theB-procedure. The code produced for the I-procedure, and thus for a closure, will be:PUSH <the value that c1 had when this code was generated>...PUSH <the value that cq had when this code was generated>JUMP- I{procedure
B{procedure@@R@@@ ...For example, the closure generated by the call (adder 3) is the piece of code:PUSH 3JUMP- - ...procedure (epsilon (y x)...value of (adder 3)and on entry to the B-procedure the stack has the following format:value of xcontinuation Top of stackqqqvalue of y

When the variable x is referenced in the B-procedure, the value 3 is obtained. Once theB-procedure has �nished computing the result (or more precisely, once the procedure + has10

�nished computing the sum), the two topmost entries of the stack are discarded and executionresumes at the continuation.The method can easily be extended to systems having other procedure invocation con-ventions. For a register based architectures that passes the arguments to a procedure of narguments in the registers R1..Rn and the continuation in R0, the following code can beproduced for the I-procedure:LOAD Rp+1; <the value that c1 had when this code was generated>...LOAD Rp+q ; <the value that cq had when this code was generated>JUMP- I{procedure
B{procedure@@R@@@ ...One way or another, the code generated for an I-procedure is simple and regular. Thiscomes from the fact that it is de�ned by an �{expression that has a regular structure. Thewhole generality o�ered by the compile procedure is therefore not needed and a specializedcompilation procedure can be used instead. In order to generate the appropriate code, thisprocedure, that we shall call closure, needs to know the B-procedure and the value of theclosed variables c1...cq. The value of p may also be needed by closure depending on theprocedure invocation convention. Using closure, the transformation of the �{expression(lambda (v1...vp) body) would produce the form:(closure c1...cq (epsilon (v1...vp c1...cq) body)).4 ASSIGNMENTUp to now, we have not considered assignment to closed variables. If our method stayed as itis, assignment to �{expression variables would only modify the corresponding local variable.But an assignment to a closed variable must a�ect all closures in which it participates. Thisis essential to implement mutable data abstractions with closures[1].A closed variable that is assigned to, will be called a mutable variable. Assignment to sucha variable can be handled in the following way. When a procedure that declares a mutablevariable is entered, a cell (i.e. a frame containing a single value) is allocated from the heapand the corresponding actual argument value is stored in the cell. Assignment consists ofstoring a value in the cell and reference (i.e. variable evaluation) consists of fetching thecell's contents. Closures that share a same mutable variable will in fact share the cell whichis associated to the variable.Minor modi�cations to the previously described transformation process are needed todeal with assignment correctly. Cells are allocated and initialized, through the use of theprocedure cell, at the beginning of procedures that declare mutable variables. In orderto use them, the address of the cells are saved in temporary variables, of the same name,declared through the use of an �{expression. Reference and assignment to a mutable variable11

are transformed into calls to the fetch and store procedures respectively.4 Also, when aclosure is generated, the value used in the I-procedure is the mutable variable's cell address,not its contents. For example, the form:(define (tally x)(lambda (y)(set! x (+ x y))x))is transformed into:(define (tally x)((epsilon (x)(closure x (epsilon (y x)(store x (+ (fetch x) y))(fetch x))))(cell x)))The closure generated by the call (tally 100) is the piece of code:PUSHJUMP- - ...procedure (epsilon (y x)...value of (tally 100)����� 100cell for x
Mutable variables thus occupy slightly more space and are more expensive to access thanother variables since an additional indirection must be performed to access them. This isnot a major inconvenience especially considering that the programming style advocated inapplicative languages is usually without side{e�ect.It is worthwhile noting that cells could be allocated for all closed variables regardless ofwhether they are mutable or not. Not having to allocate cells for closed variables that arenot mutable can be regarded as an optimization, possible because the value of such variablesnever changes.5 TRANSLATION ALGORITHMThe translation of �{expressions is a two pass process. The �rst pass consists of scanningthe input expression to construct a graph structure that represents it. Each node of thegraph represents a subexpression and contains additional information collected during thispass. In particular, the structure representing variables indicates if the variable is global,4The procedures cell, fetch and store can be implemented with dotted{pairs:(define (cell v) (list v))(define (fetch b) (car b))(define (store b v) (set-car! b v)) 12

