Lazy Remote Procedure Call and
its Implementation in a Parallel Variant of C

Marc Feeley

Dépt. d’'informatique et de recherche opérationnelle
Université de Montréal
Montréal, Québec, CANADA

feeley@iro.umontreal.ca

Abstract. Lazy task creation (LTC) is an efficient approach for execut-
ing divide and conquer parallel programs that has been used in the im-
plementation of Multilisp’s future construct. Unfortunately it requires a
specialized memory management scheme, in particular for stack frames,
which makes it hard to use in the context of conventional languages. We
have designed a variant of LTC which has a stack management disci-
pline that is compatible with the semantics of conventional languages.
This mechanism, which we call lazy remote procedure call, has been used
to implement a parallel variant of C. A first prototype of our system has
been ported to shared-memory multiprocessors and network of worksta-
tions. Experimental results on a Cray T3D multiprocessor show that
good performance can be achieved on several symbolic programs.

1 Introduction

The future construct of Multilisp [Halstead, 1985] has proven to be a convenient
and effective means of expressing parallelism in Lisp and in symbolic process-
ing applications. When implemented with lazy task creation (LTC), futures can
execute parallel divide and conquer programs very efficiently on shared-memory
computers as shown by the Mul-T [Mohr, 1991] and Gambit [Feeley, 1993a] sys-
tems. LTC dynamically groups tasks together to adjust the effective task granu-
larity of the program thus relieving the programmer from having to think about
task granularity, load balancing, number of processors and processor speed. LTC
produces a granularity that is both fine enough to keep processors working most
of the time and coarse enough to keep task creation overhead low.

These advantages have compelled us to explore the use of LTC for imple-
menting parallel variants of conventional languages. The work reported in this
paper is an attempt to adapt LTC to C. We have designed and implemented a
new language, called ParSubC (Parallel Subset of C)!, which:

— is suitable for parallel symbolic processing,
— supports a shared-memory model and a form of message-passing,
— is portable to shared and distributed memory parallel machines,

! We have kept this name even though at this point the language is a superset of C.



— is object-code compatible with conventional C compilers.

In parallel symbolic applications, tasks often need to read and write data shared
with other tasks. For this reason and to stay close to C’s semantics, ParSubC
provides a shared-memory model with a single address space and with trans-
parent access to shared data. On distributed-memory machines, this model is
implemented with a virtual shared-memory package. Parallelism is introduced
with a parallel function call construct. This construct has fork-join semantics
and is thus suitable for writing divide and conquer parallel programs. A set
of atomic operators is also provided for cases where fork-join synchronization
between tasks is not sufficient. The parallel call construct provides a limited
message-passing capability which is convenient for expressing certain parallel al-
gorithms and can lead to better efficiency on distributed-memory machines due
to bulk transfer. ParSubC’s support for the message-passing and shared-memory
models combined with its portability means that it is applicable to a wide variety
of parallel applications. In typical parallel program development, one of the two
models has to be chosen in advance based on the requirements of the application
and the target machine and compiler. With ParSubC, a program can freely mix
both programming models and is not tied to a particular machine architecture.
Object-code compatibility with conventional C compilers is another important
feature of ParSubC which allows sequential C code and precompiled libraries to
be linked seamlessly with ParSubC code.

This paper does not describe in detail the complete implementation of Par-
SubC. Instead, the focus is on the implementation of the parallel call construct
which is the central problem in ParSubC. As explained in the next section, LTC
cannot be used directly to implement ParSubC because the stack management
discipline it requires is incompatible with the semantics of C. As a result, we
have designed a variant of LTC, which we call Lazy Remote Procedure Call (lazy
RPC), that is compatible with C’s semantics.

2 Lazy task creation

Let us first review a possible implementation of LTC for Multilisp to see why its
task management discipline cannot be applied directly to C.

2.1 Implementing LTC for Multilisp

Figure 1 shows the global organization of a LTC based Multilisp system. With
each processor is associated an instance of the following three data structures:
the run time stack, which is where continuations are allocated, the lazy-task
stack (LTS), which is a double-ended queue used mostly like a stack, and the
runnable-task queue (RTQ). The LTS contains pointers to continuations on the
local run time stack that are available for execution by other processors (the
stealable continuations) and the RT'Q contains previously blocked tasks that have
become runnable. At the top of the stack is the continuation of the task currently
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Fig. 1. Global organization of a LTC based Multilisp system.

running on that processor. Let’s call k; the implicit continuation of expression
(future expr). To evaluate this expression a processor simply pushes a pointer
to ks on top of its LTS (this corresponds to pushing the top of stack pointer on
the LTS) and then starts evaluating expr with a newly allocated continuation
k.. This continuation simply pops the continuation pointer to k¢ from the LTS
and returns control to k¢. Unless another processor steals k¢ from the LTS as
explained below, the flow of control that results is identical to that of a function
call.

