
Lazy Remote Procedure Call andits Implementation in a Parallel Variant of CMarc FeeleyD�ept. d'informatique et de recherche op�erationnelleUniversit�e de Montr�ealMontr�eal, Qu�ebec, CANADAfeeley@iro.umontreal.caAbstract. Lazy task creation (LTC) is an e�cient approach for execut-ing divide and conquer parallel programs that has been used in the im-plementation of Multilisp's future construct. Unfortunately it requires aspecialized memory management scheme, in particular for stack frames,which makes it hard to use in the context of conventional languages. Wehave designed a variant of LTC which has a stack management disci-pline that is compatible with the semantics of conventional languages.This mechanism, which we call lazy remote procedure call, has been usedto implement a parallel variant of C. A �rst prototype of our system hasbeen ported to shared-memory multiprocessors and network of worksta-tions. Experimental results on a Cray T3D multiprocessor show thatgood performance can be achieved on several symbolic programs.1 IntroductionThe future construct of Multilisp [Halstead, 1985] has proven to be a convenientand e�ective means of expressing parallelism in Lisp and in symbolic process-ing applications. When implemented with lazy task creation (LTC), futures canexecute parallel divide and conquer programs very e�ciently on shared-memorycomputers as shown by the Mul-T [Mohr, 1991] and Gambit [Feeley, 1993a] sys-tems. LTC dynamically groups tasks together to adjust the e�ective task granu-larity of the program thus relieving the programmer from having to think abouttask granularity, load balancing, number of processors and processor speed. LTCproduces a granularity that is both �ne enough to keep processors working mostof the time and coarse enough to keep task creation overhead low.These advantages have compelled us to explore the use of LTC for imple-menting parallel variants of conventional languages. The work reported in thispaper is an attempt to adapt LTC to C. We have designed and implemented anew language, called ParSubC (Parallel Subset of C)1, which:{ is suitable for parallel symbolic processing,{ supports a shared-memory model and a form of message-passing,{ is portable to shared and distributed memory parallel machines,1 We have kept this name even though at this point the language is a superset of C.

{ is object-code compatible with conventional C compilers.In parallel symbolic applications, tasks often need to read and write data sharedwith other tasks. For this reason and to stay close to C's semantics, ParSubCprovides a shared-memory model with a single address space and with trans-parent access to shared data. On distributed-memory machines, this model isimplemented with a virtual shared-memory package. Parallelism is introducedwith a parallel function call construct. This construct has fork-join semanticsand is thus suitable for writing divide and conquer parallel programs. A setof atomic operators is also provided for cases where fork-join synchronizationbetween tasks is not su�cient. The parallel call construct provides a limitedmessage-passing capability which is convenient for expressing certain parallel al-gorithms and can lead to better e�ciency on distributed-memory machines dueto bulk transfer. ParSubC's support for the message-passing and shared-memorymodels combined with its portability means that it is applicable to a wide varietyof parallel applications. In typical parallel program development, one of the twomodels has to be chosen in advance based on the requirements of the applicationand the target machine and compiler. With ParSubC, a program can freely mixboth programming models and is not tied to a particular machine architecture.Object-code compatibility with conventional C compilers is another importantfeature of ParSubC which allows sequential C code and precompiled libraries tobe linked seamlessly with ParSubC code.This paper does not describe in detail the complete implementation of Par-SubC. Instead, the focus is on the implementation of the parallel call constructwhich is the central problem in ParSubC. As explained in the next section, LTCcannot be used directly to implement ParSubC because the stack managementdiscipline it requires is incompatible with the semantics of C. As a result, wehave designed a variant of LTC, which we call Lazy Remote Procedure Call (lazyRPC), that is compatible with C's semantics.2 Lazy task creationLet us �rst review a possible implementation of LTC for Multilisp to see why itstask management discipline cannot be applied directly to C.2.1 Implementing LTC for MultilispFigure 1 shows the global organization of a LTC based Multilisp system. Witheach processor is associated an instance of the following three data structures:the run time stack, which is where continuations are allocated, the lazy-taskstack (LTS), which is a double-ended queue used mostly like a stack, and therunnable-task queue (RTQ). The LTS contains pointers to continuations on thelocal run time stack that are available for execution by other processors (thestealable continuations) and the RTQ contains previously blocked tasks that havebecome runnable. At the top of the stack is the continuation of the task currently

�� �����
P2
R Rresume

P3Thief

�� �� �� ��
�� ���� ���� ���� �� �� ���� ���� ���� ���� ���� �� �?6

�� ��SC = current continuation = runnable taskRsteal
pushP1popCRandRTQSTACKLTS SS

