
A Message Passing Implementation ofLazy Task CreationMarc FeeleyD�ept. d'informatique et de recherche op�erationnelleUniversit�e de Montr�ealMontr�eal, Qu�ebec, CANADAfeeley@iro.umontreal.caAbstract. This paper describes an implementation technique for Mul-tilisp's future construct aimed at large shared-memory multiprocessors.The technique is a variant of lazy task creation. The original imple-mentation of lazy task creation described in [Mohr, 1991] relies on ef-�cient shared memory to distribute tasks between processors. In con-trast, we propose a task distribution method based on a message passingparadigm. Its main advantages are that it is simpler to implement, hasa lower cost for locally run tasks, and allows full caching of the stack oncache incoherent machines. Benchmarks on a 32 processor BBN TC2000show that our method is more e�cient than the original implementationby as much as a factor of 2.1 Introduction

Published in: Halstead, R., Ito T. (editors), ``Parallel SymbolicComputing: Languages, Systems, and Applications'', Springer-VerlagLecture Notes in Computer Science 748, November, 1993, pp. 94-107.

Multilisp [Halstead, 1985] extends the Scheme [IEEE Std 1178-1990, 1991] pro-gramming language with a simple and elegant parallel programming paradigm.Parallelism is speci�ed explicitly in the program by the use of the future specialform. The expression (future expr)is called a future and expr is its body. Parallelism follows a tasking model. Whena task evaluates a future, it spawns a child task to evaluate the future's body. Theparent task then starts executing the future's continuation. Thus, concurrencyexists between the evaluation of the body and the continuation.Conceptually, the value returned to the continuation is the value eventuallycomputed for the body by the child task. This paradox is usually avoided by usinga placeholder object to represent the body's eventual value. The placeholder isinitially empty and is assigned a value (is determined) only when the child isdone. When a placeholder is passed to a strict operation, such as car and thepredicate position of an if, the placeholder must be dereferenced (touched) toobtain the desired value. If the placeholder is not yet determined, the currenttask is suspended until the placeholder is determined by the child.In addition, Multilisp uses a shared-memory model. This means that taskscan directly access any piece of data regardless of where it was created.

Eager task creation (ETC) is a straightforward implementation of futureswhich has been used in several parallel Lisp systems [Halstead, 1984, Steinberget al., 1986, Goldman and Gabriel, 1988, Miller, 1988, Zorn et al., 1988, Swansonet al., 1988, Kranz et al., 1989]. The evaluation of a future immediately creates aheap allocated task object to represent the child task and makes it available to allprocessors by enqueuing it on a global queue of runnable tasks: the work queue.Task objects are essentially composed of a continuation which represents thetask's state. This continuation is initially set up to evaluate the future's body andthen determine the appropriate placeholder with the result. When a processorbecomes idle it removes a task from the work queue and resumes it by invokingits continuation. To reduce contention and improve locality, the work queue isusually distributed across the machine and by default processors spawn tasksand resume tasks from their local work queue. When an idle processor has anempty work queue, it must obtain the task to resume from some other processor'swork queue. This task transfer between the thief and victim processors is calleda steal. ETC is illustrated in Fig. 1 (the dark circles represent tasks).y y yyy yyy y?6 6? 6? 6?SSSSSSo����������������P1 P2 P3 P4resumespawnworkqueue VictimThief stealFig. 1. Eager task creation.The main drawback of ETC is the high task management overhead. Assum-ing that each task created eventually runs and terminates, the following taskmanagement operations are required for every task:At task spawning:1. Creating the task object and the placeholder.2. Creating a closure for the future's body.3. Enqueuing the task on the work queue (which requires locking and thenunlocking the queue).At task resumption:4. Dequeuing the task from the work queue (again locking and unlocking thequeue).5. Invoking the task's continuation.