An idle processor gets work by stealing a continuation from another pro-
cessor’s LTS or by resuming a task from a RTQ (either the local one or that
of another processor). The two processors involved in a continuation steal are
the thief and wvictim. For implementation simplicity and in order to minimize
the number of steals needed to keep the thief working it is the oldest continu-
ation on the victim’s LTS that is stolen (i.e. the one at the base of the LTS).
When the program is a balanced divide and conquer algorithm, this continu-
ation corresponds to the one with the largest amount of work. The following
steps are required to steal continuation k¢. First, the pointer to k; is removed
from the victim’s LTS so that no other processor can steal it and ky is copied
to the thief’s run time stack. Secondly, an empty placeholder object is created
to act as a representative of expr’s value and k. on the victim’s run time stack
is transformed into a new continuation k. that sets the placeholder to the value
it receives (i.e. expr’s value) and terminates the current task. Finally, the thief
invokes its copy of k; with the placeholder that was created.

The effect of the steal operation is shown in Figure 2. The “before” diagram
depicts the state of the stack and LTS at the start of the evaluation of the
body of a future nested within 2 other futures. The continuation k; of the first
future evaluated consists of stack frames 1 and 2, and the frame created for k.
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Fig. 2. Victim’s run time stack and LTS before and after a steal from the LTS.

is frame 3. The steal operation copies frames 1 and 2 to the thief’s stack, and
updates frame 3 and the base pointer of the LTS (i.e. head). If another steal
occurred, frame 3 as updated by the previous steal and frame 4 would be copied
to the thief’s stack. Note that the active part of the LTS is the section above
head up to tail. The distance between these pointers is the number of stealable
continuations. An important invariant is that the pointer under head and just
above it delimit the stack section containing the frames to copy.

2.2 Task blocking

Trying to dereference (i.e. touch) an empty placeholder causes the current task
to be suspended (by copying the current continuation to the heap) and put on
a queue of blocked tasks associated with the placeholder. The continuation k.
in which this placeholder was stored will make the blocked tasks runnable by
transferring them to the RTQ just after having set the placeholder to the value
returned to k.

Task suspension is more complex when the stack contains stealable contin-
uations. In order to not reduce the amount of parallelism it is important that
these continuations remain stealable. Consequently, task suspension is handled
similarly to a steal of the topmost stealable continuation to preserve the link
between this continuation and the suspended task. An empty placeholder rep-
resenting the result of the current task is created and the oldest frame of the
current continuation (which corresponds to the continuation k. of the body of
the future that created the current task) is transformed into a new continuation
k! that sets the placeholder to the value it receives.

After a processor has suspended its current task, it can proceed in two dif-
ferent ways. The “tail-biting” approach used in the Encore version of Mul-T
[Mohr, 1991] consists of invoking the topmost stealable continuation with the
placeholder just created. This approach can be inefficient because the topmost
continuation typically contains less work than older continuations and because
subsequent blocking is likely. An alternative approach, used in Gambit [Feeley,
1993a], is to immediately copy the stealable continuations to the RTQ in reverse



order (so that older continuations are stolen first) and to invoke the oldest con-
tinuation. This has the advantage of reducing the likelihood of further blocking
by giving more time to compute the placeholder’s value before it is needed, and
it allows the implementation of the Katz-Weise semantics for first-class contin-
uations [Katz and Weise, 1990].

2.3 Incompatibility with C

There are several reasons why this implementation of LTC can not be applied
directly to C. First, placeholders are objects with indefinite extent. They can
not be allocated in the run time stack because they can outlive the continuation
of the future they were created for. Using a general purpose garbage collector to
reclaim heap allocated placeholders is out of the question for a language like C,
so the responsibility of deallocating placeholders must rest with the programmer.
This however is an error prone solution which we would like to avoid.

Secondly, unlike C, Multilisp uses a uniform representation for objects (i.e. all
objects are encoded by a pointer) and objects contain a type tag. It is thus
possible for a placeholder to masquerade as a true value and a placeholder can
easily be distinguished from a true value. Without these features a placeholder
would have to be created in the heap for every future evaluated regardless of
whether its continuation gets stolen, thus diminishing the effectiveness of LTC’s
laziness. The allocation/deallocation overhead this would incur is probably large
enough to preclude fine grain tasks.

