
Concurrency Oriented Programming in Termite Scheme

Guillaume Germain Marc Feeley Stefan Monnier
Université de Montréal

{germaing, feeley, monnier}@iro.umontreal.ca

Abstract
Termite Scheme is a variant of Scheme intended for distributed
computing. It offers a simple and powerful concurrency model,
inspired by the Erlang programming language, which is based on a
message-passing model of concurrency.
Our system is well suited for building custom protocols and ab-

stractions for distributed computation. Its open network model al-
lows for the building of non-centralized distributed applications.
The possibility of failure is reflected in the model, and ways to
handle failure are available in the language. We exploit the exis-
tence of first class continuations in order to allow the expression of
high-level concepts such as process migration.
We describe the Termite model and its implications, how it com-

pares to Erlang, and describe sample applications built with Ter-
mite. We conclude with a discussion of the current implementation
and its performance.

General Terms Distributed computing in Scheme

Keywords Distributed computing, Scheme, Lisp, Erlang, Contin-
uations

1. Introduction
There is a great need for the development of widely distributed ap-
plications. These applications are found under various forms: stock
exchange, databases, email, web pages, newsgroups, chat rooms,
games, telephony, file swapping, etc. All distributed applications
share the property of consisting of a set of processes executing
concurrently on different computers and communicating in order
to exchange data and coordinate their activities. The possibility of
failure is an unavoidable reality in this setting due to the unreliabil-
ity of networks and computer hardware.
Building a distributed application is a daunting task. It requires

delicate low-level programming to connect to remote hosts, send
them messages and receive messages from them, while properly
catching the various possible failures. Then it requires tedious
encoding and decoding of data to send them on the wire. And
finally it requires designing and implementing on top of it its own
application-level protocol, complete with the interactions between
the high-level protocol and the low-level failures. Lots and lots of
bug opportunities and security holes in perspective.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Scheme and Functional Programming 2006 17 Sep 2006, Portland, OR
Copyright c© 2006 ACM [to be supplied]. . . $5.00.

Termite aims to make this much easier by doing all the low-level
work for you and by leveraging Scheme’s powerful abstraction
tools to make it possible to concentrate just on the part of the design
of the high-level protocol which is specific to your application.
More specifically, instead of having to repeat all this work every

time, Termite offers a simple yet high-level concurrency model
on which reliable distributed applications can be built. As such it
provides functionality which is often called middleware. As macros
abstract over syntax, closures abstract over data, and continuations
abstract over control, the concurrency model of Termite aims to
provide the capability of abstracting over distributed computations.
The Termite language itself, like Scheme, was kept as powerful

and simple as possible (but no simpler), to provide simple orthog-
onal building blocks that we can then combine in powerful ways.
Compared to Erlang, the main additions are two building blocks:
macros and continuations, which can of course be sent in messages
like any other first class object, enabling such operations as task
migration and dynamic code update.
An important objective was that it should be flexible enough to

allow the programmer to easily build and experiment with libraries
providing higher-level distribution primitives and frameworks, so
that we can share and reuse more of the design and implementation
between applications. Another important objective was that the
basic concurrency model should have sufficiently clean semantic
properties to make it possible to write simple yet robust code on
top of it. Only by attaining those two objectives can we hope
to build higher layers of abstractions that are themselves clean,
maintainable, and reliable.
Sections 2 and 3 present the core concepts of the Termite model,

and the various aspects that are a consequence of that model.
Section 4 describes the language, followed by extended examples
in Sec. 5. Finally, Section 6 presents the current implementation
with some performance measurements.

2. Termite’s Programming Model
The foremost design philosophy of the Scheme [14] language is the
definition of a small, coherent core which is as general and power-
ful as possible. This justifies the presence of first class closures and
continuations in the language: these features are able to abstract
data and control, respectively. In designing Termite, we extended
this philosophy to concurrency and distribution features. The model
must be simple and extensible, allowing the programmer to build
his own concurrency abstractions.
Distributed computations consist of multiple concurrent pro-

grams running in usually physically separate spaces and involving
data transfer through a potentially unreliable network. In order to
model this reality, the concurrency model used in Termite views
the computation as a set of isolated sequential processes which are
uniquely identifiable across the distributed system. They commu-
nicate with each other by exchanging messages. Failure is reflected
in Termite by the uncertainty associated with the transmission of

a message: there is no guarantee that a message sent will ever be
delivered.
The core features of Termite’s model are: isolated sequential

processes, message passing, and failure.

2.1 Isolated sequential processes
Termite processes are lightweight. There could be hundreds of
thousands of them in a running system. Since they are an important
abstraction in the language, the programmer should not consider
their creation as costly. She should use them freely to model the
problems at hand.
A Termite process executes in the context of a node. Nodes are

identified with a node identifier that contains information to locate
a node physically and connect to it (see Sec. 3.4 for details). The
procedure spawn creates and starts a new process on the node of
the parent process.
Termite processes are identified with process identifiers or pids.

Pids are universally unique. We make the distinction here between
globally unique, which means unique at the node level, and uni-
versally unique, which means unique at the whole distributed net-
work level. A pid is therefore a reference to a process and contains
enough information to determine the node on which the process is
located. It is important to note that there is no guarantee that a pid
refers to a process that is reachable or still alive.
Termite enforces strong isolation between each of the processes:

it is impossible for a process to directly access the memory space of
another process. This is meant to model the reality of a physically
distributed system, and has the advantage of avoiding the prob-
lems relative to sharing memory space between processes. This also
avoids having to care about mutual exclusion at the language level.
There is no need for mutexes and condition variables. Another con-
sequence of that model is that there is no need for a distributed
garbage collector, since there cannot be any foreign reference be-
tween two nodes’s memory spaces. On the other hand, a live pro-
cess might become unreachable, causing a resource leak: this part
of the resource management needs to be done manually.