P4C
R
Victim

SSS= stealable continuationFig. 1. Global organization of a LTC based Multilisp system.running on that processor. Let's call kf the implicit continuation of expression(future expr). To evaluate this expression a processor simply pushes a pointerto kf on top of its LTS (this corresponds to pushing the top of stack pointer onthe LTS) and then starts evaluating expr with a newly allocated continuationke. This continuation simply pops the continuation pointer to kf from the LTSand returns control to kf . Unless another processor steals kf from the LTS asexplained below, the ow of control that results is identical to that of a functioncall.An idle processor gets work by stealing a continuation from another pro-cessor's LTS or by resuming a task from a RTQ (either the local one or thatof another processor). The two processors involved in a continuation steal arethe thief and victim. For implementation simplicity and in order to minimizethe number of steals needed to keep the thief working it is the oldest continu-ation on the victim's LTS that is stolen (i.e. the one at the base of the LTS).When the program is a balanced divide and conquer algorithm, this continu-ation corresponds to the one with the largest amount of work. The followingsteps are required to steal continuation kf . First, the pointer to kf is removedfrom the victim's LTS so that no other processor can steal it and kf is copiedto the thief's run time stack. Secondly, an empty placeholder object is createdto act as a representative of expr's value and ke on the victim's run time stackis transformed into a new continuation k0e that sets the placeholder to the valueit receives (i.e. expr's value) and terminates the current task. Finally, the thiefinvokes its copy of kf with the placeholder that was created.The e�ect of the steal operation is shown in Figure 2. The \before" diagramdepicts the state of the stack and LTS at the start of the evaluation of thebody of a future nested within 2 other futures. The continuation kf of the �rstfuture evaluated consists of stack frames 1 and 2, and the frame created for ke

����1PPPPq����3--
6?-LTStail STACKhead frame1frame2frame3frame4frame5frame6frame7

before steal ����1PPPPq����3- 6?- ?(())__̂̂- -tail STACKframe1frame2frame4frame5frame6frame7
LTShead frame03after stealFig. 2. Victim's run time stack and LTS before and after a steal from the LTS.is frame 3. The steal operation copies frames 1 and 2 to the thief's stack, andupdates frame 3 and the base pointer of the LTS (i.e. head). If another stealoccurred, frame 3 as updated by the previous steal and frame 4 would be copiedto the thief's stack. Note that the active part of the LTS is the section abovehead up to tail. The distance between these pointers is the number of stealablecontinuations. An important invariant is that the pointer under head and justabove it delimit the stack section containing the frames to copy.2.2 Task blockingTrying to dereference (i.e. touch) an empty placeholder causes the current taskto be suspended (by copying the current continuation to the heap) and put ona queue of blocked tasks associated with the placeholder. The continuation k0ein which this placeholder was stored will make the blocked tasks runnable bytransferring them to the RTQ just after having set the placeholder to the valuereturned to k0e.Task suspension is more complex when the stack contains stealable contin-uations. In order to not reduce the amount of parallelism it is important thatthese continuations remain stealable. Consequently, task suspension is handledsimilarly to a steal of the topmost stealable continuation to preserve the linkbetween this continuation and the suspended task. An empty placeholder rep-resenting the result of the current task is created and the oldest frame of thecurrent continuation (which corresponds to the continuation ke of the body ofthe future that created the current task) is transformed into a new continuationk0e that sets the placeholder to the value it receives.After a processor has suspended its current task, it can proceed in two dif-ferent ways. The \tail-biting" approach used in the Encore version of Mul-T[Mohr, 1991] consists of invoking the topmost stealable continuation with theplaceholder just created. This approach can be ine�cient because the topmostcontinuation typically contains less work than older continuations and becausesubsequent blocking is likely. An alternative approach, used in Gambit [Feeley,1993a], is to immediately copy the stealable continuations to the RTQ in reverse

order (so that older continuations are stolen �rst) and to invoke the oldest con-tinuation. This has the advantage of reducing the likelihood of further blockingby giving more time to compute the placeholder's value before it is needed, andit allows the implementation of the Katz-Weise semantics for �rst-class contin-uations [Katz and Weise, 1990].2.3 Incompatibility with CThere are several reasons why this implementation of LTC can not be applieddirectly to C. First, placeholders are objects with inde�nite extent. They cannot be allocated in the run time stack because they can outlive the continuationof the future they were created for. Using a general purpose garbage collector toreclaim heap allocated placeholders is out of the question for a language like C,so the responsibility of deallocating placeholders must rest with the programmer.This however is an error prone solution which we would like to avoid.Secondly, unlike C, Multilisp uses a uniform representation for objects (i.e. allobjects are encoded by a pointer) and objects contain a type tag. It is thuspossible for a placeholder to masquerade as a true value and a placeholder caneasily be distinguished from a true value. Without these features a placeholderwould have to be created in the heap for every future evaluated regardless ofwhether its continuation gets stolen, thus diminishing the e�ectiveness of LTC'slaziness. The allocation/deallocation overhead this would incur is probably largeenough to preclude �ne grain tasks.Finally, stack frames need to be moved to a di�erent address when tasksare stolen, suspended, and resumed. As a consequence, C's \address-of" (i.e. &)operator can not be used on local variables. This is a severe restriction becauseit prohibits common C idioms including \by reference" parameter passing andstack allocation of data.Our solution to these problems is to hide tasks and placeholders from the userand change the scheduling and stealing algorithms to restrict tasks, continuationsand placeholders to have dynamic extent (i.e. nested lifetimes). This makes itpossible to allocate them on the stack and to never move them.3 ParSubC's parallel callIn ParSubC parallelism is introduced explicitly with the parallel call constructwhich essentially expresses concurrency between a function call and a compoundstatement. A parallel call can appear anywhere an ordinary function call canappear; a \!!" and a compound statement are simply added after the list ofarguments, as in:function(arg1, . . ., argn) !! { declaration-list statement-list }