Finally, stack frames need to be moved to a different address when tasks
are stolen, suspended, and resumed. As a consequence, C’s “address-of” (i.e. &)
operator can not be used on local variables. This is a severe restriction because
it prohibits common C idioms including “by reference” parameter passing and
stack allocation of data.

Our solution to these problems is to hide tasks and placeholders from the user
and change the scheduling and stealing algorithms to restrict tasks, continuations
and placeholders to have dynamic extent (i.e. nested lifetimes). This makes it
possible to allocate them on the stack and to never move them.

3 ParSubC'’s parallel call

In ParSubC parallelism is introduced explicitly with the parallel call construct
which essentially expresses concurrency between a function call and a compound
statement. A parallel call can appear anywhere an ordinary function call can
appear; a “!!” and a compound statement are simply added after the list of
arguments, as in:

function( arg,, ..., arg, ) '! { declaration-list statement-list }



Conceptually the execution of a parallel call consists of the following steps:

1. The arguments are evaluated.

2. The function’s body and the compound statement are executed concurrently.

3. When both executions are done, the continuation of the function call is
executed with the result of the function.

This ordering avoids some race conditions, in particular: between the evalua-
tion of the arguments and side effects in the compound statement, and between
the compound statement and side effects in the call’s continuation. In the parallel
call

x = sin(y) !t {y = cos(x); };

there is no race condition for reading and writing variables x and y. Since pro-
cedures are viewed as functions with void result in C, the parallel call construct
can also be used for procedure calls. The creation of more than two tasks can
be obtained by cascading parallel calls as in the call

fx) ! {gly ' {hz; ¥}

which expresses concurrency between the procedure calls to f, g, and h.

int sum( int *X, int n ) l
{
if (n == 1)
return *X;
else
{
int sl1, s2;
sl = sum(X,n/2) !! l , l l , l
{ s2 = sum(X+n/2,n-n/2); }; l l
return sl + s2; R R
} l
} .
— fork -~ join i/ thread

Fig. 3. Parallel sum of an array in ParSubC and resulting spawning graph for array of
length 8.

Figure 3 shows a simple application of ParSubC’s parallel call in a recursive
function that computes the sum of the elements of array X of length n. The array
is split in two sub-arrays of equal size and the sum is performed concurrently on
both sub-arrays. The recursion ends when the array is of length 1. The resulting
spawning graph shows the fork-join dependences between the threads of control



that are created. By convention the left thread at fork points corresponds to
the function call and the right thread to the compound statement. Divide and
conquer parallel algorithms such as this are a typical way to use ParSubC’s
parallel call.

4 Lazy remote procedure call

Lazy RPC borrows from LTC the idea of deferring the creation of new tasks until
some processor needs work. However, instead of stealing continuations to create
tasks, lazy RPC creates tasks by stealing function calls. The LTS is managed in
the same way as in LTC but it contains pointers to function call descriptors on
the stack rather than pointers to continuations.

When a parallel call is executed, a function call descriptor is created on the
stack and the LTS is updated to indicate that this call is stealable. Execution
then continues with the compound statement. If the function call was not stolen
by another processor when the compound statement is done, then the function
call is removed from the LTS and the call is performed immediately.

4.1 Join points

Execution can not proceed past the join point if the function call was stolen
and it has not completed yet. This situation is similar to the touching of an
empty placeholder in LTC, but an important difference is that there are no
stealable calls left on the LTS since older calls are stolen first. Rather than busy
wait for the call to complete, the victim processor will steal a call from another
processor (if one is available). When the victim processor has finished executing
this function call it checks the status of the call it is waiting on and proceeds
past the join point if it is done.

The code sequence required to implement a parallel call with lazy RPC is
shown in Figure 4 in a C-flavored pseudocode. The exact layout and size of de-
scriptors varies from function to function, but they contain the following fields: a
pointer to a function descriptor (function), the arguments of the call (argl,...),
and the result of the function if there is one (result). The function field serves
a dual purpose. Initially it points to a function descriptor which contains infor-
mation on the function to call including the entry point and the space occupied
by the arguments and the result. This information is required to steal and exe-
cute the call and to return the result. The function field is also used as a flag
to indicate completion of the stolen call.