2.2 Sending and receiving messages
Processes interact by exchanging messages. Each process has a
single mailbox in which Termite stores messages in the order in
which it receives them. This helps keep the model simple since it
saves us from introducing concepts like mailboxes or ports.
In Termite, a message can be any serializable first class value.

It can be an atomic value such as a number or a symbol, or a
compound value such as a list, record, or continuation, as long as it
contains only serializable values.
The message sending operation is asynchronous. When a pro-

cess sends a message, this is done without the process blocking.
The message retrieval operation is synchronous. A process at-

tempting to retrieve a message from its mailbox will block if no
message is available.
Here is an example showing the basic operations used in Ter-

mite: A process A spawns a new process B; The process B sends a
message to A; The process A waits until it receives it.

(let ((me (self)))
(spawn
(lambda ()
(! me "Hello, world!"))))

(?) =⇒ "Hello, world!"

The procedure self returns the pid of the current process. The
procedure ! is the send message operation, while the procedure ?
is the retrieve the next mailbox message operation.

2.3 Failure
The unreliability of the physical, “real world” aspects of a dis-
tributed computation makes it necessary for that computation to
pay close attention to the possibility of failure. A computation run
on a single computer with no exterior communication generally
does not have to care whether the computer crashes. This is not
the case in a distributed setting, where some parts of the computa-
tion might go on even in the presence of hardware failure or if the
network connection goes down. In order to model failure, sending
a message in Termite is an unreliable operation. More specifically,
the semantics of the language do not specify how much time a mes-
sage will take to reach its destination and it may even never reach
it, e.g. because of some hardware failure or excessive load some-
where along the way. Joe Armstrong has called this send and pray
semantics [2].
Since the transmission of a message is unreliable, it is generally

necessary for the application to use a protocol with acknowledg-
ments to check that the destination has received the message . The
burden of implementing such a protocol is left to the application
because there are several ways to do it, each with an impact on the
way the application is organized. If no acknowledgment is received
within a certain time frame, then the application will take some
action to recover from the failure. In Termite the mechanism for
handling the waiting period is to have an optional timeout for the
amount of time to wait for messages. This is a basic mechanism on
which we can build higher level failure handling.

3. Peripheral Aspects
Some other Termite features are also notable. While they are not
core features, they come naturally when considering the basic
model. The most interesting of those derived features are serializa-
tion, how to deal with mutation, exception handling and the naming
of computers and establishing network connections to them.

3.1 Serialization
There should be no restrictions on the type of data that can consti-
tute a message. Therefore, it is important that the runtime system
of the language supports serialization of every first class value in
the language, including closures and continuations.
But this is not always possible. Some first class values in

Scheme are hard to serialize meaningfully, like ports and references
to physical devices. It will not be possible to serialize a closure or
a continuation if it has a direct reference to one of these objects in
their environment.
To avoid having references to non-serializable objects in the en-

vironment, we build proxies to those objects by using processes,
so that the serialization of such an object will be just a pid. There-
fore, Termite uses processes to represent ports (like open files) or
references to physical devices (like the mouse and keyboard).
Abstracting non-serializable objects as processes has two other

benefits. First, it enables the creation of interesting abstractions.
For example, a click of the mouse will send a message to some
“mouse listener”, sending a message to the process proxying the
standard output will print it, etc. Secondly, this allows us to access
non-movable resources transparently through the network.

3.2 Explicit mutation
To keep the semantics clean and simplify the implementation, mu-
tation of variables and data structures is not available. This allows
the implementation of message-passing within a given computer
without having to copy the content of the message.
For this reason, Termite forbids explicit mutation in the sys-

tem (as with the special form set! and procedures set-car!,
vector-set!, etc.) This is not as big a limitation as it seems at

first. It is still possible to replace or simulate mutation using pro-
cesses. We just need to abstract state using messages and suspended
processes. This is a reasonable approach because processes are
lightweight. An example of a mutable data structure implemented
using a process is given in Section 4.6.

3.3 Exception handling
A Termite exception can be any first class value. It can be raised by
an explicit operation, or it can be the result of a software error (like
division by zero or a type error).
Exceptions are dealt with by installing dynamically scoped han-

dlers. Any exception raised during execution will invoke the han-
dler with the exception as a parameter. The handler can either
choose to manage that exceptional condition and resume execution
or to raise it again. If it raises the exception again, it will invoke the
nearest encapsulating handler. Otherwise, the point at which exe-
cution resumes depends on the handler: an exception-handler will
resume execution at the point the exception was raised, whereas an
exception-catcher will resume execution at the point that the han-
dler was installed.
If an exception propagates to the outer scope of the process (i.e.

an uncaught exception), the process dies. In order to know who to
notify of such a circumstance, each process has what we call links
to other processes. When a process dies and it is linked to other pro-
cesses, Termite propagates the exception to those processes. Links
between processes are directed. A process which has an outbound
link to another process will send any uncaught exception to the
other process. Note that exception propagation, like all communi-
cation, is unreliable. The implementation will make an extra effort
when delivering an exception since that kind of message may be
more important for the correct execution of the application.
Receiving an exception causes it to be raised in the receiving

process at the moment of the next message retrieve operation by
that process.
Links can be established in both directions between two pro-

cesses. In that situation the link is said to be bidirectional. The
direction of the link should reflect the relation between the two
processes. In a supervisor-worker relation, we will use a bidirec-
tional link since both the supervisor and the worker need to learn
about the death of the other (the supervisor so it may restart the
worker, the worker so it can stop executing). In a monitor-worker
relation where the monitor is an exterior observer to the worker, we
will use an outbound link from the worker since the death of the
monitor should not affect the worker.