At task termination:6. Determining the placeholder (which must also be locked and then unlockedto avoid races with tasks touching the placeholder).7. Transferring the tasks suspended on the placeholder to the work queue.The total cost of these operations can easily be in the hundreds of machineinstructions. The performance of existing implementations of ETC seem to con-�rm this. The Mul-T system was carefully designed to minimize the cost of ETC[Kranz et al., 1989] and it takes roughly 130 machine instructions per task on theEncore Multimax (the actual cost depends on the number of closed variables,their location etc.). Other systems have an even higher cost (both portable stan-dard Lisp on the BBN buttery GP1000 [Swanson et al., 1988] and QLisp on anAlliant FX/8 [Goldman and Gabriel, 1988] take roughly 1400 instructions).Due to this high cost, the overhead of exposing parallelism (i.e. of addingfutures to a sequential program) will depend strongly on the task granularity.The performance of �ne grain programs will be poor due to the relatively smallproportion of the total time spent doing useful work.2 Lazy Task CreationLazy task creation (LTC) is an alternative implementation of futures proposedin [Kranz et al., 1989] and subsequently implemented and studied by Eric Mohron an Encore Multimax [Mohr, 1991]. The implementation of LTC describedin this section is essentially that used by Mohr and will be called the shared-memory (SM) protocol because it assumes the existence of a global shared mem-ory. LTC reduces the cost of evaluating a future by postponing, and in manycases completely avoiding, the creation of the task. In essence, a task is onlycreated when some other processor needs work. LTC achieves this by adoptinga stack-like scheduling policy which, in the absence of idle processors, producesthe same order of execution as the sequential version of the program (i.e. withthe futures removed). The evaluation of the future's body is immediately startedand the future's continuation, which logically corresponds to the parent task, issuspended. As shown in Fig. 2, each processor maintains its suspended contin-uations in a stack-like data structure called the lazy task queue (LTQ)1. Whenthe body's evaluation is done, the most recently suspended continuation on theLTQ is removed and invoked. This is necessarily the continuation of the futurecorresponding to the body. Note that there is no need to create and determinea placeholder since the continuation can directly consume the value returned bythe body.In LTC, a steal is performed by �rst removing the oldest continuation fromthe victim's LTQ and then constructing the corresponding task object and place-holder, and transferring the task to the thief. For proper linkage between thestolen task and its child, the thief must invoke the stolen task's continuation1 This structure is really a double-ended queue which supports push, pop, and stealoperations.

y y yyyy y yy?6 6? 6? 6?AAAAAAAAK����������������P1 P2 P3 P4VictimThiefpush popLTQ stealCBA A BAFig. 2. Lazy task creation.with the newly created placeholder. The placeholder must also be stored in thestolen task's child so that it can get determined correctly. Referring to Fig. 2,the placeholder created by P3 when it steals continuation A must be \attached"to continuation B. A reference to this placeholder, which is called the child's goalplaceholder, can be stored at a location preallocated for the victim because thereis exactly one goal placeholder per LTQ. When the child's continuation (i.e. B)returns, the goal placeholder must get determined with the returned value. Notethat attaching the placeholder to the child's continuation is important to allowsubsequent steals.Stealing the oldest rather than the youngest task has the following bene�ts:1. It tends to reduce the number of steals because the older tasks generally con-tain more work (the thief will thus stay busy longer before its next steal).This is especially true in programs using divide-and-conquer parallel algo-rithms. If the algorithm is well balanced, the amount of work in the stolentask will be comparable to the total work left on the victim's LTQ.2. Access to the LTQ is more e�cient because the two ends of the LTQ can beaccessed concurrently. The victim can push a continuation to its LTQ whilea thief is simultaneously stealing a task.The stack-like scheduling policy of LTC permits an inexpensive implemen-tation of the continuation push and continuation pop operations. The key ideais that the continuations do not have to be copied or moved from the stack.The LTQ is really a double-ended queue of pointers into the continuation stack.Figure 3 shows the state of the stack and LTQ for P4 before and after the steal(note that the links between the stack frames are purely conceptual). Initially,the LTQ's head and tail pointers (i.e. HEAD and TAIL) are equal and a pointer tothe bottom of the stack is put under HEAD. A useful invariant is that a pointerto the bottom of the LTQ's oldest continuation is always under HEAD. The pro-cedure linkage mechanism pushes and pops activation frames from the stack in