4.2 Stealing function calls

The procedure steal_and execute function_call is responsible for stealing
calls when a processor is idle or waiting for a call to complete. When the program
is started all processors execute this procedure in an infinite loop, except for the
one executing the program’s main function. Each LTS is checked in turn until



descriptor d; /* allocate function call descriptor on stack */
d.function = &f_descr; /* initialize function call descriptor */
d.argl = X*y;
d.arg2 = g(x);
*++tail = &d; /% push descriptor to LTS */
{ statements } /* execute compound statement */
tail--; /* join point, pop descriptor from LTS */
if (head > tail) /* was call stolen? */
{
head--;
while (d.function != 0) /* is call still in progress? */
steal_and_execute_function_call();
}
else

d.result = f( d.argl, d.arg2 );

/* result of call is available in d.result */

}

Fig. 4. Pseudocode for the parallel call £ (x*y,g(x)) !! { statements }.

a victim processor with stealable calls is found (i.e. head<tail). Head is then
incremented, the corresponding function call descriptor is fetched (except for the
result field), and finally the function is called with the appropriate arguments.
When the function returns, the result is transferred to the descriptor on the
victim’s stack and the function field is set to zero to indicate completion of
the call. Note that the thief can perform these operations directly on a shared-
memory machine or by exchanging messages with the victim on a distributed-
memory machine. In this latter case, three messages in all are required per
successful steal: the steal request, the call’s descriptor, and the call’s result.

A race condition exists between the thief stealing a call and the victim pop-
ping a call from the LTS. To avoid conflict, the pair of instructions performed
by the victim at the join point for decrementing tail and testing head>tail,
must not be executed at the same time as the test head<tail and increment
of head performed by the thief. This mutual exclusion problem can be solved in
a variety of ways including the use of polling to handle steal requests [Feeley,
1993b], disabling interrupts during the critical sections, and serializing access to
the LTS with hardware locks or software locks [Feeley, 1993al.

4.3 Why defer the function call?

When a parallel call is executed, lazy RPC defers the function call and im-
mediately begins the execution of the compound statement. The alternative of



deferring the execution of the compound statement, which would be closer to
what LTC does, is not as good on distributed-memory machines. In general the
compound statement must access the current stack frame to obtain the data it
needs and to return results to the code following the join point. Since we do not
want to move stack frames, a stolen compound statement will have to access the
stack frame remotely. In addition, a message is needed to signal termination of
the compound statement. When stealing function calls, a single message carries
all the arguments required and the signal of termination can be piggybacked on
the message carrying the result.

4.4 Overhead of a parallel call

It is important that the cost of the parallel call construct be low to allow fine
grain parallelism. To evaluate this cost we will measure the overhead of executing
a parallel call compared to a sequential call and assume that the call is not stolen.
In other words, we want to know how much more expensive it is to execute the
function par than it is to execute seq:

f(a) 't {y=gm; }; }
f(a); y=g®; }

void par(int a, int b); { x

void seq(int a, int b); { x

Some steps in the execution of a parallel call can be ignored since they are
also needed when a sequential call is used: the evaluation of the arguments and
the execution of the compound statement. The allocation and deallocation of
the function call descriptor can also be ignored because it can be done with the
normal stack pointer adjustments at function entry and exit.

Depending on the compiler’s calling convention, the initialization of the func-
tion call descriptor is not necessarily all overhead. If the compiler passes argu-
ments on the stack it is easy to choose a layout for the descriptor’s argument
fields which matches the calling convention. A similar statement holds for the
result field if function results are returned on the stack. If arguments and re-
sults are passed in registers (as is the case on most RISC machines) then each
argument will account for an additional write and read from the descriptor. No
overhead is counted for the assignment to d.result since it can easily be by-
passed (the result will be immediately consumed by the code that follows the
parallel call). To be thorough however we must take into account the variation
in the creation of the caller’s stack frame. The above example shows this well.
Arguments a and b are passed in registers to the functions par and seq. How-
ever, seq must store b to the stack before calling £ and fetch it later because its
value is needed for the call to g. This is not the case for par which consumes a
and b before any call that could overwrite them. Consequently, for the example
above, the only overhead associated with the initialization of the descriptor and
call of the function is the initialization of the descriptor’s function field.

The remaining overhead is the pushing and popping of the descriptor on the
LTS and the test head>tail. The total overhead per call can thus be as low as
these 4 operations which translate into about 12-15 RISC instructions (including



4 writes and 3 reads) if tail and head are kept in memory. This compares well
with the overhead of LTC. A future would generate these same instructions
except for the initialization of the descriptor’s function field. However, the
touch operation needed in LTC for synchronization is not needed in lazy RPC
so the total overhead is equal or slightly lower for lazy RPC (depending on how
placeholders are represented and tested for).

