
Etos: an Erlang to Scheme compilerMarc Feeley and Martin LaroseUniversit�e de Montr�ealC.P. 6128 succursale centre-villeMontr�eal H3C 3J7, Canadaffeeley,larosemg@iro.umontreal.caAugust 18, 1997AbstractThe programming languages Erlang and Scheme havemany common features, yet the performance of thecurrent implementations of Erlang appears to be be-low that of good implementations of Scheme. Thisdisparity has prompted us to investigate the transla-tion of Erlang to Scheme. In this paper we describethe design and implementation of the Etos Erlangto Scheme compiler and compare its performance toother systems. On most benchmark programs, Etosoutperforms all currently available implementationsof Erlang.1 IntroductionErlang [3] and Scheme [13, 5] have some obvious dif-ferences (e.g. in�x vs. pre�x syntax, pattern match-ing vs. access functions, catch/throw vs. call/cc,concurrency) but also a large number of similarities(e.g. use of functional style, dynamic typing, auto-matic memory management, data types). Erlang hasbeen mostly developed internally at Ericsson and asa result there is a limited choice of compilers. As theimplementers of these compilers freely admit [1], \Per-formance has always been a major problem". On theother hand there are many implementations of Schemeavailable [15] and the good compilers appear to gen-erate faster code than the Erlang compilers availablefrom Ericsson (for example Hartel et al. [11] hasshown that the \pseudoknot" benchmark compiledwith Ericsson's BEAM/C 6.0.4 is about 5 times slowerthan when compiled with the Gambit-C 2.3 Schemecompiler).

Because of the strong similarity between Erlang andScheme and the availability of several good Schemecompilers, we have begun the implementation of anErlang to Scheme compiler called \Etos". This paperexplains the major design issues of such a compiler,how these are solved in Etos 1.4, and the performanceof the compiler compared to other Erlang compilers.2 Portability vs E�ciencyEarly on we decided that portability of the compilerwas important in order to maximize its usefulness andallow experiments across platforms. Etos is written instandard Scheme [5] and the generated programs con-form fairly closely to the standard (the discrepanciesare explained later).It is clear however that better performance can beachieved if non-standard features of the target Schemeimplementation are exploited (in particular the exis-tence of fast operations on �xed precision integers,i.e. �xnums). To allow for this, the generated codecontains calls to Scheme macros whose de�nition de-pends on the target Scheme implementation. The ap-propriate macro de�nition �le is supplied when theScheme program is compiled. This avoids the needto recompile the Erlang program from scratch whenthe target Scheme implementation is changed. Forexample, the Erlang addition operator is translatedto a Scheme call to the erl-add macro. The macrocall (erl-add x y) may simply expand to a call toa generic addition procedure which adds x and y, orif �xnum arithmetic is available, expand to an inlineexpression which performs a �xnum addition if x andy are �xnums and otherwise calls the generic addition1

procedure.Using a macro �le also allows to move some of thecode generation details out of the compiler and intothe macro �le, making it easy to experiment and tunethe compiler. For example the representation of Er-lang data types can easily be changed by modifyingthe macro de�nitions.3 Direct TranslationWe also wanted the translation to be direct so that Er-lang features would map into the most natural Schemeequivalent. This has several bene�ts:� Erlang and Scheme source code can be mixedmore easily in an application if the calling conven-tion and data representation are similar. Specialfeatures of Scheme (such as �rst-class continua-tions and assignment) and language extensions(such as a C-interface and special libraries) canthen be accessed easily.� The generated code can be read and debugged byhumans.� A comparison of compiler technology between Er-lang and Scheme compilers will be fairer becausethe Scheme compiler will process a program withroughly the same structure as the Erlang com-piler.When a direct translation is not possible, we triedto generate Scheme code with a structure that we feltwould be compiled e�ciently by most Scheme compil-ers. Nevertheless there is often a run time overheadin the generated Scheme code that makes it slowerthan if the application had been written originally inScheme. For example, Erlang's \<" operator is generic(it works on numbers as well as lists and other datatypes) but in most application programs it is only usedto compare numbers. The code generated by Etoscan't use Scheme's \<" primitive directly because itworks on numbers only.4 Data TypesThe most important Erlang data types have a directequivalent in standard Scheme:

Erlang Schemeinteger exact integeroat inexact realatom symbollist listtuple vectorfunction procedure4.1 NumbersScheme numbers are organized into a class hierarchy:integer � rational � real � complex. Independentlyof their class, numbers have an \exactness". For in-stance 2.0 denotes the inexact number 2 and 1/2 de-notes the exact number 0.5. Scheme exact integerscorrespond to Erlang integers. In both Scheme andErlang, integers can be of limited range (24 bits min-imum required by Erlang) but typically they are im-plemented as bignums which have unlimited precision.Scheme inexact reals correspond to Erlang oats.An unfortunate consequence of this representationis that testing for an Erlang integer or oat trans-lates into two tests in standard Scheme (i.e. (and(integer? x) (exact? x)) tests if x is an exact in-teger).Scheme's rational and complex numerical types arenot needed as they do not exist in Erlang.4.2 AtomsScheme symbols can be used to represent Er-lang atoms. Both can contain arbitrary charac-ters and symbols can be compared for equality ef-�ciently with the eq? predicate (which is simplya pointer comparison in many implementations ofScheme). The Scheme procedures string->symboland symbol->string are equivalent to the Erlangbuilt-in functions list_to_atom and atom_to_listexcept that the former deals with strings (which inScheme is a data type separate from lists).One complication is that Scheme is a case-insensitive language. Variables and symbols in thesource of Scheme programs are stripped of theircase. A simple solution for variables is to pre�xuppercase letters with an escape character (i.e. ^),so that the Erlang variable ListOfFloats becomes^list^of^floats in Scheme.2

The only way to force a particular case for symbolsin Scheme is to use the procedure string->symbol.Constants containing atoms (e.g. the constantlist [one,two]) are created at run time usingstring->symbol. This is done by storing the objectscreated into global variables once in the initializationphase of the Scheme program and references to theseglobals replace references to the constants. Constantsnot containing atoms get converted to Scheme con-stants.Alternative representations for atoms which wererejected are:� Strings: no special treatment for uppercase let-ters is needed but the equality test is much moreexpensive.� Symbols with escape character for uppercase let-ters: requires an unnatural and ine�cient trans-lation of list_to_atom and atom_to_list.4.3 ListsLists are handled similarly in Scheme and Erlang. InScheme, lists are made up of the empty list (i.e. '())and pairs created with the binary cons primitive orthe variable arity list primitive. The primitives carand cdr extract the head and tail of a list.4.4 TuplesScheme vectors are the obvious counterpart of tu-ples. Vectors are constructed either with the vari-able arity vector primitive (Erlang's {...}), thelist->vector primitive (Erlang's list_to_tuple),or the make-vector primitive (which creates a vec-tor of length computed at run time).A minor incompatibility is that tuples are in-dexed from 1 (with the element builtin function)and Scheme vectors are indexed from 0 (with thevector-ref primitive).A more serious problem is that lists and vectorsare the only compound data structures in standardScheme. Since the Erlang data types port, pid, ref-erence, and binary don't have a direct counterpartin Scheme, they must be implemented using lists orvectors. We have used vectors to implement thesedata types (as well as tuples and functions) becausetheir content can be accessed in constant time. The

�rst element of the vector is a symbol which in-dicates the type and the data associated with thetype is in the remaining elements. Thus the tuple{1,2,3} is represented by the Scheme vector #(tuple1 2 3). Note that with this representation, tupleindexing does not require a run time decrement ofthe index to access an element. However, an Erlangtype test translates to two Scheme tests (for example(and (vector? x) (eq? (vector-ref x 0) 'tuple))tests if x is a tuple).A more space e�cient representation which is basedon Scheme's ability to test object identity with eq? isto use no tag for tuples and a special tag for non-tuples:(define pid-tag (vector 'pid))(define make-pid(lambda (...)(vector pid-tag ...)))(define pid?(lambda (x)(and (vector? x)(> (vector-length x) 0)(eq? (vector-ref x 0) pid-tag))))This representation was not used because typetesting (which is a frequent operation in pattern-matching) is more expensive in this representation.One more test is required for non-tuples (as shownabove) and many more tests for tuples:(define tuple?(lambda (x)(and(vector? x)(or (= (vector-length x) 0)(let ((tag (vector-ref x 0)))(not(or (eq? tag function-tag)(eq? tag port-tag)(eq? tag pid-tag)(eq? tag reference-tag)(eq? tag binary-tag))))))))4.5 FunctionsScheme procedures are the obvious counterpart of Er-lang functions. Erlang functions are of �xed arity sothe variable arity mechanism of Scheme is not nec-essary. Both Erlang and Scheme can create and callfunctional objects (known as \closures" in the Schemecommunity).3