the normal way. Each frame contains a return address to be jumped to whenthe frame is deallocated from the stack. When a future is evaluated, the contin-uation is pushed by simply pushing a pointer to the current activation frame onthe LTQ (this increments the TAIL pointer). Popping a continuation, which isperformed after the execution of the future's body, needs to be done carefullybecause another processor may be simultaneously stealing the same continua-tion. If the LTQ is not empty (i.e. TAIL 6= HEAD), TAIL is decremented and thecontinuation on the stack invoked with the body's value. If the LTQ is empty,it means that the future's continuation was stolen so the body's value is used todetermine the task's goal placeholder and the processor goes idle. Figure 4 givesthe C-avored pseudocode for the evaluation of (f (future (g x))) when theSM protocol is used. The boxed section represents a critical section that mustbe performed atomically with respect to the steal operation.

�����:R.........................-- ???? @@R
-SP

LTQ STACK
ret addressret addressret addressret addressHEADTAIL ?(())__̂̂ A's goalplaceholder9>>=>>;B9>>=>>;AoCurrenttaskret address

�- ??-

...@@R- R......................... :................. SP
LTQ STACK

ret addressret addressTAIL 9>>=>>;BoCurrenttask?(())__̂̂ B's goalplaceholderret addressHEADFig. 3. The lazy task queue before and after a steal.*++TAIL = SP; Push future's continuationval = g(x); Execute future's bodyif (TAIL != HEAD){ TAIL--; Attempt to pop the continuationf(val); Execute future's continuation}elsedetermine(goal, val); Determine goal placeholder and go idleFig. 4. SM protocol's pseudocode for the evaluation of (f (future (g x))).The thief processors must similarly test the LTQ for an available continua-tion. If one is available the thief takes a copy of the appropriate frames directlyinto its stack (HEAD[0] and HEAD[1] are the boundaries of the section to copy),

stores the goal placeholder with the child, and then increments HEAD. Before itcan proceed the thief must �gure out how to resume the frames it has obtained,in other words where is the code of the continuation. The code that needs tobe executed is the one following the continuation pop sequence. The simplestapproach is to save this address on the LTQ when the continuation is pushed.Note that this address could be computed from the return address passed to thefuture's body (for example, the end of the continuation pop sequence could be aconstant o�set away). Unfortunately, the thief has no way of �nding this returnaddress unless severe restrictions are put on the procedure calling convention,the format of frames, and the locations where return addresses can be stored2.The total overhead (in number of memory operations) of a non-stolen futureis thus the cost of one continuation push and one successful continuation pop: 4memory writes (2 to the LTQ and 2 to TAIL), 4 memory reads (1 of HEAD and 3 ofTAIL), and 2 lock operations. The lock operations, which are expensive on somemachines, can be avoided by using \software lock" algorithms such as [Peterson,1981]. Algorithms specially tailored for LTC are described in [Mohr, 1991] and[Feeley, 1993a]. In addition, TAIL can be cached in a register since it is onlymutated by the LTQ's owner. Another trick is to indicate that a continuationis no longer available by clearing the corresponding entry in the LTQ. Thisallows thief processors to check if the LTQ is empty by testing HEAD[1]= 0.These optimizations bring down the cost to: 3 memory writes to the LTQ and 1memory read of HEAD.Because of its special nature, the LTQ can't be used for reactivating tasksthat were suspended on placeholders. For this purpose it is better if each pro-cessor has a separate ready queue that holds task objects. Both the ready queueand the LTQ must be searched by thief processors but it is preferable to checkthe ready queue �rst since less work will be required to obtain a task.3 Hidden Cost of Sharing the StackAn unfortunate requirement of the SM protocol is that all processors must haveaccess to the LTQ and stack. Making these structures accessible to all processorshas a cost because it precludes the use of the more e�cient caching policies onmachines that do not have coherent caches. The stack and the LTQ only needto be read by thief processors so they can be cached (by their owner) using thewrite-through caching policy. This however is not as e�cient as the copy-backcaching policy normally used in single processor implementations of Lisp. Fortypical Lisp programs, caching of the stack will likely be an important factorsince the stack is one of the most intensely accessed data structures.But how large is the performance loss due to a suboptimal caching policy? Tobetter understand the importance of caching on performance, the memory accessbehavior of a few benchmark programs was analyzed (the Gabriel benchmarkswere used in addition to a few medium to large sequential programs and 122 For example, return addresses can't be put in a register, even temporarily, becausethe thief could not access them.