3.4 Connecting nodes
Termite processes execute on nodes. Nodes connect to each other
when needed in order to exchange messages. The current practice
in Termite is to uniquely identify nodes by binding them to an IP
address and a TCP port number. Node references contain exactly
that information and therefore it is possible to reach a node from
the information contained in the reference. Those references are
built using the make-node procedure.
Termite’s distributed system model is said to be open: nodes

can be added or removed from a distributed computation at any
time. Just like it is possible to spawn a process on the current
node, it is possible to spawn a process on a remote node by using
the remote-spawn procedure. This is one of the key features that
enable distribution.
The concept of global environment as it exists in Scheme is

tied to a node. A variable referring to the global environment will
resolve to the value tied to that variable on the node on which the
process is currently executing.

3.5 Tags
A process may make multiple concurrent requests to another pro-
cess. Also, replies to requests may come out of order (and even
from a completely different process, e.g. if the request was for-
warded). In those cases, it can be difficult to sort out which re-
ply corresponds to which request. For this purpose, Termite has a
universally unique reference data type called tag. When needed,
the programmer can then uniquely mark each new request with a
new tag, and copy the tag into the replies, to unequivocally indi-
cate which reply corresponds to which request. Note that this can
be necessary even when there is apparently only one request pend-
ing, since the process may receive a spurious delayed reply to some
earlier request which had timed out.

4. The Termite Language
This section introduces the Termite language through examples.
For the sake of simplicity those examples assume that messages
will always be delivered (no failure) and always in the same order
that they were sent.
The fundamental operations of Termite are:

(spawn fun): create a process running fun and return its pid.

(! pid msg): send message msg to process pid.

(? [timeout [default]]): fetch a message from the mailbox.

4.1 Making a “server” process
In the following code, we create a process called pong-server.
This process will reply with the symbol pong to any message that
is a list of the form (pid ping)where pid refers to the originating
process. The Termite procedure self returns the pid of the current
process.

(define pong-server
(spawn
(lambda ()
(let loop ()
(let ((msg (?)))
(if (and (list? msg)

(= (length msg) 2)
(pid? (car msg))
(eq? (cadr msg) ’ping))

(let ((from (car msg)))
(! from ’pong)
(loop))

(loop)))))))

(! pong-server (list (self) ’ping))

(?) =⇒ pong

4.2 Selective message retrieval
While the ? procedure retrieves the next available message in
the process’ mailbox, sometimes it can be useful to be able to
choose the message to retrieve based on a certain criteria. The
selective message retrieval procedure is (?? pred [timeout
[default]]). It retrieves the first message in the mailbox which
satisfies the predicate pred. If none of the messages in the mailbox
satisfy pred, then it waits until one arrives that does or until the
timeout is hit.
Here is an example of the ?? procedure in use:

(! (self) 1)
(! (self) 2)

(! (self) 3)

(?) =⇒ 1
(?? odd?) =⇒ 3
(?) =⇒ 2

4.3 Pattern matching
The previous pong-server example showed that ensuring that a
message is well-formed and extracting relevant information from it
can be quite tedious. Since those are frequent operations, Termite
offers an ML-style pattern matching facility.
Pattern matching is implemented as a special form called recv,

conceptually built on top of the ?? procedure. It has two simulta-
neous roles: selective message retrieval and data destructuring. The
following code implements the same functionality as the previous
pong server but using recv:

(define better-pong-server
(spawn
(lambda ()
(let loop ()
(recv
((from ’ping) ; pattern to match
(where (pid? from)) ; constraint
(! from ’pong))) ; action

(loop)))))

The use of recv here only has one clause, with the pattern
(from ’ping) and an additional side condition (also called where
clause) (pid? from). The pattern constrains the message to be
a list of two elements where the first can be anything (ignoring
for now the subsequent side condition) and will be bound to the
variable from, while the second has to be the symbol ping. There
can of course be several clauses, in which case the first message
that matches one of the clauses will be processed.

4.4 Using timeouts
Timeouts are the fundamental way to deal with unreliable message
delivery. The operations for receiving messages (ie. ?, ??) can
optionally specify the maximum amount of time to wait for the
reception of a message as well as a default value to return if this
timeout is reached. If no timeout is specified, the operation will wait
forever. If no default value is specified, the timeout symbol will
be raised as an exception. The recv special form can also specify
such a timeout, with an after clause which will be selected after
no message matched any of the other clauses for the given amount
of time.

(! some-server (list (self) ’request argument))

(? 10) ; waits for a maximum of 10 seconds
;; or, equivalently:
(recv
(x x)
(after 10 (raise ’timeout)))

4.5 Remote procedure call
The procedure spawn takes a thunk as parameter, creates a process
which evaluates this thunk, and returns the pid of this newly created
process. Here is an example of an RPC server to which uniquely
identified requests are sent. In this case a synchronous call to the
server is used:

(define rpc-server
(spawn
(lambda ()
(let loop ()
(recv
((from tag (’add a b))
(! from (list tag (+ a b)))))

(loop)))))

(let ((tag (make-tag)))
(! rpc-server (list (self)

tag
(list ’add 21 21)))

(recv
;; note the reference to tag in
;; the current lexical scope
((,tag reply) reply))) =⇒ 42

The pattern of implementing a synchronous call by creating a
tag and then waiting for the corresponding reply by testing for tag
equality is frequent. This pattern is abstracted by the procedure !?.
The following call is equivalent to the last let expression in the
previous code:

(!? rpc-server (list ’add 21 21))

Note that the procedure !? can take optional timeout and default
arguments like the message retrieving procedures.