Unfortunately, this direct representation does notsupport error detection. Erlang's general functioncalling mechanism needs to ensure that the functionthat is being called is of the appropriate arity, and sig-nal an error if it isn't. Because there is no standardway in Scheme to extract the arity of a procedure or totrap the application of a procedure to the wrong num-ber of arguments, functional objects are representedas a tagged vector which contains the function's arityand the corresponding Scheme closure.Note that toplevel functions of a module containthe arity information in their name and no arity testis needed when they are called. For example the func-tion bar of arity 2 in module foo will be translated toa Scheme lambda-expression of arity 2 bound to theglobal variable foo:bar/2 (which is a valid variablename in Scheme). When the compiler encounters acall such as foo:bar(1,2), it will translate it to aScheme call to foo:bar/2 which is guaranteed to bebound to a procedure of arity 2.4.6 Other TypesThe other Erlang data types (port, binary, record)are only partially implemented in Etos 1.4 but this ismostly because of a lack of time. They can be repre-sented with tagged Scheme vectors as shown above.Note that Erlang records are just syntactic sugarfor tuples so no special representation is required forthem.5 Front EndTo ensure compatibility with existing Erlang compil-ers, Etos' parser speci�cation was derived from theone for the JAM interpreter and processed by our ownScheme parser generator [6, 4]. The original parserconstructs a parse tree built of tuples. Because Etosneeds to attach semantic information on the nodes ofthe parse tree, a conversion phase was added to extendthe tree nodes with additional �elds. This conversionalso computes the bound variables at each node andperforms constant propagation and constant folding.Constant propagation and folding are mainly neededto avoid allocation of structures which are constant,such as in:f(X) -> Y = {1,2}, [X,Y,3,4].

which gets compiled as though it were:f(X) -> [X|[{1,2},3,4]].The list [{1,2},3,4] is represented internally as theScheme constant list '(#(tuple 1 2) 3 4).Following this, the free variables before and aftereach node are computed. This is done as a separatepass because the bound variable analysis requires aleft-to-right traversal of the parse tree, whereas thefree variable analysis requires a right-to-left traversal.The free variables are needed to e�ciently translatecase, if, and receive expressions, which is explainedin the next section.6 Binding and Pattern Matching6.1 Binding in ErlangErlang's approach for binding variables is a relic of itsProlog heritage. Binding is an integral part of patternmatching. Once it is bound by a pattern matchingoperation, a variable can be referenced in the rest ofa function clause (unless it has become an \unsafe"variable, see below). For example, inf({A,B}) -> [X,X,X] = A, B+X.the function f will pattern match its sole argumentwith a two-tuple. In the process, the variables A andB get bound to the �rst and second element respec-tively. After this, A is referenced and pattern matchedwith a list containing three times the same element.Note that the �rst occurrence of X binds X to the �rstelement of the list and the remaining occurrences ref-erence the variable.6.2 Binding in SchemeIn Scheme the basic binding construct is the lambda-expression and binding occurs when a procedure iscalled, as in:((lambda (x) (* x x))3)Here the variable x is bound to 3 when the closurereturned by evaluating the lambda-expression is calledwith 3. Scheme also has the binding constructs let,let* and letrec but these are simply syntactic sugar4