Conceptually the execution of a parallel call consists of the following steps:1. The arguments are evaluated.2. The function's body and the compound statement are executed concurrently.3. When both executions are done, the continuation of the function call isexecuted with the result of the function.This ordering avoids some race conditions, in particular: between the evalua-tion of the arguments and side e�ects in the compound statement, and betweenthe compound statement and side e�ects in the call's continuation. In the parallelcall x = sin(y) !! { y = cos(x); };there is no race condition for reading and writing variables x and y. Since pro-cedures are viewed as functions with void result in C, the parallel call constructcan also be used for procedure calls. The creation of more than two tasks canbe obtained by cascading parallel calls as in the callf(x) !! { g(y) !! { h(z); }; };which expresses concurrency between the procedure calls to f, g, and h.int sum(int *X, int n){ if (n == 1)return *X;else{ int s1, s2;s1 = sum(X,n/2) !!{ s2 = sum(X+n/2,n-n/2); };return s1 + s2;}}
threadfork joinFig. 3. Parallel sum of an array in ParSubC and resulting spawning graph for array oflength 8.Figure 3 shows a simple application of ParSubC's parallel call in a recursivefunction that computes the sum of the elements of array X of length n. The arrayis split in two sub-arrays of equal size and the sum is performed concurrently onboth sub-arrays. The recursion ends when the array is of length 1. The resultingspawning graph shows the fork-join dependences between the threads of control

that are created. By convention the left thread at fork points corresponds tothe function call and the right thread to the compound statement. Divide andconquer parallel algorithms such as this are a typical way to use ParSubC'sparallel call.4 Lazy remote procedure callLazy RPC borrows from LTC the idea of deferring the creation of new tasks untilsome processor needs work. However, instead of stealing continuations to createtasks, lazy RPC creates tasks by stealing function calls. The LTS is managed inthe same way as in LTC but it contains pointers to function call descriptors onthe stack rather than pointers to continuations.When a parallel call is executed, a function call descriptor is created on thestack and the LTS is updated to indicate that this call is stealable. Executionthen continues with the compound statement. If the function call was not stolenby another processor when the compound statement is done, then the functioncall is removed from the LTS and the call is performed immediately.4.1 Join pointsExecution can not proceed past the join point if the function call was stolenand it has not completed yet. This situation is similar to the touching of anempty placeholder in LTC, but an important di�erence is that there are nostealable calls left on the LTS since older calls are stolen �rst. Rather than busywait for the call to complete, the victim processor will steal a call from anotherprocessor (if one is available). When the victim processor has �nished executingthis function call it checks the status of the call it is waiting on and proceedspast the join point if it is done.The code sequence required to implement a parallel call with lazy RPC isshown in Figure 4 in a C-avored pseudocode. The exact layout and size of de-scriptors varies from function to function, but they contain the following �elds: apointer to a function descriptor (function), the arguments of the call (arg1,...),and the result of the function if there is one (result). The function �eld servesa dual purpose. Initially it points to a function descriptor which contains infor-mation on the function to call including the entry point and the space occupiedby the arguments and the result. This information is required to steal and exe-cute the call and to return the result. The function �eld is also used as a agto indicate completion of the stolen call.4.2 Stealing function callsThe procedure steal and execute function call is responsible for stealingcalls when a processor is idle or waiting for a call to complete. When the programis started all processors execute this procedure in an in�nite loop, except for theone executing the program's main function. Each LTS is checked in turn until

{ descriptor d; /* allocate function call descriptor on stack */d.function = &f_descr; /* initialize function call descriptor */d.arg1 = x*y;d.arg2 = g(x);*++tail = &d; /* push descriptor to LTS */{ statements } /* execute compound statement */tail--; /* join point, pop descriptor from LTS */if (head > tail) /* was call stolen? */{ head--;while (d.function != 0) /* is call still in progress? */steal_and_execute_function_call();}elsed.result = f(d.arg1, d.arg2);/* result of call is available in d.result */}Fig. 4. Pseudocode for the parallel call f(x*y,g(x)) !! f statements g.a victim processor with stealable calls is found (i.e. head<tail). Head is thenincremented, the corresponding function call descriptor is fetched (except for theresult �eld), and �nally the function is called with the appropriate arguments.When the function returns, the result is transferred to the descriptor on thevictim's stack and the function �eld is set to zero to indicate completion ofthe call. Note that the thief can perform these operations directly on a shared-memory machine or by exchanging messages with the victim on a distributed-memory machine. In this latter case, three messages in all are required persuccessful steal: the steal request, the call's descriptor, and the call's result.A race condition exists between the thief stealing a call and the victim pop-ping a call from the LTS. To avoid conict, the pair of instructions performedby the victim at the join point for decrementing tail and testing head>tail,must not be executed at the same time as the test head<tail and incrementof head performed by the thief. This mutual exclusion problem can be solved ina variety of ways including the use of polling to handle steal requests [Feeley,1993b], disabling interrupts during the critical sections, and serializing access tothe LTS with hardware locks or software locks [Feeley, 1993a].4.3 Why defer the function call?When a parallel call is executed, lazy RPC defers the function call and im-mediately begins the execution of the compound statement. The alternative of