4.6 Mutable data structure
While Termite’s native data structures are immutable, it is still
possible to implement mutable data structures using processes to
represent state. Here is an example of the implementation of a
mutable cell:

(define (make-cell content)
(spawn
(lambda ()
(let loop ((content content))
(recv
((from tag ’ref)
(! from (list tag content))
(loop content))

((’set! content)
(loop content)))))))

(define (cell-ref cell)
(!? cell ’ref))

(define (cell-set! cell value)
(! cell (list ’set! value)))

4.7 Dealing with exceptional conditions
Explicitly signaling an exceptional condition (such as an error) is
done using the raise procedure. Exception handling is done us-
ing one of the two procedures with-exception-catcher and
with-exception-handler, which install a dynamically scoped
exception handler (the first argument) for the duration of the evalu-
ation of the body (the other arguments).
After invoking the handler on an exception, the procedure

with-exception-catcher will resume execution at the point
where the handler was installed. with-exception-handler, the
alternative procedure, will resume execution at the point where
the exception was raised. The following example illustrates this
difference:

(list
(with-exception-catcher
(lambda (exception) exception)
(lambda ()
(raise 42) ; this will not return
123)) =⇒ (42)

(list
(with-exception-handler
(lambda (exception) exception)
(lambda ()
(raise 42) ; control will resume here
123)) =⇒ (123)

The procedure spawn-link creates a new process, just like
spawn, but this new process is bidirectionally linked with the cur-
rent process. The following example shows how an exception can
propagate through a link between two processes:

(catch
(lambda (exception) #t)
(spawn (lambda () (raise ’error)))
(? 1 ’ok)
#f) =⇒ #f

(catch
(lambda (exception) #t)
(spawn-link (lambda () (raise ’error)))
(? 1 ’ok)
#f) =⇒ #t

4.8 Remotely spawning a process
The function to create a process on another node is remote-spawn.
Here is an example of its use:

(define node (make-node "example.com" 3000))

(let ((me (self)))
(remote-spawn node
(lambda ()
(! me ’boo)))) =⇒ a-pid

(?) =⇒ boo

Note that it is also possible to establish links to remote pro-
cesses. The remote-spawn-link procedure atomically spawns
and links the remote process:

(define node (make-node "example.com" 3000))

(catch
(lambda (exception) exception)
(let ((me (self)))
(remote-spawn-link node
(lambda ()
(raise ’error))))

(? 2 ’ok)) =⇒ error

4.9 Abstractions built using continuations
Interesting abstractions can be defined using call/cc. In this sec-
tion we give as an example process migration, process cloning, and
dynamic code update.

Process migration is the act of moving a computation from
one node to another. The presence of serializable continuations in
Termite makes it easy. Of the various possible forms of process

migration, two are shown here. The simplest form of migration,
called here migrate-task, is to move a process to another node,
abandoning messages in its mailbox and current links behind. For
that we capture the continuation of the current process, start a new
process on a remote node which invokes this continuation, and then
terminate the current process:

(define (migrate-task node)
(call/cc
(lambda (k)
(remote-spawn node (lambda () (k #t)))
(halt!))))

A different kind of migration (migrate/proxy), which might
be more appropriate in some situations, will take care to leave a
process behind (a proxy) which will forward messages sent to it
to the new location. In this case, instead of stopping the original
process we make it execute an endless loop which forwards to the
new process every message received:

(define (migrate/proxy node)
(define (proxy pid)
(let loop ()
(! pid (?))
(loop)))

(call/cc
(lambda (k)
(proxy
(remote-spawn-link
node
(lambda () (k #t)))))))

Process cloning is simply creating a new process from an exist-
ing process with the same state and the same behavior. Here is an
example of a process which will reply to a clone message with a
thunk that makes any process become a “clone” of that process:

(define original
(spawn
(lambda ()
(let loop ()
(recv
((from tag ’clone)
(call/cc
(lambda (clone)
(! from (list tag (lambda ()

(clone #t))))))))
(loop)))))

(define clone (spawn (!? original ’clone)))

Updating code dynamically in a running system can be very
desirable, especially with long-running computations or in high-
availability environments. Here is an example of such a dynamic
code update:

(define server
(spawn
(lambda ()
(let loop ()
(recv
((’update k)
(k #t))

((from tag ’ping)
(! from (list tag ’gnop)))) ; bug

(loop)))))

(define new-server
(spawn
(lambda ()
(let loop ()
(recv
((’update k)
(k #t))

((from tag ’clone)
(call/cc
(lambda (k)
(! from (list tag k)))))

((from tag ’ping)
(! from (list tag ’pong)))) ; fixed

(loop)))))

(!? server ’ping) =⇒ gnop

(! server (list ’update (!? new-server ’clone)))

(!? server ’ping) =⇒ pong

Note that this allows us to build a new version of a running
process, test and debug it separately and when it is ready replace
the running process with the new one. Of course this necessitates
cooperation from the process whose code we want to replace (it
must understand the update message).

5. Examples
One of the goals of Termite is to be a good framework to experi-
ment with abstractions of patterns of concurrency and distributed
protocols. In this section we present three examples: first a simple
load-balancing facility, then a technique to abstract concurrency in
the design of a server and finally a way to transparently “robustify”
a process.