Erlang syntactic categories:<const>: constant<ubvar>: unbound variable<bvar>: bound variable<expr1>, <expr2>: arbitrary expressions<pat1>, <pat2>: arbitrary patterns<fn>: function nameExpression translation:E(<const> ; k) = (k C(<const>))E(<bvar> ; k) = (k N(<bvar>))E(<pat1>=<expr1> ; k) = E(<expr1> ; (lambda (v1) (P (<pat1> ; (k v1) ; (erl-exit-badmatch)) v1)))E(<expr1>,<expr2> ; k) = E(<expr1> ; (lambda (v1) E(<expr2> ; k)))E(<expr1>+<expr2> ; k) = E(<expr1> ; (lambda (v1) E(<expr2> ; (lambda (v2) (k (erl-add v1 v2))))))E(<fn>(<expr1>) ; k) = E(<expr1> ; (lambda (v1) (k (N(<fn>)/1 v1))))Pattern-matching translation:P (<ubvar> ; s; f) = (lambda (N(<ubvar>)) s)P (<bvar> ; s; f) = (lambda (v1) (if (erl-eq-object? v1 N(<bvar>)) s f))P ([] ; s; f) = (lambda (v1) (if (erl-nil? v1) s f))P ([<pat1>|<pat2>] ; s; f) = (lambda (v1)(if (erl-cons? v1)(P (<pat1> ; (P (<pat2> ; s; f) (erl-tl v1)) ; f) (erl-hd v1))f))Auxiliary functions:C(const): translate an Erlang constant to SchemeN(name): translate an Erlang variable or function name to SchemeNote:vn stands for a freshly created variable which will not conict with other variables.Figure 1: Simpli�ed translation algorithm for a subset of Erlang.for lambda-expressions and calls. For example theprevious expression is equivalent to:(let ((x 3))(* x x))6.3 Translation of Binding and PatternMatchingTo translate an Erlang binding operation to Scheme itis necessary to nest the evaluation of the \rest of thefunction clause" inside the binding construct. Thiscan be achieved by performing a partial CPS conver-sion, as shown in Figure 1.The translation function E takes two parameters:the Erlang expression to translate and a Schemelambda-expression denoting the continuation which

consumes the result of the Erlang expression. E re-turns the equivalent Scheme expression. E makes useof the function P to translate pattern-matching. P 'sarguments are: the pattern to match and the suc-cess and failure Scheme expressions. P returns a oneargument Scheme lambda-expression which patternmatches its argument to the pattern, and returns thevalue of the success expression if there is a match andreturns the value of the failure expression otherwise.When an Erlang function is translated, E is calledon each function clause to translate the right handside with the initial continuation (lambda (x) x)(i.e. the identity function). Note that the continuationk and all lambda-expressions generated in the trans-lation are always inserted in the function position ofa call. This implies that in the resulting Scheme codeall the lambda-expressions generated can be expressedwith the let binding construct (except for those gen-5

erated in the translation of functional objects, whichis not shown). To correctly implement tail-calls, anadditional translation rule is used to eliminate appli-cations of the identity function, i.e.((lambda (x) x) Y)! YThe translation algorithm is not a traditional CPSconversion because function calls remain in directstyle (i.e. translated Erlang functions do not take anadditional continuation argument). This partial CPSconversion is only used to translate Erlang bindingto Scheme binding. An interesting property of func-tion E is that it embeds k in the scope of all Schemebindings generated, so that these bindings can be ac-cessed by k. Similarly, P always embeds s (the successexpression) in the scope of all Scheme bindings gen-erated. For example, consider the Erlang expression:[X|Y] = foo:f(A), X+bar:g(Y)This is translated to the following Scheme expression(if we assume that A is a bound variable):(let ((v7 ^a))(let ((v5 (foo:f/1 v7)))(let ((v6 v5))(if (erl-cons? v6)(let ((^x (erl-hd v6)))(let ((^y (erl-tl v6)))(let ((v1 v5))(let ((v2 ^x))(let ((v4 ^y))(let ((v3 (bar:g/1 v4)))(erl-add v2 v3)))))))(erl-exit-badmatch)))))Note that there are many useless bindings in thiscode. In the actual implementation, the translatorkeeps track of constants, bound variables and singlyreferenced expressions and propagates them to avoiduseless bindings. With this improvement the Schemecode generated is:(let ((v5 (foo:f/1 ^a)))(if (erl-cons? v5)(erl-add (erl-hd v5)(bar:g/1 (erl-tl v5)))(erl-exit-badmatch))))))This is close to what we would expect a Scheme pro-grammer to write.