5 Discussion

5.1 Compatibility with conventional languages

The stack management discipline of lazy RPC is well suited for conventional
languages. Since the stack does not have to be managed specially when executing
sequential code, parallel code can be linked seamlessly with precompiled libraries
and object files produced by conventional compilers?.

Since stack frames are never moved, the address of a local variable stays the
same throughout its life. It is thus straightforward to implement C’s & operator
if the environment supports a shared address space. On a shared-memory multi-
processor, each processor can allocate its stack in a different region of the shared
address space so that references will transparently be directed to the right frame.
On a distributed-memory machine, each processor can allocate its stack in local
memory if a virtual shared-memory package is used to implement the shared
address space.

5.2 Loss of parallelism

Lazy RPC’s policy for handling join points is problematic because it creates
artificial control dependences between threads. If a processor is waiting at join
point J for a stolen call A to complete and it steals call B, then J becomes
dependent on the termination of B. This case is shown in Figure 5 where each
solid oval corresponds to a call that has been stolen and each black dot is the
point of execution in a thread. If A terminates before B some parallelism will
be wasted because execution past J, which is possible in principle, must wait
for the termination of B. The fact that B can itself be waiting at a join point
(because a call was stolen from it) only compounds the problem. This loss of
parallelism however will only be important if there is little parallelism in the
program. Our experimental results indicate that the loss is small on fine grain
divide and conquer programs (see Section 6).

5.3 Stack size

With LTC the space needed for the stack and LTS per processor to run a parallel
program is within a constant factor of the space needed for a sequential execution

% Of course there may be incompatibilities with things like longjmp, fork, and threads
packages.



Fig. 5. Call B is stolen because stolen call A has not completed when control reaches
join point J.

of the program. This is not the case for lazy RPC because all blocked threads
(those waiting at a join point) consume space on the stack and LTS. To simplify
the analysis we will only search for an upper-bound on the size of the LTS (for
typical programs the size of the stack is within a constant factor of the size of
the LTS, where the constant depends on the program). The number of entries
on the LTS (Nprg) is at most d times s + 1 where d is the nesting depth of
parallel calls and s is the maximum number of calls stolen from a processor.
According to [Mohr, 1991], if p is the number of processors, s < pd for LTC
with “polite stealing” (which requires that a processor attempt to steal from a
given processor only after having tried to steal from all other processors). This
upper-bound implies that for lazy RPC Nz7g < pd?. Unfortunately, there is a
subtle error in Mohr’s proof? so this upper-bound is not correct.

Fortunately, it has been observed that Nz7g is usually close to d in practice
(see Section 6). It is therefore sufficient to use a stack that is a constant factor
larger than is needed for a sequential execution (Ss¢q) and to make the stealing
of calls at join points conditional on the space left on the stack to guarantee that
the stack never overflows. The join point becomes a busy-wait when the space
left is less than Sseq.

6 Experimental results

In order to evaluate lazy RPC a prototype ParSubC compiler was built. This
compiler was written with experimentation in mind, not absolute performance.

% Tt incorrectly assumes that a processor with an empty LTS has no work to share
with other processors. It could simply be that the processor has not yet pushed work
on the LTS.



Each ParSubC source file is compiled to a file of C code which is subsequently
compiled by the machine’s native C compiler and linked with the ParSubC run-
time system. The C code produced is slower than a direct C compilation because
the stack is explicitly represented as an array (all accesses to local variables are
compiled to array reference so the native C compiler can not allocate these vari-
ables to registers). There is also an overhead for the handling of steal requests.
Each processor has a “steal” flag that is raised when a steal request is pending.
This flag is checked at every function call and inside every loop. For a purely
sequential program running on one processor, the slowdown factor caused by this
code generation is anywhere between 2 and 20. For this reason it is not possible
to draw strong conclusions regarding absolute performance from this prototype.
In the near future, we plan to implement a more direct ParSubC to C translation
that will impose no overhead for the sequential parts of the program.

The ParSubC compiler has been ported to a variety of shared-memory mul-
tiprocessors (including the BBN Butterfly, SGI Challenge, and Cray T3D) and
network of UNIX workstations using a virtual shared-memory package imple-
mented on top of TCP/IP. Here we only report on the Cray T3D port because
it is representative of the ports to shared-memory multiprocessors and because
the port to network of workstations is undergoing changes to improve its perfor-
mance on communication intensive programs.