5.1 Load Balancing
This first example is a simple implementation of a load-balancing
facility. It is built from two components: the first is ameter supervi-
sor. It is a process which supervises workers (called meters in this
case) on each node of a cluster in order to collect load information.
The second component is the work dispatcher: it receives a closure
to evaluate, then dispatches that closure for evaluation to the node
with the lowest current load.
Meters are very simple processes. They do nothing but send the

load of the current node to their supervisor every second:

(define (start-meter supervisor)
(let loop ()
(! supervisor

(list ’load-report
(self)
(local-loadavg)))

(recv (after 1 ’ok)) ; pause for a second
(loop)))

The supervisor creates a dictionary to store current load infor-
mation for each meter it knows about. It listens for the update mes-
sages and replies to requests for the node in the cluster with the
lowest current load and to requests for the average load of all the
nodes. Here is a simplified version of the supervisor:

(define (meter-supervisor meter-list)
(let loop ((meters (make-dict)))

(recv
((’load-report from load)
(loop (dict-set meters from load)))
((from tag ’minimum-load)
(let ((min (find-min (dict->list meters))))
(! from (list tag (pid-node (car min)))))

(loop dict))
((from tag ’average-load)
(! from (list tag

(list-average
(map cdr

(dict->list meters)))))
(loop dict)))))

(define (minimum-load supervisor)
(!? supervisor ’minimum-load))

(define (average-load supervisor)
(!? supervisor ’average-load))

And here is how we may start such a supervisor:

(define (start-meter-supervisor)
(spawn
(lambda ()
(let ((supervisor (self)))
(meter-supervisor
(map
(lambda (node)
(spawn
(migrate node)
(start-meter supervisor)))

node-list))))))

Now that we can establish what is the current load on nodes in
a cluster, we can implement load balancing. The work dispatching
server receives a thunk, and migrates its execution to the currently
least loaded node of the cluster. Here is such a server:

(define (start-work-dispatcher load-server)
(spawn
(lambda ()
(let loop ()
(recv
((from tag (’dispatch thunk))
(let ((min-loaded-node

(minimum-load load-server)))
(spawn
(lambda ()
(migrate min-loaded-node)
(! from (list tag (thunk))))))))

(loop)))))

(define (dispatch dispatcher thunk)
(!? dispatcher (list ’dispatch thunk)))

It is then possible to use the procedure dispatch to request
execution of a thunk on the most lightly loaded node in a cluster.

5.2 Abstracting Concurrency
Since building distributed applications is a complex task, it is par-
ticularly beneficial to abstract common patterns of concurrency. An
example of such a pattern is a server process in a client-server or-
ganization. We use Erlang’s concept of behaviors to do that: behav-
iors are implementations of particular patterns of concurrent inter-
action.

The behavior given as example in this section is derived from
the generic server behavior. A generic server is a process that can
be started, stopped and restarted, and answers RPC-like requests.
The behavior contains all the code that is necessary to handle the

message sending and retrieving necessary in the implementation of
a server. The behavior is only the generic framework. To create a
server we need to parameterize the behavior using a plugin that
describes the server we want to create. A plugin contains closures
(often called callbacks) that the generic code calls when certain
events occur in the server.
A plugin only contains sequential code. All the code having

to deal with concurrency and passing messages is in the generic
server’s code. When invoking a callback, the current server state
is given as an argument. The reply of the callback contains the
potentially modified server code.
A generic server plugin contains four closures. The first is for

server initialization, called when creating the server. The second is
for procedure calls to the server: the closure dispatches on the term
received in order to execute the function call. Procedure calls to the
server are synchronous. The third closure is for casts, which are
asynchronous messages sent to the server in order to do manage-
ment tasks (like restarting or stopping the server). The fourth and
last closure is called when terminating the server.
Here is an example of a generic server plugin implementing a

key/value server:

(define key/value-generic-server-plugin
(make-generic-server-plugin
(lambda () ; INIT
(print "Key-Value server starting")
(make-dict))

(lambda (term from state) ; CALL
(match term
((’store key val)
(dict-set! state key val)
(list ’reply ’ok state))

((’lookup key)
(list ’reply (dict-ref state key) state))))

(lambda (term state) ; CAST
(match term
(’stop (list ’stop ’normal state))))

(lambda (reason state) ; TERMINATE
(print "Key-Value server terminating"))))

It is then possible to access the functionality of the server by
using the generic server interface:

(define (kv:start)
(generic-server-start-link
key/value-generic-server-plugin))

(define (kv:stop server)
(generic-server-cast server ’stop))

(define (kv:store server key val)
(generic-server-call server (list ’store key val)))

(define (kv:lookup server key)
(generic-server-call server (list ’lookup key)))

Using such concurrency abstractions helps in building reliable
software, because the software development process is less error-
prone. We reduce complexity at the cost of flexibility.

5.3 Fault Tolerance
Promoting the writing of simple code is only a first step in order
to allow the development of robust applications. We also need to
be able to handle system failures and software errors. Supervisors
are another kind of behavior in the Erlang language, but we use
a slightly different implementation from Erlang’s. A supervisor
process is responsible for supervising the correct execution of a
worker process. If there is a failure in the worker, the supervisor
restarts it if necessary.
Here is an example of use of such a supervisor:

(define (start-pong-server)
(let loop ()
(recv
((from tag ’crash)
(! from (list tag (/ 1 0))))
((from tag ’ping)
(! from (list tag ’pong))))

(loop)))

(define robust-pong-server
(spawn-thunk-supervised start-pong-server))

(define (ping server)
(!? server ’ping 1 ’timeout))

(define (crash server)
(!? server ’crash 1 ’crashed))

(define (kill server)
(! server ’shutdown))

(print (ping robust-pong-server))
(print (crash robust-pong-server))
(print (ping robust-pong-server))
(kill robust-pong-server)

This generates the following trace (note that the messages pre-
fixed with info: are debugging messages from the supervisor) :