6.4 Translation of ConditionalsConditional expressions (i.e. case, if, andreceive) must be handled carefully to avoid code du-plication. Consider the following Erlang expression:case X of1 -> Y = X*2;Z -> Y = X+1end,X*YThe case expression will select one of the two bindingsof Y based on the value of X. After the case, Y is abound variable that can be referenced freely. On theother hand Z is not accessible after the case becauseit does not receive a value in all clauses of the case (itis an \unsafe" variable after the case).The case construct could be implemented byadding to the translation function E a rule like Fig-ure 2a. Note that the continuation k is inserted oncein the generated code for each clause of the case. Thisleads to code duplication which is a problem if thecase is not the last expression in the function bodyand the case has more than one clause. If the func-tion body is a sequence of n binary case expressions,some of the code will be duplicated 2n times.This code explosion can be avoided by factoring thecontinuation so that it appears only once in the gen-erated code. A translation rule like Figure 2b wouldalmost work. The reason it is incorrect is that k is nolonger nested in the scope of the binding constructsgenerated for the case clauses, so the bindings theyintroduce are not visible in k.A correct implementation has to transfer thesebindings to k. This can be done by a partial lambda-lifting of k as shown in Figure 2c. The argumentsof the lambda-lifted k (i.e. vk) are the result of thecase (i.e. vr) and the set of bound variables that areadded by the clauses of the case and referenced ink (i.e. AV). Each clause of the case simply prop-agates these bindings to vk. AV can be computedeasily from the free variables (it is the di�erence be-tween the set of free variables after the case and theset of free variables after the selector expression). Thelambda-lifting is partial because vk may still have freevariables after the transformation.This lambda-lifting could be avoided by using as-signment. Dummy bindings to the variables AVwould be introduced just before the �rst pattern6

E(case <expr0> of<pat1> -> <expr1>;<pat2> -> <expr2>end ; k) = E(<expr0> ; (lambda (v0)(P (<pat1> ;E(<expr1> ; k); ;;; duplication of k(P (<pat2> ;E(<expr2> ; k); ;;; duplication of k(erl-exit-case-clause))v0))v0)))a) Ine�cient translation of the case construct.E(case <expr0> of<pat1> -> <expr1>;<pat2> -> <expr2>end ; k) = E(<expr0> ; (lambda (v0)(let ((vk k)) ;;; k not in right scope(P (<pat1> ;E(<expr1> ; vk);(P (<pat2> ;E(<expr2> ; vk);(erl-exit-case-clause))v0))v0))))b) Incorrect translation of the case construct.E(case <expr0> of<pat1> -> <expr1>;<pat2> -> <expr2>end ; k) = E(<expr0> ; (lambda (v0)(let ((vk (lambda (vr AV. . .) (k vr))))(P (<pat1> ;E(<expr1> ; (lambda (vr) (vk vr AV. . .)));(P (<pat2> ;E(<expr2> ; (lambda (vr) (vk vr AV. . .)));(erl-exit-case-clause))v0))v0))))Where AV. . . is the set of bound variables that are added by the clauses of the case and referenced in k.c) Correct translation of the case construct.Figure 2: Translation of the case construct.matching operation. Assignment would be used to setthe value of these variables in the clauses of the case.This solution was rejected because many Scheme sys-tems treat assignment less e�ciently than binding.This is because of assignment conversion (tradition-ally performed to implement call/cc correctly) andgenerational GC.In the actual implementation of the conditional con-structs, the patterns are analyzed to detect commontests and factor them out so that they are only exe-cuted once. For example the translation of the follow-ing case expression will only contain one test that Xis a pair:

case X of[1|Y] -> ...;[2|Z] -> ...end7 Errors and catch/throwThe traditional way of performing non-local exits inScheme is to use �rst-class continuations. A catchis translated to a call to Scheme's call/cc procedurewhich captures the current continuation. This \es-cape" continuation is stored in the process descriptorafter saving the current escape continuation for whenthe catch returns. A throw simply calls the current7