local or closed and if it is used in an assignment. During this pass, a structure describingthe environment is maintained in order to be able to �nd the structure that represents aparticular variable. The information concerning variables is updated when variable referencesand assignments are discovered in the expression. A variable declared in a �{expression isinitially local and becomes closed if it is accessed in the body of another �{expression.Similarly, variables are initially non{assigned and become assigned if an assignment to thatvariable is found. Also, each node representing a �{expression contains the list of closedvariables that are used in its body. This list is initially empty and is augmented each timean access to a closed variable is found while processing it's body. Note that this analysis issimple because Scheme is lexically scoped and that arguments are always passed by value. Amuch more complex analysis, possibly involving interprocedural analysis, would be needed ifthis was not the case.The second pass scans the graph structure obtained and reconstructs the correspondingScheme expression based on the accumulated information found in the graph. There are threecases where the portion of expression reconstructed is not identical to that of the originalexpression. The �rst occurs for a reference to a closed variable that is also used in an assign-ment. In this case the expression (fetch var) must be produced instead of var. The secondcase occurs for an assignment to a closed variable, (store var val)must be produced insteadof (set! var val). Finally, for a �{expression the expression (compile `(epsilon ...))or (closure ... (epsilon ...)) must be produced as previously described. Cells mustalso be created for �{expressions that declare mutable variables.We have implemented the translation process in Scheme. The program is about 150 lineslong and only handles the basic special forms of Scheme since they can be used to expressthe other special forms. The main procedure is lambda->epsilon+compile; it takes anexpression and translates it into an equivalent expression containing �{expressions and callsto the compile procedure. Here is a sample translation as performed by our program:Call:(lambda->epsilon+compile'(define special-cons(lambda (x y)(lambda (msg)(cond((eq? msg 'car) x)((eq? msg 'cdr) y)((eq? msg 'set-car!) (lambda (v) (set! x v))))))))Result:(define special-cons(epsilon (x y)((epsilon (x y)(compile(list 'epsilon '(msg) 13

(list(list 'quote(epsilon (msg y x)(cond((eq? msg 'car) (fetch x))((eq? msg 'cdr) y)((eq? msg 'set-car!)(compile(list 'epsilon '(v)(list(list 'quote(epsilon (v x) (store x v)))'v(list 'quote x))))))))'msg(list 'quote y)(list 'quote x)))))(cell x)y)))This example, inspired from Reference 1, is an implementation of special dotted pairsusing closures (only the car part of the pair can be modi�ed). The example contains amutable variable and a non{mutable closed variable. As can be seen, the closure created forthe most internal �{expression will not retain the closed variable y since it is not used in it'sbody. This is a natural consequence of the translation algorithm.6 PERFORMANCEThe general performance of a Scheme system depends on many parameters such as theinternal representation of objects, the frequency of usage of each Scheme construct, thecontext in which they are used and many other parameters that are not directly relatedto the closure implementation method. Our goal is not to study the impact of all theseparameters on the performance of a Scheme system; we will limit ourselves to the aspectsthat are directly related to closures.Two important aspects to analyze are the amount of memory used and the executiontime. In order to appreciate the merits of our method, we proceed to a comparative analysiswith the classical closure implementation method. To assist this analysis we have conducteda study of the execution characteristics of Scheme programs which is summarized in Figure 1.First we de�ne more precisely the classical method used in our analysis. It consists inrepresenting closures as a data structure containing two �elds. The �rst is a pointer to theclosure's code and the second is a pointer to the de�nition environment. The environment isrepresented as a linked chain of frames that only contains the closed variables. Local variablesare allocated on the execution stack and global variables are allocated in the symbol thatrepresents the variable. Hence, there is no frame associated with the global environment in14