parallel programs). The run time of a program can be broken down into thetime spent accessing data in memory and the time spent on \pure computation".Memory accesses can further be broken down into: accesses to the stack andaccesses to the heap. Thus, a program is described by the three parameters S(stack), H (heap), and C (pure computation) which represent the proportion oftotal run time spent on each category of instructions (S +H +C = 1).The measurement of S, H, and C was done by running the programs ona cache-incoherent NUMA shared-memory multiprocessor (the BBN butteryTC2000) with the Gambit system [Feeley and Miller, 1990]. All these programswere run on a single processor. The run time of each program was measured inthree di�erent settings. The �rst run was with the stack and heap located innon-cached local memory. The second run was with the stack located in remotememory (on another processor) so that each access to the stack would costmore. The �nal run was with the heap in remote memory. The three run timesare respectively T , TS , and TH . The relative cost of a remote access with respectto a local access is 4.2 on the TC2000 so we obtain the following system of linearequations S +H +C = 14:2S +H +C = TS=TS + 4:2H +C = TH=TThis system is easily solved to �nd the value of S, H, and C. The results aregiven in the plot in Fig. 5. Each program is a point in S-H space. The value forpure computation is C = 1� S �H.6
-

H
S.0.0.1.2.3.4

.5
.1 .2 .3 .4 .5 .6 .7 .8

@@@@@@@@@@@@@..
..boyerrbrowsercpstakr ctakrdderiv rderiv rdestructr div rpuzzler takr

taklr traversertrianglerconformr earleyrpeval rabisortr allpairsrfibrmm rmstrpolyr qsortr queensrrantreer scanr sumrtridiagrFig. 5. Relative importance of stack and heap accesses on TC2000.

A few interesting observations can be made from this �gure. Firstly, theproportion of time spent accessing memory is high. Most programs spend moretime accessing memory than doing pure computation (i.e. all the programs abovethe S +H = :5 line). This is reasonable since symbolic applications typically doa lot of data movement. Secondly, most of the programs access the stack moreoften than the heap (i.e. all the programs below the S = H line). This tendencyis even more pronounced for the parallel benchmarks (the boxed names in theplot). This is to be expected since the majority of these parallel benchmarks arebased on recursive divide-and-conquer algorithms.The high S value of the programs is a sign that the access time to the stackis an important factor in overall performance.4 The Message Passing ProtocolThe message passing (MP) protocol implements LTC in such a way as to allowfull caching of the stack and LTQ. In the MP protocol, the thief initiates a stealby sending a steal request message to the victim. The victim eventually getsinterrupted and calls its steal request handler. This handler checks the LTQand, if a continuation is available, recreates the oldest task and sends it back tothe thief. Otherwise a failure message is sent back to the thief which must thentry stealing from some other processor. The victim then resumes the interruptedcomputation.There are several advantages to this protocol. Firstly, it relies less on ane�cient shared memory. The stack and LTQ are private to each processor andcan be cached with copy-back caching since only one processor can access them.Secondly, it is possible to handle the race condition between the continuationpop and steal operations more e�ciently than the SM protocol because all oper-ations on the LTQ are performed by its owner. Preventing the race is as simpleas inhibiting interrupts for the duration of the continuation pop sequence. Thiscan be achieved by adding a pair of instructions around the sequence that dis-ables and then reenables interrupts. The method used by Gambit is to detectinterrupts via polling and to never poll for interrupts inside the continuation popsequence. There are other methods that have no direct overhead. For example, inthe instruction interpretation method [Appel, 1989] the interrupt handler checksto see if the interrupted instruction is in an \uninterruptible" section (i.e. a con-tinuation pop sequence). If it is, the rest of the section is interpreted by theinterrupt handler before the interrupt is serviced. Other zero cost techniques aredescribed in [Feeley, 1993b].Thirdly, it is no longer necessary to save the future's return address on theLTQ. Instead, the return address can be found in the �rst stack frame above thestolen continuation3. For this to work properly, it is important that the interrupthandler be called as a subproblem (so that the return address will have been3 This is done by scanning the stack upwards until the �rst return address is found.This assumes that return addresses are specially tagged or at least can be distin-guished from other object pointers.