deferring the execution of the compound statement, which would be closer towhat LTC does, is not as good on distributed-memory machines. In general thecompound statement must access the current stack frame to obtain the data itneeds and to return results to the code following the join point. Since we do notwant to move stack frames, a stolen compound statement will have to access thestack frame remotely. In addition, a message is needed to signal termination ofthe compound statement. When stealing function calls, a single message carriesall the arguments required and the signal of termination can be piggybacked onthe message carrying the result.4.4 Overhead of a parallel callIt is important that the cost of the parallel call construct be low to allow �negrain parallelism. To evaluate this cost we will measure the overhead of executinga parallel call compared to a sequential call and assume that the call is not stolen.In other words, we want to know how much more expensive it is to execute thefunction par than it is to execute seq:void par(int a, int b); { x = f(a) !! { y = g(b); }; }void seq(int a, int b); { x = f(a); y = g(b); }Some steps in the execution of a parallel call can be ignored since they arealso needed when a sequential call is used: the evaluation of the arguments andthe execution of the compound statement. The allocation and deallocation ofthe function call descriptor can also be ignored because it can be done with thenormal stack pointer adjustments at function entry and exit.Depending on the compiler's calling convention, the initialization of the func-tion call descriptor is not necessarily all overhead. If the compiler passes argu-ments on the stack it is easy to choose a layout for the descriptor's argument�elds which matches the calling convention. A similar statement holds for theresult �eld if function results are returned on the stack. If arguments and re-sults are passed in registers (as is the case on most RISC machines) then eachargument will account for an additional write and read from the descriptor. Nooverhead is counted for the assignment to d.result since it can easily be by-passed (the result will be immediately consumed by the code that follows theparallel call). To be thorough however we must take into account the variationin the creation of the caller's stack frame. The above example shows this well.Arguments a and b are passed in registers to the functions par and seq. How-ever, seq must store b to the stack before calling f and fetch it later because itsvalue is needed for the call to g. This is not the case for par which consumes aand b before any call that could overwrite them. Consequently, for the exampleabove, the only overhead associated with the initialization of the descriptor andcall of the function is the initialization of the descriptor's function �eld.The remaining overhead is the pushing and popping of the descriptor on theLTS and the test head>tail. The total overhead per call can thus be as low asthese 4 operations which translate into about 12-15 RISC instructions (including

4 writes and 3 reads) if tail and head are kept in memory. This compares wellwith the overhead of LTC. A future would generate these same instructionsexcept for the initialization of the descriptor's function �eld. However, thetouch operation needed in LTC for synchronization is not needed in lazy RPCso the total overhead is equal or slightly lower for lazy RPC (depending on howplaceholders are represented and tested for).5 Discussion5.1 Compatibility with conventional languagesThe stack management discipline of lazy RPC is well suited for conventionallanguages. Since the stack does not have to be managed specially when executingsequential code, parallel code can be linked seamlessly with precompiled librariesand object �les produced by conventional compilers2.Since stack frames are never moved, the address of a local variable stays thesame throughout its life. It is thus straightforward to implement C's & operatorif the environment supports a shared address space. On a shared-memory multi-processor, each processor can allocate its stack in a di�erent region of the sharedaddress space so that references will transparently be directed to the right frame.On a distributed-memory machine, each processor can allocate its stack in localmemory if a virtual shared-memory package is used to implement the sharedaddress space.5.2 Loss of parallelismLazy RPC's policy for handling join points is problematic because it createsarti�cial control dependences between threads. If a processor is waiting at joinpoint J for a stolen call A to complete and it steals call B, then J becomesdependent on the termination of B. This case is shown in Figure 5 where eachsolid oval corresponds to a call that has been stolen and each black dot is thepoint of execution in a thread. If A terminates before B some parallelism willbe wasted because execution past J, which is possible in principle, must waitfor the termination of B. The fact that B can itself be waiting at a join point(because a call was stolen from it) only compounds the problem. This loss ofparallelism however will only be important if there is little parallelism in theprogram. Our experimental results indicate that the loss is small on �ne graindivide and conquer programs (see Section 6).5.3 Stack sizeWith LTC the space needed for the stack and LTS per processor to run a parallelprogram is within a constant factor of the space needed for a sequential execution2 Of course there may be incompatibilities with things like longjmp, fork, and threadspackages.