(info: starting up supervised process)
pong
(info: process failed)
(info: restarting...)
(info: starting up supervised process)
crashed
pong
(info: had to terminate the process)
(info: halting supervisor)

The call to spawn-thunk-supervised return the pid of the
supervisor, but any message sent to the supervisor is sent to the
worker. The supervisor is then mostly transparent: interacting pro-
cesses do not necessarily know that it is there.
There is one special message which the supervisors intercepts,

and that consists of the single symbol shutdown. Sending that
message to the supervisor makes it invoke a shutdown procedure
that requests the process to end its execution, or terminate it if it
does not collaborate. In the previous trace, the “had to terminate the
process” message indicates that the process did not acknowledge
the request to end its execution and was forcefully terminated.
A supervisor can be parameterized to set the acceptable restart

frequency tolerable for a process. A process failing more often than
a certain limit is shut down. It is also possible to specify the delay
that the supervisor will wait for when sending a shutdown request
to the worker.

The abstraction shown in this section is useful to construct a
fault-tolerant server. A more general abstraction would be able to
supervise multiple processes at the same time, with a policy deter-
mining the relation between those supervised processes (should the
supervisor restart them all when a single process fails or just the
failed process, etc.).

5.4 Other Applications
As part of Termite’s development, we implemented two non-trivial
distributed applications with Termite. Dynamite is a framework for
developing dynamic AJAX-like web user-interfaces. We used Ter-
mite processes to implement the web-server side logic, and we
can manipulate user-interface components directly from the server-
side (for example through the repl). Schack is an interactive mul-
tiplayer game using Dynamite for its GUI. Players and monsters
move around in a virtual world, they can pick up objects, use them,
etc. The rooms of the world, the players and monsters are all im-
plemented using Termite processes which interact.

6. The Termite Implementation
The Termite system was implemented on top of the Gambit-C
Scheme system [6]. Two features of Gambit-C were particularly
helpful for implementing the system: lightweight threads and ob-
ject serialization.
Gambit-C supports lightweight prioritized threads as specified

by SRFI 18 [7] and SRFI 21 [8]. Each thread descriptor contains the
thread’s continuation in the same linked frame representation used
by first class continuations produced by call/cc. Threads are sus-
pended by capturing the current continuation and storing it in the
thread descriptor. The space usage for a thread is thus dependent
on the depth of its continuation and the objects it references at that
particular point in the computation. The space efficiency compares
well with the traditional implementation of threads which preallo-
cates a block of memory to store the stack, especially in the context
of a large number of small threads. On a 32 bit machine the to-
tal heap space occupied by a trivial suspended thread is roughly
650 bytes. A single shared heap is used by all the threads for all
allocations including continuations (see [9] for details). Because
the thread scheduler uses scalable data structures (red-black trees)
to represent priority queues of runnable, suspended and sleeping
threads, and threads take little space, it is possible to manage mil-
lions of threads on ordinary hardware. This contributes to make the
Termite model practically insensitive to the number of threads in-
volved.
Gambit-C supports serialization for an interesting subset of ob-

jects including closures and continuations but not ports, threads
and foreign data. The serialization format preserves sharing, so
even data with cycles can be serialized. We can freely mix inter-
preted code and compiled code in a given program. The Scheme
interpreter, which is written in Scheme, is in fact compiled code
in the Gambit-C runtime system. Interpreted code is represented
with common Scheme objects (vectors, closures created by com-
piled code, symbols, etc.). Closures use a flat representation, i.e.
a closure is a specially tagged vector containing the free variables
and a pointer to the entry point in the compiled code. Continuation
frames use a similar representation, i.e. a specially tagged vector
containing the continuation’s free variables, which include a ref-
erence to the parent continuation frame, and a pointer to the re-
turn point in the compiled code. When Scheme code is compiled
with Gambit-C’s block option, which signals that procedures de-
fined at top-level are never redefined, entry points and return points
are identified using the name of the procedure that contains them
and the integer index of the control point within that procedure. Se-
rialization of closures and continuations created by compiled code
is thus possible as long as they do not refer to non-serializable ob-

jects and the block option is used. However, the Scheme program
performing the deserialization must have the same compiled code,
either statically linked or dynamically loaded. Because the Scheme
interpreter in the Gambit-C runtime is compiled with the block op-
tion, we can always serialize closures and continuations created by
interpreted code and we can deserialize them in programs using the
same version of Gambit-C. The serialization format is machine in-
dependent (endianness, machine word size, instruction set, memory
layout, etc.) and can thus be deserialized on any machine. Continu-
ation serialization allows the implementation of process migration
with call/cc.
For the first prototype of Termite we used the Gambit-C system

as-is. During the development process various performance prob-
lems were identified. This prompted some changes to Gambit-C
which are now integrated in the official release:

• Mailboxes: Each Gambit-C thread has a mailbox. Predefined
procedures are available to probe the messages in the mailbox
and extract messages from the mailbox. The operation to ad-
vance the probe to the next message optionally takes a timeout.
This is useful for implementing Termite’s time limited receive
operations.

• Thread subtyping: There is a define-type-of-thread spe-
cial form to define subtypes of the builtin thread type. This is
useful to attach thread local information to the thread, in partic-
ular the process links.

• Serialization: Originally serialization used a textual format
compatible with the standard datum syntax but extended to all
types and with the SRFI 38 [5] notation for representing cy-
cles. We added hash tables to greatly improve the speed of the
algorithm for detecting shared data. We improved the compact-
ness of the serialized objects by using a binary format. Finally,
we parameterized the serialization and deserialization proce-
dures (object->u8vector and u8vector->object) with an
optional conversion procedure applied to each subobject visited
during serialization or constructed during deserialization. This
allows the program to define serialization and deserialization
methods for objects such as ports and threads which would oth-
erwise not be serializable.