moved to the stack if it was in a register at the moment of the interrupt). Thisis fairly easy to do when the system detects interrupts through polling becausethe call to the handler is a subproblem call. For a system that uses hardwareinterrupts it is more complex but still possible.Finally, the check for an empty LTQ in the continuation pop sequence can beavoided. The trick is to have the victim change the return address of the stolentask's child at the moment of the steal so that the child will branch directly tothe right place when it returns. Locating this return address on the stack wasdescribed in the previous paragraph. In its place is put the address of a stubthat determines the goal placeholder and causes the processor to go idle. Thecontinuation pop sequence is only executed if the LTQ is not empty.The pseudocode for the MP protocol for evaluating (f (future (g x))) isgiven in Fig. 6. The cost per non-stolen future is thus only 2 memory writes tocopy-back cached memory.*++TAIL = SP; Push future's continuationval = g(x); Execute future's bodyTAIL--; Pop the continuationf(val); Execute future's continuationFig. 6. MP protocol's pseudocode for the evaluation of (f (future (g x))).5 Potential ProblemsThe most serious problem with the MP protocol is that the thief must busy waitfor the reply to its steal request. The total time wasted, the steal latency, isthe sum of the time needed by the victim to detect the steal request (Tdetect)and the time to create the stolen task and send it back (Tsteal). Little can bedone to decrease Tsteal but if interrupts are detected with polling, Tdetect can bedecreased by polling more frequently. However, this increases the cost of pollingso in practice some balance must be found between these two costs.A related problem is that the speed at which work gets distributed to theprocessors is dependent on the steal latency. Distributing work quickly is crucialto fully exploit the program's parallelism. It is especially important at the be-ginning of the program (or more precisely a transition from sequential to parallelexecution) because all processors are idle except one.Finally, the cost of failed steal requests is a concern because the victim paysa high price for getting interrupted but this serves no useful purpose. The victimmight get requests at such a high rate that it does nothing else but process stealrequests. For example, a continuous stream of steal requests will be received bythe victim if it is executing sequential code and all other processors are idle.The problem here is that processors are too \secretive". No indication of the

LTQ's state is shared with other processors so the only way for a thief to knowif the victim has some work is to send it a steal request. A simple solution is tohave each processor regularly save out HEAD and TAIL in a predetermined sharedmemory location. Before attempting a steal, the thief checks the copy of HEADand TAIL in shared memory to see if a task might be available. This snapshotonly reects a previous state of the LTQ but, if it is updated frequently enough,its correlation to the current state will be high. If the snapshot indicates a non-empty LTQ it is thus likely that the steal attempt will succeed. Gambit alwayskeeps HEAD in shared memory so it does not need to be saved out (this does nota�ect performance because the victim accesses HEAD infrequently). TAIL is savedout on every interrupt poll.6 ResultsTo evaluate and compare the SM and MP protocols, some experiments wereconducted on the BBN buttery TC2000. This shared-memory multiprocessorhas incoherent-caches and a non-uniform memory access cost. Accesses to thecache are 3.8 times faster than to local memory and accesses to local memoryare 4.2 times slower than remote memory.Each parallel benchmark program was compiled with Gambit4with each pro-tocol and then the run time was measured for several executions with 1 to 32processors. Polling was done at a rate su�cient to make Tdetect roughly compa-rable to Tsteal (the instructions added for polling caused an average overhead of12%). The stack and LTQ were write-through cached for the SM protocol andcopy-back cached for the MP protocol. A description of the programs and somecomments about their performance can be found in Appendix A.Figure 7 contains the speedup curves for these programs. Speedup is ex-pressed relatively to the sequential version of the program (i.e. with futures andtouches removed) run with a copy-back cached stack. This means that the valueof the speedup on one processor is the inverse of the overhead of exposing paral-lelism with futures (Oexpose). For the MP protocol, the highest overhead (21%)is for queens. The overhead is much higher for the SM protocol which has a runtime larger by a factor of two. This big di�erence is due mostly to the cachingpolicy but, because this program is �ne grained, the cost of the continuationpush and pop operations is also an important factor. Note that the cache on theTC2000 is really slow when compared to the caches of modern processors (whichare easily 20 to 50 times faster than main memory). We expect a much largerdi�erence between the SM and MP protocols on future processors.The speedup of the SM protocol is consistently lower than that of the MPprotocol. For each protocol, the speedup curve starts o� at 1=Oexpose on 1 pro-cessor (for their respective Oexpose) and as the number of processors increases thecurves tend to get closer. Programs with good speedup characteristics (such asfib and sum) maintain a roughly constant distance between the speedup curves.4 A back-end generating C code was used.