J

A

B

Fig. 5. Call B is stolen because stolen call A has not completed when control reachesjoin point J.of the program. This is not the case for lazy RPC because all blocked threads(those waiting at a join point) consume space on the stack and LTS. To simplifythe analysis we will only search for an upper-bound on the size of the LTS (fortypical programs the size of the stack is within a constant factor of the size ofthe LTS, where the constant depends on the program). The number of entrieson the LTS (NLTS) is at most d times s + 1 where d is the nesting depth ofparallel calls and s is the maximum number of calls stolen from a processor.According to [Mohr, 1991], if p is the number of processors, s < pd for LTCwith \polite stealing" (which requires that a processor attempt to steal from agiven processor only after having tried to steal from all other processors). Thisupper-bound implies that for lazy RPC NLTS � pd2. Unfortunately, there is asubtle error in Mohr's proof3 so this upper-bound is not correct.Fortunately, it has been observed that NLTS is usually close to d in practice(see Section 6). It is therefore su�cient to use a stack that is a constant factorlarger than is needed for a sequential execution (Sseq) and to make the stealingof calls at join points conditional on the space left on the stack to guarantee thatthe stack never overows. The join point becomes a busy-wait when the spaceleft is less than Sseq .6 Experimental resultsIn order to evaluate lazy RPC a prototype ParSubC compiler was built. Thiscompiler was written with experimentation in mind, not absolute performance.3 It incorrectly assumes that a processor with an empty LTS has no work to sharewith other processors. It could simply be that the processor has not yet pushed workon the LTS.

Each ParSubC source �le is compiled to a �le of C code which is subsequentlycompiled by the machine's native C compiler and linked with the ParSubC run-time system. The C code produced is slower than a direct C compilation becausethe stack is explicitly represented as an array (all accesses to local variables arecompiled to array reference so the native C compiler can not allocate these vari-ables to registers). There is also an overhead for the handling of steal requests.Each processor has a \steal" ag that is raised when a steal request is pending.This ag is checked at every function call and inside every loop. For a purelysequential program running on one processor, the slowdown factor caused by thiscode generation is anywhere between 2 and 20. For this reason it is not possibleto draw strong conclusions regarding absolute performance from this prototype.In the near future, we plan to implement a more direct ParSubC to C translationthat will impose no overhead for the sequential parts of the program.The ParSubC compiler has been ported to a variety of shared-memory mul-tiprocessors (including the BBN Buttery, SGI Challenge, and Cray T3D) andnetwork of UNIX workstations using a virtual shared-memory package imple-mented on top of TCP/IP. Here we only report on the Cray T3D port becauseit is representative of the ports to shared-memory multiprocessors and becausethe port to network of workstations is undergoing changes to improve its perfor-mance on communication intensive programs.6.1 The Cray T3D implementationThe Cray T3D that was used is a 512 processor machine at the PittsburghSupercomputer Center. Each processor is a 150MHz DEC Alpha microprocessorwith 64MB of local memory. The processors are interconnected by a 3D torusnetwork. By con�guring the virtual memory circuit attached to each processor(the \annex"), it is possible to implement a coherent shared address space forup to 16 processors [Numrich, 1994]. When this is done, a cache miss to localmemory costs about 30 cycles and a remote memory reference costs 3 to 4 timesthat depending on the distance of the remote processor. The annex also supportsan atomic swap operation and we have used it to implement spin locks.Shared-memory is used to implement the steal operation. The thief storesits processor number in the victim's memory, raises the victim's steal ag, andstarts waiting for a response by busy-waiting on a response variable in localmemory. A lock associated with the victim's LTS is used to prevent interferencefrom other processors. When the victim detects the steal request it removes theoldest call from its LTS (if there is one) and stores a pointer to the descriptorin the thief's response variable. The thief then prepares the call on its stackby reading the descriptor on the victim's stack and executes the call. Finally,the thief stores the result in the descriptor on the victim's stack and zeros thefunction �eld. This protocol was designed to avoid the memory tra�c thatwould occur if busy-waits were done on remote ags.