average fib sort *sort queens deriv dderiv interp comp exec% % % % % % % % % %Primitive constructsVariable reference 53.8 48.0 59.9 47.1 55.9 51.5 53.4 55.9 49.1 63.8Procedure application 29.7 28.0 30.4 24.0 29.8 29.6 29.9 29.9 31.1 34.8Conditionnal expression 8.7 8.0 8.7 11.6 8.9 9.5 8.5 10.4 11.6 1.3Constant reference 7.0 16.0 0.9 14.4 5.2 9.5 8.3 3.8 4.9 0.1Procedure creation 0.6 2.8 3.1Variable referencesGlobal 49.6 58.3 50.7 36.7 53.1 54.4 53.0 52.1 63.0 25.7Local 43.8 41.7 49.3 49.0 46.6 45.6 47.0 46.7 35.3 33.6Closed in frame 1 6.0 14.3 0.3 1.2 1.4 37.0in frame > 1 0.4 0.2 3.6Procedure application typePrimitive procedure 71.7 71.2 82.7 48.0 83.6 74.7 71.8 80.5 77.9 55.2Closure def env len = 0 19.7 28.8 17.3 23.9 15.8 25.3 28.2 18.7 19.9 0.2def env len = 1 8.0 28.1 0.6 0.8 1.8 41.3def env len > 1 0.4 0.4 3.3Procedure application locationNon-tail application 82.6 85.6 82.9 88.0 91.6 83.3 80.5 82.0 88.2 61.9Tail application 17.3 14.4 17.1 12.0 8.4 16.7 19.5 18.0 11.8 38.1fib �bonacci function, (fib 10)sort selection sort of a list*sort selection sort of a list represented with closuresqueens solution to the 'n' queens puzzle using listsderiv symbolic derivationdderiv data driven symbolic derivationinterp small Scheme interpreter evaluating (fib 10)comp small Scheme compiler compiling �bonacci function into a closure treeexec execution of the code generated by comp for the call (fib 10)deriv and dderiv programs are from Reference 23, all others can be found in Reference 11.Figure 1: Dynamic characteristics of some Scheme programs
15

the chain. The closure is responsible for the allocation of the frame in front of the environmentchain for its parameters that are closed. As additional optimizations, the last frame of thechain does not contain a static link and empty frames are never placed on the environment.Throughout execution, the current environment is pointed to by a global pointer (e.g. aregister).The procedure invocation convention is similar for both methods and consists in pushingthe continuation on the execution stack followed by each argument of the procedure appli-cation. The major di�erence resides in how control is passed to the procedure. With ourmethod, a simple jump to the pointer denoting the procedure is needed. No environmentpointer, besides the stack pointer, needs to be manipulated. With the classical closure imple-mentation method, each part of the code{environment pair must be extracted, the currentenvironment must be set to the closure's environment and �nally a jump to the code mustbe performed. Thus it is reasonable to believe that the procedure invocation code will beshorter and faster with our method.Furthermore, when the application is non{terminal (e.g. when evaluating an argumentto an application), which according to Figure 1 is a frequent case, the classical method mustsave the caller's environment on the execution stack and restore it upon return in order toaccess any closed variables in the remaining calling procedure's body. This operation couldbe avoided if the environment pointer was always stored on the stack but this would increasethe cost of each access to closed variables. This operation is unnecessary for our methodsince all non{global variables are located on the stack.Also, if all procedures are represented in the same way with a code{environment pair,the application of procedures with a null de�nition environment (i.e. primitive proceduresand most user de�ned procedures) will perform the general treatment even if this is notreally necessary. On the other hand, if they have a distinct representation, they will haveto be distinguished for each application because the type of procedure that will be called isunknown at compile time. This is not the case for our method since primitive procedures aswell as true closures are both represented by a piece of code and a simple jump su�ces to passthem control. We believe this aspect is of great importance especially since the applicationof such procedures is by far the most frequent in programs and that it will have a signi�cantimpact on overall performance.Some systems circumvent this problem by treating combinations whose operator is aglobal variable initially bound to a prede�ned procedure (such as +, car, read) in a specialway. These systems will generate speci�c code for such combinations assuming that theywill always invoke the corresponding prede�ned procedures. This leads to e�cient code butof course violates Scheme semantics since global variable initially bound to a prede�nedprocedure cannot be changed.As explained earlier, our closure implementation method provides fast access to closedvariables. An access to a non{mutable closed variable consists of an indirection with dis-placement relative to the stack pointer. For a mutable variable, an additional indirection isneeded. With the classical method, accessing a closed variable is performed by an indirectionwith displacement relative to the frame that contains the variable in the chain. This frameis obtained by descending the chain to the right level. If the closed variable is in the nthframe from the beginning of the chain, n� 1 indirections are needed. These indirections can16