escape continuation with its argument. When controlresumes at a catch (either because of a normal returnor a throw), the saved escape continuation is restoredin the process descriptor.8 ConcurrencyFirst-class continuations are also used to implementconcurrency. The state of a process is maintained ina process descriptor. Suspending a process is done bycalling call/cc to capture its current continuationand storing this continuation in the process descrip-tor. By simply calling a suspended process' continu-ation, the process will resume execution.Three queues of processes are maintained by theruntime system: the ready queue (processes that arerunnable), the waiting queue (processes that are wait-ing for a message to arrive in their mailbox), and thetimeout queue (processes which are waiting for a mes-sage with timeout). The timeout queue is a priorityqueue, ordered on the time of timeout, so that time-outs can be processed e�ciently.There is no standard way in Scheme to deal withtime and timer interrupts. To simulate preemptivescheduling the runtime system keeps track of the func-tion calls and causes a context switch every so manycalls. When using the Gambit-C Scheme system,which has primitives to install timer interrupt han-dlers, a context switch occurs at the end of the timeslice, which is currently set to 100 msecs.9 LimitationsDue to its experimental and preliminary nature, Etos1.4 does not implement Erlang fully. Most notably,these features of Erlang are not implemented:1. Macros, records, ports, and binaries.2. Process registry and dictionary.3. Dynamic code loading.4. Several built-in functions and libraries.5. Distribution (all Erlang processes must be run-ning in a single user process).

10 Performance10.1 Benchmark ProgramsTo measure the performance of our compiler we haveused mostly benchmark programs from other Erlangcompilers. We have added two benchmarks (ring andstable) to measure the performance of messaging andprocesses. Unfortunately, we were not able to use the\Estone" benchmark [16] because it uses ports whichare not implemented in Etos.� barnes (iterated 10 times): Simulates gravita-tional force between 1000 bodies.� fib (iterated 50 times): Computes 30th �bonaccinumber with a recursive function.� huff (iterated 5000 times): Compresses and un-compresses a 38 byte string with the Hu�manencoder.� length (iterated 100000 times): Tail recursivefunction that returns the length of a 2000 elementlist.� nrev (iterated 20000 times): Naive reverse of a100 element list.� pseudoknot (iterated 3 times): Floating-pointintensive application taken from molecular biol-ogy [11].� qsort (iterated 50000 times): Sorts 50 integersusing the Quicksort algorithm.� ring (iterated 100 times): Creates a ring of10 processes which pass around a token 100000times.� smith (iterated 30 times): Matches a DNA se-quence of length 32 to 100 other sequences oflength 32. Uses the Smith-Waterman algorithm.� stable (iterated 5000 times): Solves the stablemarriage problem concurrently with 10 men and10 women. Creates 20 processes which send mes-sages in fairly random patterns.� tak (iterated 1000 times): Recursive inte-ger arithmetic Takeuchi function. Calculatestak(18,12,6).10.2 Erlang CompilersEtos was coupled with the Gambit-C Scheme com-piler version 2.7a [8]. We will �rst briey describe the8

Gambit-C compiler.The Gambit programming system combines an in-terpreter and a compiler fully compliant to R4RS andIEEE speci�cations. The Gambit-C compiler trans-lates Scheme programs to portable C code which canrun on a wide variety of platforms. Gambit-C alsosupports some extensions to the Scheme standardsuch as an interface to C which allows Scheme codeto call C routines and vice versa.The Gambit-C compiler performs many optimiza-tions, including automatic inlining of user proce-dures, allocation coalescing, and unboxing of tempo-rary oating point results. The compiler also emitsinstructions in the generated code to check for stackoverows and external events such as user or timer in-terrupts. The time between each check is guaranteedto be bound.Gambit-C includes a memory management systembased on a stop and copy garbage collector whichgrows and shrinks the heap as the demands of the pro-grams change. The user can force a minimum and/ormaximum heap size with a command line argument.Scheme objects are encoded in a machine word (usu-ally 32 bits), where the lower two bits are the primarytype tag. All heap allocated objects are pre�xed witha header which gives the length and secondary typeinformation of the object. Characters and strings arerepresented using the Unicode character set (i.e. 16bit characters).The implementation of continuations uses a lazycopying strategy. Continuation frames are allocatedin a small area called the \stack cache". This areais managed like a stack (i.e. LIFO allocation) exceptwhen the call/cc procedure is called. All frames inthe stack cache upon entry to call/cc can no longerbe deallocated. When control returns to such a frame,it is copied to the top of the stack cache. Finally, whenthe stack cache overows (because of repeated calls tocall/cc or because of a deep recursion), the garbagecollector is called to move all reachable frames fromthe stack cache to the heap.We have compared Etos version 1.4 [7] with threeimplementations of Erlang compilers:� Hipe version 0.27 [14], an extension of the JAMbytecode compiler that selectively compiles byte-codes to native code;� BEAM/C version 4.5.2 [12], compiles Erlang code