6.2 BenchmarksMost of the benchmarks we have used are small programs (< 200 lines ofParSubC) translated from Multilisp. We have also used a 3000 line program(nucleic) that computes the 3D structure of a nucleic acid [Feeley et al.,1994][Hartel et al., 1996]. All these programs are based on divide and conquerparallel algorithms. These programs are briey described in Appendix A.The benchmarks were run on 1 to 16 processors and the average run time(real time in seconds) of 10 executions was taken giving T1 to T16. We also ransequential versions of the programs (by simply replacing \!!" by \;") using oneprocessor (Tseq). The parallel call granularity (g) corresponds to the average runtime per parallel call (i.e. T1=n where n is the number of parallel calls executed).Table 1 gives g, Tseq , T1, and the speedup (T1=Tp) for each benchmark.g Speedup (T1=Tp) whenProgram (�secs) Tseq T1 p= 2 4 8 16queens 12 9.60 10.22 2.00 4.00 7.99 15.94fib 4 4.97 5.66 1.99 3.96 7.90 15.72fibr 4 4.97 5.66 1.99 3.96 7.90 15.74sum 6 2.60 3.00 1.92 3.75 7.33 14.13nucleic 66 2.32 2.25 1.87 3.57 6.89 12.55scan 7 1.57 1.72 1.87 3.52 6.02 8.58poly 15777 7.76 8.06 1.70 3.00 5.21 6.08mm 401 9.26 9.03 1.70 3.07 4.71 4.80abisort 20 4.49 4.62 1.65 2.62 3.39 3.63tridiag 24 4.55 4.64 1.61 2.63 3.40 3.19Table 1. Benchmark granularity, run time and speedup.6.3 Lazy RPC overheadThe overhead of lazy RPC is the di�erence between T1 and Tseq . As expected theoverhead is inversely proportional to the parallel call granularity: it is between10% and 15% for very �ne grain programs (fib, fibr, sum and scan), and below6% for larger grain programs. Similar overheads are reported for LTC in [Feeley,1993a] for the Multilisp version of these benchmarks.6.4 SpeedupThe speedup obtained for queens, fib and fibr is very close to linear. Becausethese benchmarks have imbalanced spawning trees it shows that lazy RPC isbalancing the load very evenly. Appreciable speedup is also obtained for sum,nucleic and scan. The main reason for the lower speedup is that these bench-marks access shared data and the average cost of a memory reference increases

with the number of processors (the probability that a reference is remote in-creases and the average distance increases).The mediocre speedup of the remaining benchmarks (poly, mm, abisort andtridiag) is due to memory contention. For simplicity, all global variables areallocated in the memory of the �rst processor. This means that all accesses toglobal data go to the same processor, which leads to a serialization of the accessesby the interconnection network. Since these benchmarks access global arrays veryfrequently, contention quickly becomes the dominant bottleneck and no furtherspeedup is possible when the network reaches saturation. We con�rmed that thiswas not a load balancing problem by checking that the idle time is small usingour pro�ling tool. This tool processes an event log produced during execution tocompute various statistics on the program including the activity of the processorsas a function of time and the average time spent in each state (working, stealing,and idle). The output of this tool for tridiag run with 16 processors is givenin Figure 6. It shows that processors are idle for only about 1% of the total runtime. Similarly low idle time was observed for the other benchmarks. This leadsus to believe that the loss of parallelism due to lazy RPC's scheduling policy issmall when there is ample parallelism to begin with.
File: "tridiag.elog" Processors: 16

working stealing idle

0 100 200 300 400 500 600 700

12.857

74%

.0 .1

.043

80%

0 1 2 3 4 5 6 7

.271

38%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 msec

File: "tridiag.elog" Processors: 16

Fig. 6. Execution pro�le of tridiag benchmark with 16 processors.On a cache coherent multiprocessor, contention becomes less important be-cause data gets distributed on demand to the caches of the processors that accessit and there is su�cient locality. On an 8 processor SGI Challenge cache coher-ent multiprocessor we have observed much better speedup than the Cray T3Dfor the benchmarks su�ering from contention. The speedup with 8 processors isabove 7 for poly and mm, and above 6 for abisort and tridiag4.4 Because the machine we used for this experiment is shared by many users and isalways busy, the speedup was impossible to measure exactly but on an idle machineit would be at least as high as indicated.

6.5 Stack sizeTo evaluate the stack size needed for the benchmarks, we measured the maxi-mal NLTS over all processors and over 10 runs. This maximum was computedlocally by each processor at the pushing of a descriptor on the LTS and a globalmaximum was computed at the end of the run. The results are given in Table 2.Maximal NLTS whenProgram p= 1 2 4 8 16queens 43 43 43 43 43fib 15 15 19 23 30fibr 29 29 29 29 29sum 18 18 19 23 31nucleic 101 101 101 88 89scan 17 17 18 19 25poly 9 9 10 12 14mm 14 14 15 22 22abisort 14 14 16 20 25tridiag 17 17 18 22 23Table 2. Size of the LTS as a function of the number of processors.For p = 1, the maximal NLTS equals d, the nesting depth of parallel calls.Most programs show an increase in NLTS as more processors are used. Theincrease is at its highest for fib which at 16 processors has NLTS = 2d. For someprograms NLTS stays constant (queens and fibr) or even decreases (nucleic).This variation in NLTS is related to the lopsidedness of the spawning tree. NLTStends to increase with p more rapidly when the spawning tree is lopsided onthe side of the call (i.e. the call does more work than the compound statement)because there will be a high probability that a stolen call is not yet �nished whenthe corresponding compound statement ends. It is thus likely that new stolencalls will be added to the stack. This is the case for fib which computes the callfib(n-1) in parallel with a compound statement which computes fib(n-2).For queens, nucleic and fibr (which is like fib but with the recursive callsexchanged), the spawning tree is lopsided on the side of the compound statementso join points rarely end up stealing calls.7 Related workOne of the earliest attempts to adapt the future construct to C was done atTera Computer Company [Callahan and Smith, 1989] (to our knowledge thissystem has never been implemented). The authors propose to extend C with aplaceholder type quali�er, a task spawning construct, data sharing directives, andsynchronization variables. Since no restriction is imposed on the allocation anddeallocation of placeholders and tasks, dangling pointers are a de�nite possibility.