be reduced to a single indirection with displacement if the environment is represented with adisplay of frames. Therefore, the only situation where our method involves more instructionsand time to access a closed variable is when the variable accessed is mutable and in the �rstframe, the di�erence being of an additional indirection. In the other cases, our method isat least as good as the classical method and progressively better as the depth of the framecontaining the variable in the chain increases. Given the results of Figure 1, it seems thatboth methods will yield similar performance for variable access since closed variables accessedare most often in the �rst frame.The space occupied by a closure is more di�cult to analyze. This di�culty comes in partfrom the fact that certain portions of the closures may be shared between many closures.Also, the additional space required to represent the objects in memory (e.g. GC information,type tag, length, etc...) should be considered. However, this varies from one system toanother. In order to simplify the analysis, we will suppose that this additional space is nulland we won't count the space for the code of the closure's body in the space occupied bythe closure itself. Consider our method. The space occupied by a closure depends on thenumber of mutable closed variables (NM) and non{mutable closed variables (NN) used bythe closure, on the size of the opcodes for the instructions PUSH (SP) and JUMP (SJ) and onthe size of an address (SA). The total space occupied by a closure created with our methodis thus: (NM +NN) � (SP + SA) + SJ + SA +NM � SANote that the last term of this equation corresponds to the cells associated with themutable variables. These cells can be shared between closures. Now consider the classicalmethod. The space occupied by closure depends on the number of closed variables in theenvironment chain (NC), on the number of frames in the chain (NF) and on SA. The totalspace occupied by a closure created with the classical method is thus:2 � SA +NC � SA + (NF � 1) � SAHere, the last two terms correspond to the space occupied by the environment chain whichcan be shared between closures. However, this environment can contain an arbitrary number(X) of closed variables that are not used by the closure (i.e. NC = NM +NN +X, X � 0).This particularity, which happens when many closures that use di�erent closed variables arecreated from the same environment, makes the comparison between the two methods harder.The most favorable case for the classical method occurs when a large number of closuresshare a same environment. In that case, practically no more space is needed per closure thanthat needed for the code{environment pair (i.e. 2 � SA). The worst case happens when X islarge, the environment chain is long and the de�nition environment is not shared.In order to measure and compare the performance of both methods, we have performedsome benchmarks. We translated four Scheme procedure de�nitions in MC68000 assemblerby hand using each closure implementation method. These de�nitions, the calls performedand the closures created during the execution of the procedures are shown in Figure 2. Wemeasured four characteristics: the space occupied by the MC68000 code corresponding to thede�nition, the space allocated for the closures during the call of the de�ned procedure, the17