Etos Time relative to EtosProgram (secs) Hipe BEAM JAMfib 31.50 1.15 1.98 8.33huff 9.74 1.48 5.01 24.81length 11.56 2.07 3.44 34.48smith 10.79 2.17 3.37 13.06tak 13.26 1.12 4.37 11.09barnes 9.18 2.08 { 4.07pseudoknot 16.75 2.37 { 3.18nrev 22.10 .84 1.83 10.98qsort 14.97 .96 3.88 15.38ring 129.68 .30 .31 1.92stable 21.27 1.16 .64 2.43Figure 3: Execution time of benchmarksto C using a register machine as intermediate;� JAM version 4.4.1 [2], a bytecode compiler for astack machine.10.3 Execution TimeThe measurements were made on a Sun UltraSparc143 MHz with 122 Mb of memory. Each benchmarkprogram was run 5 times and the average was takenafter removing the best and worse times.The Scheme code generated by Etos is compiledwith Gambit-C 2.7a and the resulting C code is thencompiled with gcc 2.7.2 using the option -O1. Theexecutable binary sets a �xed 10 Mb heap.The results are given in Figure 3. They show thatEtos outperforms the other Erlang compilers on mostbenchmarks. If we subdivide the benchmarks accord-ing to the language features they stress, we can ex-plain the results further:� fib, huff, length, smith and tak, which areinteger intensive programs, take advantage ofthe e�cient treatment of �xnum arithmetic inGambit-C and from the inlining of functions.Etos is up to two times faster than Hipe, 5 timesfaster than BEAM/C, and 35 times faster thanJAM.� On the oating point number benchmarks,barnes and pseudoknot, Etos is also faster thanthe other Erlang implemenations. In this case9

Etos is a little over two times faster than Hipe.These programs crashed when compiled withBEAM/C.� List processing is represented by nrev and qsort.On these programs Hipe is a little faster thanEtos (4% to 16%), which is still roughly two tofour times faster than BEAM/C. Etos' poor per-formance is only partly attributable to its imple-mentation of lists:1. Gambit-C represents lists using 3 word longpairs as opposed to 2 words on the othersystems. Allocation is longer and the GChas more data to copy.2. Gambit-C guarantees that interrupts arechecked at bound intervals [9] which is notthe case for the other systems. For exam-ple, the code generated by Gambit-C forthe function app (the most time consumingfunction of the nrev benchmark) tests inter-rupts twice as often as Hipe (i.e. on functionentry and return).3. The technique used by Gambit-C to imple-ment proper tail-recursion in C imposes anoverhead on function returns as well as callsbetween modules. For nrev the overhead ishigh because most of the time is spent in atight non-tail recursive function. Indepen-dent experiments [10] have shown that thiskind of program can be sped up by a factorof two to four when native code is generated.� Finally ring and stable manipulate processes.Here we see a divergence in the results. Hipeis roughly three times faster than Etos onring. Etos performs slightly better than Hipe onstable but is not as fast as BEAM/C. We sus-pect that our particular way of using call/cc toimplement processes is the main reason for Etos'poor performance:1. When a process' mailbox is empty, areceivemust call the runtime library whichthen calls call/cc to suspend the process.These intermodule calls are rather expensivein Gambit-C. It would be better to inline thereceive and call/cc.2. Scheme's interface to call/cc (which re-ceives a closure and must allocate a closure)

adds considerable overhead to the underly-ing call/cc mechanism.11 Future WorkThe Etos compiler is still in its infancy. The featuresin Section 9 need to be added and obviously otherchanges will be needed for the upcoming Erlang 5.0speci�cation. There are also some interesting avenueswe want to explore.An interesting extension to Etos is to add libraryfunctions to access Gambit-C's C-interface from Er-lang code. Interfacing Erlang, Scheme and C code willthen be easy.The Gambit-C side of the compilation can also beimproved. In certain cases the Scheme code generatedby Etos could be compiled better by Gambit-C (itsoptimizations were tuned to the style of code Schemeprogrammers tend to write). It is worth consider-ing new optimizations and extensions speci�cally de-signed for Etos's output. For example, a more e�cientinterface to call/cc could be designed. Moreover wethink the performance of Etos will improve by a fac-tor of two on average when we start using a nativecode back-end for Gambit. We are also working ona hard real-time garbage collector and a generationalcollector to improve the response time.12 ConclusionsThe preliminary version of Etos shows promising re-sults. It performs very well on integer and oatingpoint arithmetic, beating all other currently availableimplementations of Erlang. Its performance on listprocessing and process management is not as goodbut we think this can be improved in a number ofways.These results are not all that surprising: Schemeand Erlang o�er very similar features (data types,functional style, dynamic typing) and their di�erences(pattern matching, escape methods, concurrency) canbe eliminated by a fairly straightforward compilationprocess. Scheme appears to be well suited as a targetfor an Erlang compiler.10