To exploit �ne grain parallelism, load based inlining was considered to implementthe spawning construct. There is no mention of LTC. A new �xed size stack isallocated for every task created, making it easy to support the & operator, butalso causing considerable memory consumption and task spawning overhead.The extensions to C are not as natural as ParSubC's because the user mustindicate how a spawned task shares data with its parent task.Cid [Nikhil, 1994] shares with ParSubC the desire for minimal extensions toC and compatibility with existing code and compilers. Cid is mainly intendedfor programming distributed-memory machines. Its programming model is morecomplex than ParSubC's because it exposes the features of the architectureto give the programmer more control. Like lazy RPC, a thread is created byforking a function call. Unlike lazy RPC, the call executes concurrently with thecontinuation of the fork and an explicit join variable must be used to synchronizethe call with the consumer(s) of the result. The user can specify that the callbe forked on a speci�c processor or on any processor. The latter case is handledby maintaining on each processor a stealable-call queue (independent from thestack) which contains call descriptors (including the arguments and a pointer tothe join variable). Because the stack and stealable-call queue are decoupled, Ciddoes not handle non-stolen calls as e�ciently as lazy RPC. The overhead of anon-stolen call includes a thread suspension on a join variable and a subsequentthread resumption. A form of load-based inlining is available in Cid to reducethe number of non-stolen calls but this is not as e�cient as creating tasks lazily[Mohr, 1991].Olden [Rogers et al., 1995] is another system that has adapted LTC to Cfor programming distributed-memory machines. Instead of migrating data be-tween processors when non-local data is accessed, Olden migrates the task tothe processor containing the data. Like LTC, a stack of stealable continuationsis maintained on each processor. Unlike LTC, tasks are only stolen locally andfrom most recent to oldest. When a task is migrated or a task blocks (becausean empty placeholder is dereferenced), the most recent stealable continuation onthat processor is invoked. Because processors don't steal tasks from other proces-sors, load balancing is not automatic. Task distribution is directly dependent onthe distribution of the data and the uniformity of the work to be performed onthe data. The task scheduling policy adopted by Olden requires that a spaghettistack [Bobrow and Wegbreit, 1973] be used to manage the stack. This adds over-head to all function calls and is not compatible with the stack management oftraditional compilers. Finally, the & operator can not be used on local variablesbecause stack frames move as a result of task migration (the compaction of thespaghetti stack needed to avoid stack overows also moves stack frames).The leapfrogging technique [Wagner and Calder, 1993] is closely related tolazy RPC. It was speci�cally designed to be compatible with conventional com-piler technology and to require no syntactic extension to C++. A subclass ofthe class Future must be declared for each function to be called in parallel.Instances of this class correspond to lazy RPC call descriptors but they are �rstclass objects so the user is responsible for their allocation and deallocation (with

the usual caveats). The constructor of this class accepts the parameters of thecall, saves them in the descriptor, and adds the descriptor to the processor'sstealable-call queue. Stealable calls are removed from this queue in an arbitraryorder, so the queue is more expensive to manage than lazy RPC's LTS. Whena task dereferences a call descriptor that has not been stolen, the descriptor isremoved from the queue it is in (possibly on another processor because thereare no restrictions on the order of dereferencing descriptors), the call is executedand the result stored in the descriptor. Like lazy RPC, blocking is implementedby stealing calls but leapfrogging places a number of constraints on the call tosteal. When a task executing a parallel call C1 blocks because it has dereferencedthe descriptor of a parallel call C2 that has been stolen by processor P but hasnot yet completed, a call is stolen from P that is at a deeper nesting level inthe spawning tree than C1 and C2. This constraint insures that the stack sizeneeded is no more than for a sequential execution of the program. However itrequires the maintenance of a nesting depth and a search in P 's stealable-callqueue, it exposes less parallelism than lazy RPC, and tends to steal smaller andsmaller calls, leading to a higher number of stolen calls and a higher overheadper parallel call.8 ConclusionWe have proposed a variant of lazy task creation (LTC) called lazy remote proce-dure call (lazy RPC) that is speci�cally designed for divide and conquer parallelprograms and is compatible with conventional languages and C in particular.Several memory management problems have been avoided by hiding tasks andplaceholders from the user and adopting a task scheduling policy that restrictstasks and placeholders to nested lifetimes. A single stack is maintained per pro-cessor and stack frames are never moved, making it easy to implement C's & oper-ator. Rather than adopt an unusual stack management discipline (e.g. spaghettistack) or move stack frames, we handle task blocking by stealing parallel callsfrom other processors. Lazy RPC is applicable to �ne grain parallelism becausethe overhead of a non-stolen parallel call is very low (about 10-20 machine in-structions, which compares favorably with LTC).We have implemented a prototype compiler based on lazy RPC on a CrayT3D shared-memory multiprocessor. Experimental results with 16 processorsshow that lazy RPC's scheduling policy does not incur an appreciable loss ofparallelism compared to LTC when there is ample parallelism in the application.The results also show that the stack space needed is reasonably small (within afactor of 2 of that required for a sequential execution of the program).9 AcknowledgmentsThis work was supported in part by a grant from the Natural Sciences and En-gineering Research Council of Canada. Francis L'�Ecuyer and Mario Latendressehelped with the implementation of the prototype compiler and the experiments.