time required to execute the procedure call and the time required to execute the resultingclosure (which is, in the last three cases, a one argument closure). Figure 3 shows the resultswhen executed on a Macintosh Plus computer.The space occupied per closure can be computed using these informations: on theMC68000, SA = 4 bytes and SP = SJ = 2 bytes (since the instructions PUSH and JUMPcorrespond to MOVE.L # pnt,-(SP) and JMP pnt.L). In the case of our closure implementa-tion method, we have open coded the closure generation code instead of calling the procedurescompile or closure. This lengthened the code used by the de�nitions and diminished theclosure generation time.The results show that the code for procedures implemented using our method is 10{15%shorter than and, except for a special case discussed later on, as fast as the procedures imple-mented with the classical method. Since these procedures mainly perform closure creations,this observation is attributable to the di�erences from the stand point of closure generation.The results also indicate that, for the benchmarks performed, the space occupied by theclosures created with our method is up to 25% more that for the classical method. However,if we only consider the closures that can still be referenced after the procedures are executed(i.e. the last closure generated in each test), then the space occupied is up to 40% less for ourmethod. The closures created by our method have the advantage of only retaining the closedvariables that are necessary for their own execution. On the other hand, closed variables arenot shared between closures. Therefore, the space occupied by the closures depend on thecontext and from this stand point, none is clearly superior to the other in all contexts.Finally, the results show that the closures created with our method execute 15{30%faster than the closures created with the classical method. This �gure measures the time forreferencing closed variables and to invoke closures.The results are therefore favorable for our closure implementation method. However, ourmethod has hidden weaknesses as demonstrated by the execution of the procedure test3which is 25% slower than when implemented with the classical method. This procedurecontains deeply nested �{expressions and the innermost �{expression uses variables that areclosed with respect to the enclosing �{expressions. In this case, the closures created forenclosing �{expressions must retain these variables in order to be able to create the closuresfor the inner �{expressions. A certain e�ort is required to create these closures and to pushthe values on the stack when the closures are invoked. In the procedure test3, only the lastclosure generated uses the closed variables a, b and c. Thus the e�ort expended in pushingthe values on the stack in order to speed up closed variable access is not really useful sincethese closed variables are only referenced when the closure is invoked later on. According toFigure 1, this case occurs infrequently.Closer examination of our method suggests a similarity with a cache. On entry to aclosure, the value of the closed variables it references are copied on the control stack (orin registers). This puts the values in a place which can be accessed e�ciently. Thoughcopying costs time, it is expected that these values will be accessed frequently and thus, thatthe overall execution time will be lowered. If many values are copied and they are seldomreferenced, the copying time may overwhelm the access time saved. In such a case, a hybridclosure implementation can be preferable. It consists in representing environments in thesame way as the classical method and representing closures as a piece of code of the form:18

(define (test1 a b c)(lambda1 ()(f a b c)))(test1 1 2 3)
(define (test2 a b c)(f (lambda1 () a)(lambda2 () b)(lambda3 () c)))(test2 1 2 3)
(define (test3 a)((lambda1 (b)((lambda2 (c)(lambda3 ()(f a b c)))3))2))(test3 1)

-

- 3 2 1c b a
((lambda (c)...(lambda ()...(f a b c)

abc@R@@ 1a 2b 3c

(f a b c)
Expression Classical method

- ---

-

@R@

1a 2b 3c

(f a b c)(lambda ()...((lambda (c)...PUSH 1JUMPPUSH 1PUSH 2JUMPPUSH 1PUSH 2PUSH 3JUMP ---