6.1 The Cray T3D implementation

The Cray T3D that was used is a 512 processor machine at the Pittsburgh
Supercomputer Center. Each processor is a 150MHz DEC Alpha microprocessor
with 64MB of local memory. The processors are interconnected by a 3D torus
network. By configuring the virtual memory circuit attached to each processor
(the “annex”), it is possible to implement a coherent shared address space for
up to 16 processors [Numrich, 1994]. When this is done, a cache miss to local
memory costs about 30 cycles and a remote memory reference costs 3 to 4 times
that depending on the distance of the remote processor. The annex also supports
an atomic swap operation and we have used it to implement spin locks.

Shared-memory is used to implement the steal operation. The thief stores
its processor number in the victim’s memory, raises the victim’s steal flag, and
starts waiting for a response by busy-waiting on a response variable in local
memory. A lock associated with the victim’s LTS is used to prevent interference
from other processors. When the victim detects the steal request it removes the
oldest call from its LTS (if there is one) and stores a pointer to the descriptor
in the thief’s response variable. The thief then prepares the call on its stack
by reading the descriptor on the victim’s stack and executes the call. Finally,
the thief stores the result in the descriptor on the victim’s stack and zeros the
function field. This protocol was designed to avoid the memory traffic that
would occur if busy-waits were done on remote flags.



6.2 Benchmarks

Most of the benchmarks we have used are small programs (< 200 lines of
ParSubC) translated from Multilisp. We have also used a 3000 line program
(nucleic) that computes the 3D structure of a nucleic acid [Feeley et al.,
1994][Hartel et al., 1996]. All these programs are based on divide and conquer
parallel algorithms. These programs are briefly described in Appendix A.

The benchmarks were run on 1 to 16 processors and the average run time
(real time in seconds) of 10 executions was taken giving T} to T1s. We also ran
sequential versions of the programs (by simply replacing “!!” by “;”) using one
processor (Tseq). The parallel call granularity (g) corresponds to the average run
time per parallel call (i.e. T} /n where n is the number of parallel calls executed).
Table 1 gives g, Tseq, T1, and the speedup (77 /T}) for each benchmark.

g Speedup (T1/T,) when

Program |(usecs)| Toeq | T1 |p= 2 4 8 16

queens 12| 9.60| 10.22 2.00 4.00 7.99 15.94
fib 4| 4.97| 5.66 1.99 3.96 7.90 15.72
fibr 4| 4.97| 5.66 1.99 3.96 7.90 15.74
sum 6| 2.60| 3.00 1.92 3.75 7.33 14.13
nucleic 66| 2.32| 2.25 1.87 3.57 6.89 12.55
scan 7| 1.57] 1.72 1.87 3.52 6.02 8.58
poly 15777 7.76| 8.06 1.70 3.00 5.21 6.08
mm 401| 9.26| 9.03 1.70 3.07 4.71 4.80
abisort 20| 4.49| 4.62 1.65 2.62 3.39 3.63
tridiag 24| 4.55| 4.64 1.61 2.63 3.40 3.19

Table 1. Benchmark granularity, run time and speedup.

6.3 Lazy RPC overhead

The overhead of lazy RPC is the difference between T7 and Ts.,. As expected the
overhead is inversely proportional to the parallel call granularity: it is between
10% and 15% for very fine grain programs (fib, fibr, sum and scan), and below
6% for larger grain programs. Similar overheads are reported for LTC in [Feeley,
1993a] for the Multilisp version of these benchmarks.

6.4 Speedup

The speedup obtained for queens, fib and fibr is very close to linear. Because
these benchmarks have imbalanced spawning trees it shows that lazy RPC is
balancing the load very evenly. Appreciable speedup is also obtained for sum,
nucleic and scan. The main reason for the lower speedup is that these bench-
marks access shared data and the average cost of a memory reference increases



with the number of processors (the probability that a reference is remote in-
creases and the average distance increases).

The mediocre speedup of the remaining benchmarks (poly, mm, abisort and
tridiag) is due to memory contention. For simplicity, all global variables are
allocated in the memory of the first processor. This means that all accesses to
global data go to the same processor, which leads to a serialization of the accesses
by the interconnection network. Since these benchmarks access global arrays very
frequently, contention quickly becomes the dominant bottleneck and no further
speedup is possible when the network reaches saturation. We confirmed that this
was not a load balancing problem by checking that the idle time is small using
our profiling tool. This tool processes an event log produced during execution to
compute various statistics on the program including the activity of the processors
as a function of time and the average time spent in each state (working, stealing,
and idle). The output of this tool for tridiag run with 16 processors is given
in Figure 6. It shows that processors are idle for only about 1% of the total run
time. Similarly low idle time was observed for the other benchmarks. This leads
us to believe that the loss of parallelism due to lazy RPC’s scheduling policy is
small when there is ample parallelism to begin with.