A Brief Description of Benchmark Programs{ queens: Compute the number of solutions to the 12-queens problem.{ fib: Compute fib(30) using the doubly recursive algorithm.{ fibr: Like fib but the parallel call is fib(n-2) instead of fib(n-1).{ sum: Compute the sum of a vector of 500000 integers.{ nucleic: Compute 3D structure of a 23 nucleotide section of a nucleic acid.The computation is essentially a depth �rst search with constraints.{ scan: Compute the parallel pre�x sum of a vector of 131072 integers in place.{ poly: Compute the square of a 2000 term polynomial of x (represented asan array of coe�cients) and evaluate the resulting polynomial for a certainvalue of x.{ mm: Multiply two matrices of integers (150 by 150).{ abisort: Sort 32768 integers using the adaptive bitonic sort algorithm [Bi-lardi and Nicolau, 1989].{ tridiag: Solve a tridiagonal system of 262143 equations.References[Bilardi and Nicolau, 1989] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: Anoptimal parallel algorithm for shared-memory machines. SIAM Journal of Comput-ing, 12(2):216{228, April 1989.[Bobrow and Wegbreit, 1973] D. Bobrow and B. Wegbreit. A model and stack imple-mentation of multiple environments. Communications of the ACM, 16(10):591{603,1973.[Callahan and Smith, 1989] D. Callahan and B. Smith. A future-based parallel lan-guage for a general-purpose highly-parallel computer. In Papers from the SecondWorkshop on Languages and Compilers for Parallel Computing, pages 95{113. Uni-versity of Illinois at Urbana-Champaign, 1989.[Feeley et al., 1994] M. Feeley, M. Turcotte, and G. Lapalme. Using Multilisp for solv-ing constraint satisfaction problems: an application to nucleic acid 3D structure de-termination. Lisp and Symbolic Computation, 7(2/3):231{246, 1994.[Feeley, 1993a] M. Feeley. An E�cient and General Implementation of Futures onLarge Scale Shared-Memory Multiprocessors. PhD thesis, Brandeis University De-partment of Computer Science, 1993. Available as publication #869 from d�eparte-ment d'informatique et recherche op�erationnelle de l'Universit�e de Montr�eal.[Feeley, 1993b] M. Feeley. Polling e�ciently on stock hardware. In Proceedings ofthe 1993 ACM Conference on Functional Programming Languages and ComputerArchitecture, 1993.[Halstead, 1985] R. Halstead. Multilisp: A language for concurrent symbolic compu-tation. In ACM Trans. on Prog. Languages and Systems, pages 501{538, October1985.[Hartel et al., 1996] P. H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann,M. Beemster, E. Chailloux, C. H. Flood, W. Grieskamp, J. H. G. Van Groningen,K. Hammond, B. Hausman, M. Y. Ivory, R. E. Jones, P. Lee, X. Leroy, R. D.Lins, S. Loosemore, N. R�ojemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas,P. Weis, and P. Wentworth. Benchmarking implementations of functional languages

with \pseudoknot" a oat-intensive benchmark. To appear in Journal of FunctionalProgramming, 1996.[Katz and Weise, 1990] M. Katz and D. Weise. Continuing into the future: on theinteraction of futures and �rst-class continuations. In Proceedings of the 1990 ACMConference on Lisp and Functional Programming, Nice, France, June 1990.[Mohr, 1991] E. Mohr. Dynamic Partitioning of Parallel Lisp Programs. PhD thesis,Yale University Department of Computer Science, October 1991.[Nikhil, 1994] R. S. Nikhil. Cid: A parallel, shared-memory C for distributed-memorymachines. In Languages and Compilers for Parallel Computing, pages 376{390, Au-gust 1994.[Numrich, 1994] R. W. Numrich. The Cray T3D Address Space and How to Use It.Cray Research Inc., 1994.[Rogers et al., 1995] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Sup-porting dynamic data structures on distributed-memory machines. ACM Transac-tions on Programming Languages and Systems, 17(2):233{263, March 1995.[Wagner and Calder, 1993] D. B. Wagner and B. G. Calder. Leapfrogging: A portabletechnique for implementing e�cient futures. In Proceedings of the ACM SIGPLANSymposium on Principles and Practice of Parallel Programming, May 1993.

This article was processed using the LATEX macro package with LLNCS style