aPUSH 1JUMP - bPUSH 2JUMP - cPUSH 3JUMP -

PUSH 1PUSH 2PUSH 3JUMP -- (f a b c)
Our method

---�3

(define (f a b c) c)(f 1 2 3) - c- -f cf nil

�2�1
�3�2�1

@R@@ @R@@@@

@@R@�1 �1
�1�2�3
�1�2�3

Figure 2: Layout of closures
19

space for space for time for time toCall closure(s) call call call result(bytes) (bytes) (�sec) (�sec)Our method(f 1 2 3) 6 27(test1 1 2 3) 128 24 50 40(test2 1 2 3) 164 36 80 21(test3 1) 170 54 101 40Classical method(f 1 2 3) 6 34(test1 1 2 3) 152 20 51 51(test2 1 2 3) 180 36 81 25(test3 1) 192 44 80 56Figure 3: Test resultsPUSHJUMP- ��:�����XXzXXXXX Closure's environmentClosure's body- -Closure
This method has the same characteristics as the classical method except that the closuresoccupy slightly more space (i.e. SP + SJ) and are invoked by jumping to them.An advantage of lexically scoped languages is that all accesses to a variable occur in thebody of the �{expression that declares the variable. Consequently, the compiler can choose,with a local analysis of a program, the representation it judges more e�cient for a particularenvironment when it compiles a �{expression. Our standard method could be used undercertain circumstances and the hybrid method in others. The prerequisite being that theprocedure invocation convention is the same for each representation, which is the case of ourstandard and hybrid method.7 RELATED METHODSWe think the central idea of our method is that closures should be a true piece of codeinstead of a data structure which represents a piece of code for an abstract machine as isusually done. In this way procedure application is a simple jump and the caller need notknow if the procedure has closed variables or not in order to call it e�ciently. Other closurerepresentations can be adapted to include this idea.In his Functional Abstract Machine, Cardelli[21,22] uses a single frame representation forclosures. The �rst slot contains a pointer to the code of the closure's body and the remainingslots correspond to the closed variables of the closure. When the closure is invoked a jumpto the closure's body is performed and a pointer to the frame itself is passed (in order for20

the closure's body to access the closed variables). This is very similar to our method exceptthat we place PUSH opcodes between the slots and a JUMP opcode before the pointer which isat the end of the frame.One could modify this representation is several ways to turn it into a true piece of code.One simple way is to add a single \branch-and-link" opcode as a pre�x to the frame:
<the value that c1 had when this closure was generated><the value that cq had when this closure was generated>...- JSR Closure's body...Closure ����

When this closure is \jumped to", the JSR instruction transfers control to the closure'sbody and the address of the closed variables is automatically pushed on top of the stack.This address can then be used to access the closed variables of the closure. This approachwas used in the Gambit compiler with good results[23].Another interesting use of our method is to implement closures in dialects of Lisp which donot have them. This is possible because in many dialects of Lisp which do not have closures,the form (lambda ...) is the equivalent of an �{expression and eval (when it is applied tothe list representation of a procedure de�nition) is equivalent to the compile procedure. Inother words, the S{expression (lambda ...) is a \true piece of code" for the evaluator (i.e.the eval procedure and/or the underlying interpreter). For example, in Franz{Lisp[24], theform:(eval '(function (lambda ...)))is equivalent to our:(compile '(epsilon ...))Using these equivalences, one can translate the procedure adder, described earlier, inFranz{Lisp as follows:(defun adder (x)(eval`(function (lambda (y)(',(function (lambda (y) (+ x y)))y',x)))))Of course, the user should not be compelled to enter this form and the actual transforma-tion would probably be best performed by a macro. For instance, lambda could be rede�nedas a macro that would perform the transformation described. �{expressions would then havelexical scoping semantics just like Scheme.
21

8 CONCLUSIONWe have shown that �{expressions can be translated into simpler constructs, namely: �{expressions and calls to a compilation procedure. This seemingly ine�cient method has beenre�ned. It yields a closure implementation e�cient both in time and space. A closure isimplemented as a piece of code instead of a compound object containing a code and environ-ment pointer. Closure invocation is as simple as a jump and variable access does not implya costly environment lookup. The transformation process has been extended to deal withassignment. It can be used in a compiler and also to simulate closures in dialects of Lispwhich do not have them. It can also be used in conjunction with other closure representationmethods to improve all procedure application times (be they to true closures or not). SinceScheme's basic constructs are variable reference and assignment, closure generation, proce-dure application, constant reference and conditional evaluation and that the performance ofthe �rst four of these constructs is inuenced by our closure implementation method, it isreasonable to believe that a Scheme system using our method will perform well.9 REFERENCES1. Abelson, H., Sussman, G. J., Sussman, J., Structure and Interpretation of ComputerPrograms. MIT Press, Cambridge, Massachusetts, 1985.2. Rees, J. A., Clinger, W., (editors) The Revised3 Report on the Algorithmic LanguageScheme. ACM SIGPLAN Notices 21, 12, pages 37{79, December 1986.3. Steele, G. L., Rabbit: a compiler for Scheme. MIT Arti�cial Intelligence Memo 474,Cambridge, Massachusetts, May 1978.4. Rees, J. A., Adams, N. I., T: A Dialect of Lisp or, LAMBDA: The Ultimate SoftwareTool. In Conference record of the 1982 ACM Symposium on Lisp and FunctionalProgramming, pages 114{122, Pittsburgh, Pennsylvania, August 1982.5. Rees, J. A., Adams, N. I., Meehan, J. R., The T Manual. Computer Science Department,Yale University, New Haven, Connecticut, January 1984.6. Steele, G. L., Common Lisp: the Language. Digital Press, 1984.7. Steele, G. L., Lambda: the ultimate declarative. MIT Arti�cial Intelligence Memo 379,Cambridge, Massachusetts, November 1976.8. Sussman, G. J., Steele, G. L., Scheme: An Interpreter for extended Lambda Calculus.MIT Arti�cial Intelligence Memo 349, Cambridge, Massachusetts, December 1975.9. Wand, M., Continuation{Based Multiprocessing. In Conference record of the 1984 ACMSymposium on Lisp and Functional Programming, pages 19{28, Stanford, California,August 1980.
22