File: "tridiag.elog"  Processors: 16

1
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Fig. 6. Execution profile of tridiag benchmark with 16 processors.

On a cache coherent multiprocessor, contention becomes less important be-
cause data gets distributed on demand to the caches of the processors that access
it and there is sufficient locality. On an 8 processor SGI Challenge cache coher-
ent multiprocessor we have observed much better speedup than the Cray T3D
for the benchmarks suffering from contention. The speedup with 8 processors is
above 7 for poly and mm, and above 6 for abisort and tridiag*.

* Because the machine we used for this experiment is shared by many users and is
always busy, the speedup was impossible to measure exactly but on an idle machine
it would be at least as high as indicated.



6.5 Stack size

To evaluate the stack size needed for the benchmarks, we measured the maxi-
mal Np7s over all processors and over 10 runs. This maximum was computed
locally by each processor at the pushing of a descriptor on the LTS and a global
maximum was computed at the end of the run. The results are given in Table 2.

Maximal Nr7s when
Program [p= 1 2 4 8 16
queens 43 43 43 43 43
fib 15 15 19 23 30
fibr 29 29 29 29 29
sum 18 18 19 23 31
nucleic 101 101 101 88 89
scan 17 17 18 19 25
poly 9 9 10 12 14
mm 14 14 15 22 22
abisort 14 14 16 20 25
tridiag 17 17 18 22 23

Table 2. Size of the LTS as a function of the number of processors.

For p = 1, the maximal Nprg equals d, the nesting depth of parallel calls.
Most programs show an increase in Nprg as more processors are used. The
increase is at its highest for fib which at 16 processors has Nprg = 2d. For some
programs Nprg stays constant (queens and fibr) or even decreases (nucleic).
This variation in Ny 7g is related to the lopsidedness of the spawning tree. Nirs
tends to increase with p more rapidly when the spawning tree is lopsided on
the side of the call (i.e. the call does more work than the compound statement)
because there will be a high probability that a stolen call is not yet finished when
the corresponding compound statement ends. It is thus likely that new stolen
calls will be added to the stack. This is the case for £ib which computes the call
fib(n-1) in parallel with a compound statement which computes fib(n-2).
For queens, nucleic and fibr (which is like £ib but with the recursive calls
exchanged), the spawning tree is lopsided on the side of the compound statement
so join points rarely end up stealing calls.

7 Related work

One of the earliest attempts to adapt the future construct to C was done at
Tera Computer Company [Callahan and Smith, 1989] (to our knowledge this
system has never been implemented). The authors propose to extend C with a
placeholder type qualifier, a task spawning construct, data sharing directives, and
synchronization variables. Since no restriction is imposed on the allocation and
deallocation of placeholders and tasks, dangling pointers are a definite possibility.



To exploit fine grain parallelism, load based inlining was considered to implement
the spawning construct. There is no mention of LTC. A new fixed size stack is
allocated for every task created, making it easy to support the & operator, but
also causing considerable memory consumption and task spawning overhead.
The extensions to C are not as natural as ParSubC’s because the user must
indicate how a spawned task shares data with its parent task.

Cid [Nikhil, 1994] shares with ParSubC the desire for minimal extensions to
C and compatibility with existing code and compilers. Cid is mainly intended
for programming distributed-memory machines. Its programming model is more
complex than ParSubC’s because it exposes the features of the architecture
to give the programmer more control. Like lazy RPC, a thread is created by
forking a function call. Unlike lazy RPC, the call executes concurrently with the
continuation of the fork and an explicit join variable must be used to synchronize
the call with the consumer(s) of the result. The user can specify that the call
be forked on a specific processor or on any processor. The latter case is handled
by maintaining on each processor a stealable-call queue (independent from the
stack) which contains call descriptors (including the arguments and a pointer to
the join variable). Because the stack and stealable-call queue are decoupled, Cid
does not handle non-stolen calls as efficiently as lazy RPC. The overhead of a
non-stolen call includes a thread suspension on a join variable and a subsequent
thread resumption. A form of load-based inlining is available in Cid to reduce
the number of non-stolen calls but this is not as efficient as creating tasks lazily
[Mohr, 1991].