In other words, the ratio of their run time stays close to the ratio of their Oexpose.On the other hand, programs with poor speedup characteristics (e.g. mst andqsort) have speedup curves that become colinear at a high number of processors.This can be explained by the progressive increase of administrative work beingperformed by the program. Suboptimally caching the stack and LTQ does nota�ect the administrative costs. The relative importance of suboptimally cachingthe stack will thus decrease as the programs spend more and more time beingidle and/or accessing remote memory.A more detailed analysis of the SM and MP protocols, including experimentson a 90 processor BBN GP1000, can be found in [Feeley, 1993a].7 ConclusionWe have proposed a message-passing protocol for implementing lazy task cre-ation. The performance of this protocol was compared with the original pro-tocol which relies on an e�cient shared memory. Experiments on a 32 proces-sor cache-incoherent machine show that the overhead of exposing parallelismwith the future construct is typically less than 20% when using the message-passing protocol. This is much better than the shared-memory protocol whichcan have an overhead as high as a factor of 2. This di�erence is mostly due to thefact that the message-passing protocol can cache the stack in the most e�cientway (copy-back caching) whereas the shared-memory protocol must use write-through caching. The experiments also indicate that the latency for detectingsteal request messages is not critical. A latency comparable to the task creationcost is su�cient to get good performance.

SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...fib SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...queens SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...rantree
SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...sum SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...scan SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...mm
SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...tridiag SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...allpairs SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...abisort
SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...mst SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...qsort SPEEDUP Number of Processors32168421.5 1 2 4 8 16 32MPSM...poly
Fig. 7. Speedup curves for MP and SM protocols on TC2000.

A Description of Parallel BenchmarksThe benchmark programs can be roughly classi�ed in three groups, according to theirspeedup characteristics.1. Parallel and compute bound. These programs do not access memory. Thespeedup curve is initially close to linear speedup, and gradually distances itselffrom it as the number of processors increases (in other words the �rst derivative ofthe curve starts at 1 and the second derivative is negative). The attening out ofthe curve as the number of processors increases is consistent with Amdahl's law.� fib { Compute (fib 25) using the doubly recursive algorithm.� queens { Compute the number of solutions to the 10-queens problem.� rantree { Traverse a random binary tree with 32768 nodes.2. Parallel and memory accessing. These programs access memory to various ex-tents. The speedup curves for these programs is \S" like (i.e. the second derivativeis initially positive and then negative). A good example is abisort. The initialbend in the curve is explained by the increase in cost for accessing shared userdata which is distributed evenly across the machine. A memory access has a prob-ability of n�1n of being to remote memory (where n is the number of processors),so the average cost of an access to shared user data is L+R(n�1)n , where R is thecost of a remote memory access and L is the cost of a local memory access. Thebend in the curve is consequently more pronounced for programs which spend ahigh proportion of their time accessing the heap (e.g. abisort, allpairs, mm, andtridiag).� abisort { Sort 16384 integers using the adaptive bitonic sort algorithm [Bilardiand Nicolau, 1989].� allpairs { Compute the shortest path between all pairs of 117 nodes using aparallel version of Floyd's algorithm.� mm { Multiply two matrices of integers (50 by 50).� scan { Compute the parallel pre�x sum of a vector of 32768 integers (in place).� sum { Compute the sum of a vector of 32768 integers.� tridiag { Solve a tridiagonal system of 32767 equations.3. Poorly parallel. These are programs whose algorithms don't contain much par-allelism or that contain a form of parallelism that is not well suited for LTC. Thespeedup curves for these programs are mostly at. The curve generally starts go-ing down after a certain number of processors because no more parallelism canbe exploited but other costs, such as contention and memory interconnect tra�c,increase.� mst { Compute the minimum spanning tree of a 1000 node graph using aparallel version of Prim's algorithm.� poly { Compute the square of a 200 term polynomial of x (represented as alist of coe�cients) and evaluate the resulting polynomial for a certain value ofx.� qsort { Sort a list of 1000 integers using a parallel version of the Quicksortalgorithm.The source code for these programs is available via anonymous FTP as the �le/pub/parallele/multilisp-bench.tar on the FTP server ftp.iro.umontreal.ca.