10. Atkinson, M. P., Morrison, R., Procedures as Persistent Data Objects. In ACM Transac-tions on Programming Languages and Systems, vol. 7, no. 4, pages 539{559, October1985.11. Feeley, M., Deux approches �a l'implantation du langage Scheme. Document de travailno 183, D�epartement d'informatique et de recherche op�erationnelle, Universit�e de Mon-tr�eal, May 1986.12. Feeley, M., Lapalme, G., Using Closures for Code Generation. Computer Languages,vol. 12, no. 1, pages 47{66, 1987.13. Brooks, R. A., Gabriel, R. P., Steele, G. L., An Optimizing Compiler for lexically ScopedLisp. In Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, pages261{275, June 1982.14. Griss, M. L., Hearn, A. C., A Portable Lisp Compiler. In Software{Practice and Expe-rience, vol. 11, pages 541{605, 1981.15. Aho, A. V., Ullman, J. D., Principles of Compiler Design. Addison{Wesley, Reading,Massachusetts, 1977.16. Randell, B., Russell, L. J., Algol 60 implementation. Academic Press, New York, NewYork, 1964.17. Dijkstra, E. W., Recursive Programming. In Programming Systems and Languages,McGraw{Hill, New York, New York, 1967.18. McDermott, D., An e�cient Environment Allocation Scheme in an Interpreter for aLexically{scoped Lisp. In Conference record of the 1980 ACM Symposium on Lisp andFunctional Programming, pages 154{162, Stanford, California, August 1980.19. Church, A., The Calculi of Lambda{Conversion. Annals of Mathematics Studies Number6, Princeton University Press, Princeton, New Jersey, 1941.20. Peyton Jones, S.L., The Implementation of Functional Programming Languages, Prentice-Hall, 1987.21. Cardelli, L., The Functional Abstract Machine. Bell Labs Tech. Report TR-107, 1983.22. Cardelli, L., Compiling a Functional Language. In Conference record of the 1984 ACMSymposium on Lisp and Functional Programming, Austin, Texas, August 1984.23. Feeley, M., Miller, J. S., A Parallel Virtual Machine for E�cient Scheme Compilation. InConference record of the 1990 ACM Symposium on Lisp and Functional Programming,Nice, France, June 1990.24. Foderaro, J. K., Sklower, K. L., The FRANZ LISP Manual. University of California,Berkeley, California, April 1982. 23

Biographical sketchesMarc Feely received a Bachelor's degree (1983) and a Master's degree (1986) in ComputerScience from the Universit�e de Montr�eal. He is now working on a Ph.D. in ComputerScience at Brandeis University. His research interests include programming languagedesign and implementation, parallel processing and symbolic processing.Guy Lapalme is a professor of Computer Science at the Universit�e de Montr�eal. His re-search interests in computer languages are functional programming and object orientedlogic programming. He is also interested in natural language generation and in the useof arti�cial intelligence techniques in the domains of operations research and tridimen-sional molecular structure determination.

24