Olden [Rogers et al., 1995] is another system that has adapted LTC to C
for programming distributed-memory machines. Instead of migrating data be-
tween processors when non-local data is accessed, Olden migrates the task to
the processor containing the data. Like LTC, a stack of stealable continuations
is maintained on each processor. Unlike LTC, tasks are only stolen locally and
from most recent to oldest. When a task is migrated or a task blocks (because
an empty placeholder is dereferenced), the most recent stealable continuation on
that processor is invoked. Because processors don’t steal tasks from other proces-
sors, load balancing is not automatic. Task distribution is directly dependent on
the distribution of the data and the uniformity of the work to be performed on
the data. The task scheduling policy adopted by Olden requires that a spaghetti
stack [Bobrow and Wegbreit, 1973] be used to manage the stack. This adds over-
head to all function calls and is not compatible with the stack management of
traditional compilers. Finally, the & operator can not be used on local variables
because stack frames move as a result of task migration (the compaction of the
spaghetti stack needed to avoid stack overflows also moves stack frames).

The leapfrogging technique [Wagner and Calder, 1993] is closely related to
lazy RPC. It was specifically designed to be compatible with conventional com-
piler technology and to require no syntactic extension to C++. A subclass of
the class Future must be declared for each function to be called in parallel.
Instances of this class correspond to lazy RPC call descriptors but they are first
class objects so the user is responsible for their allocation and deallocation (with



the usual caveats). The constructor of this class accepts the parameters of the
call, saves them in the descriptor, and adds the descriptor to the processor’s
stealable-call queue. Stealable calls are removed from this queue in an arbitrary
order, so the queue is more expensive to manage than lazy RPC’s LTS. When
a task dereferences a call descriptor that has not been stolen, the descriptor is
removed from the queue it is in (possibly on another processor because there
are no restrictions on the order of dereferencing descriptors), the call is executed
and the result stored in the descriptor. Like lazy RPC, blocking is implemented
by stealing calls but leapfrogging places a number of constraints on the call to
steal. When a task executing a parallel call C; blocks because it has dereferenced
the descriptor of a parallel call Cy that has been stolen by processor P but has
not yet completed, a call is stolen from P that is at a deeper nesting level in
the spawning tree than C'; and C5. This constraint insures that the stack size
needed is no more than for a sequential execution of the program. However it
requires the maintenance of a nesting depth and a search in P’s stealable-call
queue, it exposes less parallelism than lazy RPC, and tends to steal smaller and
smaller calls, leading to a higher number of stolen calls and a higher overhead
per parallel call.

8 Conclusion

We have proposed a variant of lazy task creation (LTC) called lazy remote proce-
dure call (lazy RPC) that is specifically designed for divide and conquer parallel
programs and is compatible with conventional languages and C in particular.
Several memory management problems have been avoided by hiding tasks and
placeholders from the user and adopting a task scheduling policy that restricts
tasks and placeholders to nested lifetimes. A single stack is maintained per pro-
cessor and stack frames are never moved, making it easy to implement, C’s & oper-
ator. Rather than adopt an unusual stack management discipline (e.g. spaghetti
stack) or move stack frames, we handle task blocking by stealing parallel calls
from other processors. Lazy RPC is applicable to fine grain parallelism because
the overhead of a non-stolen parallel call is very low (about 10-20 machine in-
structions, which compares favorably with LTC).

We have implemented a prototype compiler based on lazy RPC on a Cray
T3D shared-memory multiprocessor. Experimental results with 16 processors
show that lazy RPC’s scheduling policy does not incur an appreciable loss of
parallelism compared to LTC when there is ample parallelism in the application.
The results also show that the stack space needed is reasonably small (within a
factor of 2 of that required for a sequential execution of the program).
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A Brief Description of Benchmark Programs

— queens: Compute the number of solutions to the 12-queens problem.

— fib: Compute £ib(30) using the doubly recursive algorithm.

— fibr: Like £ib but the parallel call is £ib(n-2) instead of fib(n-1).

— sum: Compute the sum of a vector of 500000 integers.

— nucleic: Compute 3D structure of a 23 nucleotide section of a nucleic acid.
The computation is essentially a depth first search with constraints.

— scan: Compute the parallel prefix sum of a vector of 131072 integers in place.

— poly: Compute the square of a 2000 term polynomial of z (represented as
an array of coefficients) and evaluate the resulting polynomial for a certain
value of z.

— mm: Multiply two matrices of integers (150 by 150).

— abisort: Sort 32768 integers using the adaptive bitonic sort algorithm [Bi-
lardi and Nicolau, 1989].

— tridiag: Solve a tridiagonal system of 262143 equations.
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