References[Appel, 1989] A. W. Appel. Allocation without locking. Software Practice and Expe-rience, 19(7):703{705, July 1989.[Bilardi and Nicolau, 1989] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: Anoptimal parallel algorithm for shared-memory machines. SIAM Journal of Comput-ing, 12(2):216{228, April 1989.[Feeley and Miller, 1990] M. Feeley and J. S. Miller. A parallel virtual machine fore�cient Scheme compilation. In Proceedings of the 1990 ACM Conference on Lispand Functional Programming, Nice, France, June 1990.[Feeley, 1993a] M. Feeley. An E�cient and General Implementation of Futures onLarge Scale Shared-Memory Multiprocessors. PhD thesis, Brandeis University De-partment of Computer Science, 1993. Available as publication #869 from d�eparte-ment d'informatique et recherche op�erationnelle de l'Universit�e de Montr�eal.[Feeley, 1993b] M. Feeley. Polling e�ciently on stock hardware. In Proceedings ofthe 1993 ACM Conference on Functional Programming Languages and ComputerArchitecture, 1993.[Goldman and Gabriel, 1988] R. Goldman and R. P. Gabriel. Preliminary results withthe initial implementation of Qlisp. In Conference Record of the 1988 ACM Con-ference on Lisp and Functional Programming, pages 143{152, Snowbird, UT, July1988.[Halstead, 1984] R. Halstead. Implementation of Multilisp: Lisp on a multiprocessor.In Conference Record of the 1984 ACM Symposium on Lisp and Functional Program-ming, pages 9{17, Austin, TX, August 1984.[Halstead, 1985] R. Halstead. Multilisp: A language for concurrent symbolic compu-tation. In ACM Trans. on Prog. Languages and Systems, pages 501{538, October1985.[IEEE Std 1178-1990, 1991] IEEE Std 1178-1990. IEEE Standard for the Scheme Pro-gramming Language. Institute of Electrical and Electronic Engineers, Inc., New York,NY, 1991.[Kranz et al., 1989] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A high-performanceparallel Lisp. In ACM SIGPLAN '89 Conf. on Programming Language Design andImplementation, pages 81{90, June 1989.[Miller, 1988] J. S. Miller. Implementing a Scheme-based parallel processing system.International Journal of Parallel Processing, 17(5), October 1988.[Mohr, 1991] E. Mohr. Dynamic Partitioning of Parallel Lisp Programs. PhD thesis,Yale University Department of Computer Science, October 1991.[Peterson, 1981] G. L. Peterson. Myths about the mutual exclusion problem. Infor-mation Processing Letters, 12(3):115{116, 1981.[Steinberg et al., 1986] S. Steinberg, D. Allen, L. Bagnall, and C. Scott. The ButteryLisp system. In Proc. 1986 AAAI, volume 2, Philadelphia, PA, August 1986.[Swanson et al., 1988] M. Swanson, R. Kessler, and G. Lindstrom. An implementationof portable standard Lisp on the BBN Buttery. In Conference Record of the 1988ACM Conference on Lisp and Functional Programming, pages 132{141, Snowbird,UT, July 1988.[Zorn et al., 1988] B. Zorn, P. Hil�nger, K. Ho, J. Larus, and L. Semenzato. Featuresfor multiprocessing in SPUR Lisp. Technical Report Report UCB/CSD 88/406,University of California, Computer Science Division (EECS), March 1988.This article was processed using the LaTEX macro package with LLNCS style