AcknowledgementsThis work was supported in part by grants from theNatural Sciences and Engineering Research Coun-cil of Canada and the Fonds pour la formation dechercheurs et l'aide �a la recherche.References[1] J. L. Armstrong. The development of erlang. InProceedings of the International Conference onFunctional Programming, pages 196{203, Ams-terdam, June 1997.[2] J. L. Armstrong, B. O. D�acker, S. R. Virding,and M. C. Williams. Implementing a functionallanguage for highly parallel real-time applica-tions. In Proceedings of Software Engineering forTelecommunication Switching Systems, Florence,April 1992.[3] J. L. Armstrong, S. R. Virding, C. Wikstr�om,and M. C. Williams. Concurrent Programmingin Erlang. Prentice Hall, second edition edition,1996.[4] D. Boucher.Lalr-scm. Available at ftp.iro.umontreal.cain pub/parallele/boucherd.[5] W. Clinger and J. Rees [editors]. Revised4 Re-port on the Algorithmic Language Scheme. LispPointers, 4(3):1{55, July-September 1991.[6] D. Dub�e. SILex, user manual. Available atftp.iro.umontreal.ca in pub/parallele.[7] M. Feeley. Etos version 1.4. Com-piler available at ftp.iro.umontreal.ca inpub/parallele/etos/etos-1.4.[8] M. Feeley. Gambit-C version 2.7a, user manual.Compiler available at ftp.iro.umontreal.ca inpub/parallele/gambit/gambit-2.7.[9] M. Feeley. Polling e�ciently on stock hard-ware. In Proceedings of the Functional Program-ming and Computer Architecture, pages 179{187,Copenhagen, June 1993.

[10] M. Feeley, J. Miller, G. Rozas, and J. Wil-son. Compiling Higher-Order Languages intoFully Tail-Recursive Portable C. Technical Re-port 1078, D�epartement d'informatique et derecherche op�erationelle, Universit�e de Montr�eal,1997.[11] P. H. Hartel, M. Feeley, M. Alt, L. Augusts-son, P. Baumann, M. Beemster, E. Chailloux,C. H. Flood, W. Grieskamp, J. H. G. Van Gronin-gen, K. Hammond, B. Hausman, M. Y. Ivory,R. E. Jones, J. Kamperman, P. Lee, X. Leroy,R. D. Lins, S. Loosemore, N. R�ojemo, M. Ser-rano, J.-P. Talpin, J. Thackray, S. Thomas,P. Walters, P. Weis, and P. Wentworth. Bench-marking implementations of functional languageswith "Pseudoknot", a oat-intensive benchmark.Journal of Functional Programming, 6(4):621{655, 1996.[12] B. Hausman. Turbo Erlang: approaching thespeed of C. In Evan Tick and Giancarlo Succi,editors, Implementations of Logic ProgrammingSystems, pages 119{135. Kluwer Academic Pub-lishers, 1994.[13] IEEE Standard for the Scheme ProgrammingLanguage. IEEE Standard 1178-1990, IEEE,New York, 1991.[14] E. Johansson, C. Jonsson, T. Lindgren, J. Beve-myr, and H. Millroth. A pragmatic approach tocompilation of Erlang. UPMAIL Technical Re-port 136, Uppsala University, Sweden, July 1997.[15] The Internet Scheme Repository.http://www.cs.indiana.edu/scheme-repository.[16] C. Wikstrom. Estone, an erlang benchmark.Available at http://www.ericsson.se:800/cslab/~klacke/estone/.

11