• Integration into the Gambit-C runtime: To correctly imple-
ment tail-calls in C, Gambit-C uses computed gotos for intra-
module calls but trampolines to jump from one compilation unit
to another. Because the Gambit-C runtime and the user pro-
gram are distributed over several modules, there is a relatively
high cost for calling procedures in the runtime system from the
user program. When the Termite runtime system is in a mod-
ule of its own, calls to some Termite procedures must cross two
module boundaries (user program to Termite runtime, and Ter-
mite runtime to Gambit-C runtime). For this reason, integrating
the Termite runtime in the thread module of the Gambit-C run-
time enhances execution speed (this is done simply by adding
(include "termite.scm") at the end of the thread module).

7. Experimental Results
In order to evaluate the performance of Termite, we ran some
benchmark programs using Termite version 0.9. When possible,
we compared the two systems by executing the equivalent Erlang
program using Erlang/OTP version R11B-0, compiled with SMP
support disabled. Moreover, we also rewrote some of the bench-
marks directly in Gambit-C Scheme and executed them with ver-
sion 4.0 beta 18 to evaluate the overhead introduced by Termite.
In all cases we compiled the code, and no optimization flags were
given to the compilers. We used the compiler GCC version 4.0.2
to compile Gambit-C, and we specified the configuration option “–

enable-single-host” for the compilation. We ran all the benchmarks
on a GNU/Linux machine with a 1 GHz AMD Athlon 64, 2GB
RAM and a 100Mb/s Ethernet, running kernel version 2.6.10.

7.1 Basic benchmarks
Simple benchmarks were run to compare the general performance
of the systems on code which does not require concurrency and
distribution. The benchmarks evaluate basic features like the cost
of function calls and memory allocation.
The following benchmarks were used:

• The recursive Fibonacci and Takeuchi functions, to estimate the
cost of function calls and integer arithmetic,

• Naive list reversal, to strain memory allocation and garbage
collection,

• Sorting a list of random integers using the quicksort algorithm,
• String matching using the Smith Waterman algorithm.
The results of those benchmarks are given in Figure 1. They

show that Termite is generally 2 to 3.5 times faster than Er-
lang/OTP. The only exception is for nrev which is half the speed
of Erlang/OTP due to the overhead of Gambit-C’s interrupt polling
approach.

Erlang Termite
Test (s) (s)
fib (34) 1.83 0.50

tak (27, 18, 9) 1.00 0.46
nrev (5000) 0.29 0.53
qsort (250000) 1.40 0.56
smith (600) 0.46 0.16

Figure 1. Basic benchmarks.

7.2 Benchmarks for concurrency primitives
We wrote some benchmarks to evaluate the relative performance
of Gambit-C, Termite, and Erlang for primitive concurrency oper-
ations, that is process creation and exchange of messages.
The first two benchmarks stress a single feature. The first

(spawn) creates a large number of processes. The first process cre-
ates the second and terminates, the second creates the third and
terminates, and so on. The last process created terminates the pro-
gram. The time for creating a single process is reported. In the
second benchmark (send), a process repeatedly sends a message to
itself and retrieves it. The time needed for a single message send
and retrieval is reported. The results are given in Figure 2. Note that
neither program causes any process to block. We see that Gambit-C
and Termite are roughly twice the speed of Erlang/OTP for process
creation, and roughly 3 times slower than Erlang/OTP for message
passing. Termite is somewhat slower than Gambit-C because of
the overhead of calling the Gambit-C concurrency primitives from
the Termite concurrency primitives, and because Termite processes
contain extra information (list of linked processes).

Erlang Gambit Termite
Test (µs) (µs) (µs)
spawn 1.57 0.63 0.91
send 0.08 0.22 0.27

Figure 2. Benchmarks for concurrency primitives.

The third benchmark (ring) creates a ring of 250 thousand
processes on a single node. Each process receives an integer and

then sends this integer minus one to the next process in the ring.
When the number received is 0, the process terminates its execution
after sending 0 to the next process. This program is run twice with
a different initial number (K). Each process will block a total
of "K/250000# + 1 times (once for K = 0 and 5 times for
K = 1000000).
With K = 0 it is mainly the ring creation and destruction time

which is measured. WithK = 1000000, message passing and pro-
cess suspension take on increased importance. The results of this
benchmark are given in Figure 3. Performance is given in microsec-
onds per process. A lower number means better performance.

Erlang Gambit Termite
K (µs) (µs) (µs)
0 6.64 4.56 7.84

1000000 7.32 14.36 15.48

Figure 3. Performance for ring of 250000 processes

We can see that all three systems have similar performance for
process creation; Gambit-C is slightly faster than Erlang and Ter-
mite is slightly slower. The performance penalty for Termite rela-
tively to Gambit-C is due in part to the extra information Termite
processes must maintain (like a list of links) and the extra test on
message sends to determine whether they are intended for a local or
a remote process. Erlang shows the best performance when there is
more communication between processes and process suspension.

7.3 Benchmarks for distributed applications
7.3.1 “Ping-Pong” exchanges
This benchmark measures the time necessary to send a message
between two processes exchanging ping-pong messages. The pro-
gram is run in three different situations: when the two processes are
running on the same node, when the processes are running on dif-
ferent nodes located on the same computer and when the processes
are running on different nodes located on two computers commu-
nicating across a local area network. In each situation, we vary the
volume of the messages sent between the processes by using lists
of small integers of various lengths. The measure of performance is
the time necessary to send and receive a single message. The lower
the value, the better the performance.

Erlang Gambit Termite
List length (µs) (µs) (µs)

0 0.20 0.67 0.75
10 0.31 0.67 0.75
20 0.42 0.67 0.74
50 0.73 0.68 0.75
100 1.15 0.66 0.74
200 1.91 0.67 0.75
500 4.40 0.67 0.75
1000 8.73 0.67 0.75

Figure 4. Local ping-pong: Measure of time necessary to send
and receive a message of variable length between two processes
running on the same node.

The local ping-pong benchmark results in Figure 4 illustrate an
interesting point: when the volume of messages grows, the perfor-
mance of the Erlang system diminishes, while the performance of
Termite stays practically the same. This is due to the fact that the
Erlang runtime uses a separate heap per process, while the Gambit-
C runtime uses a shared heap approach.

Erlang Termite
List length (µs) (µs)

0 53 145
10 52 153
20 52 167
50 54 203
100 55 286
200 62 403
500 104 993
1000 177 2364

Figure 5. Inter-node ping-pong: Measure of time necessary to
send and receive a message of variable length between two pro-
cesses running on two different nodes on the same computer.

The inter-node ping-pong benchmark exercises particularly the
serialization code, and the results in Figure 5 show clearly that
Erlang’s serialization is significantly more efficient than Termite’s.
This is expected since serialization is a relatively new feature in
Gambit-C that has not yet been optimized. Future work should
improve this aspect.

Erlang Termite
List length (µs) (µs)

0 501 317
10 602 337
20 123 364
50 102 437
100 126 612
200 176 939
500 471 1992
1000 698 3623

Figure 6. Remote ping-pong: Measure of time necessary to send
and receive a message of variable length between two processes
running on two different computers communicating through the
network.

Finally, the remote ping-pong benchmark additionally exercises
the performance of the network communication code. The results
are given in Figure 6. The difference with the previous program
shows that Erlang’s networking code is also more efficient than
Termite’s by a factor of about 2.5 for large messages. This appears
to be due to more optimized networking code as well as a more
efficient representation on the wire, which comes back to the rela-
tive youth of the serialization code. The measurements with Erlang
show an anomalous slowdown for small messages which we have
not been able to explain. Our best guess is that Nagle’s algorithm
gets in the way, whereas Termite does not suffer from it because it
explicitly disables it.

7.3.2 Process migration
We only executed this benchmark with Termite, since Erlang does
not support the required functionality. This program was run in
three different configurations: when the process migrates on the
same node, when the process migrates between two nodes running
on the same computer, and when the process migrates between two
nodes running on two different computers communicating through
a network. The results are given in Figure 7. Performance is given
in number of microseconds necessary for the migration. A lower
value means better performance.
The results show that the main cost of a migration is in the

serialization and transmission of the continuation. Comparatively,

Termite
Migration (µs)

Within a node 4
Between two local nodes 560
Between two remote nodes 1000

Figure 7. Time required to migrate a process.

capturing a continuation and spawning a new process to invoke it
is almost free.

8. Related Work
The Actors model is a general model of concurrency that has been
developed by Hewitt, Baker and Agha [13, 12, 1]. It specifies a
concurrency model where independent actors concurrently execute
code and exchange messages. Message delivery is guaranteed in the
model. Termite might be considered as an “impure” actor language,
because it does not adhere to the strict “everything is an actor”
model since only processes are actors. It also diverges from that
model by the unreliability of the message transmission operation.
Erlang [3, 2] is a distributed programming system that has had a

significant influence on this work. Erlang was developed in the con-
text of building telephony applications, which are inherently con-
current. The idea of multiple lightweight isolated processes with
unreliable asynchronous message transmission and controlled error
propagation has been demonstrated in the context of Erlang to be
useful and efficient. Erlang is a dynamically-typed semi-functional
language similar to Scheme in many regards. Those characteristics
have motivated the idea of integrating Erlang’s concurrency ideas
to a Lisp-like language. Termite notably adds to Erlang first class
continuations and macros. It also features directed links between
processes, while Erlang’s links are always bidirectionals.
Kali [4] is a distributed implementation of Scheme. It allows

the migration of higher-order objects between computers in a dis-
tributed setting. It uses a shared-memory model and requires a dis-
tributed garbage collector. It works using a centralized model where
a node is supervising the others, while Termite has a peer-to-peer
model. Kali does not feature a way to deal with network failure,
while that is a fundamental aspect of Termite. It implements ef-
ficient communication by keeping a cache of objects and lazily
transmitting closure code, which are techniques a Termite imple-
mentation might benefit from.
The Tube [11] demonstrates a technique to build a distributed

programming system on top of an existing Scheme implementation.
The goal is to have a way to build a distributed programming
environment without changing the underlying system. It relies on
the “code as data” property of Scheme and on a custom interpreter
able to save state to code represented as S-expressions in order to
implement code migration. It is intended to be a minimal addition
to Scheme that enables distributed programming. Unlike Termite,
it neither features lightweight isolated process nor considers the
problems associated with failures.
Dreme [10] is a distributed programming system intended for

open distributed systems. Objects are mobile in the network. It uses
a shared memory model and implements a fault-tolerant distributed
garbage collector. It differs from Termite in that it sends objects to
remote processes by reference unless they are explicitly migrated.
Those references are resolved transparently across the network, but
the cost of operations can be hidden, while in Termite costly opera-
tions are explicit. The system also features a User Interface toolkit
that helps the programmer to visualize distributed computation.

9. Conclusion
Termite has shown to be an appropriate and interesting language
and system to implement distributed applications. Its core model
is simple yet allows for the abstraction of patterns of distributed
computation.
We built the current implementation on top of the Gambit-C

Scheme system. While this has the benefit of giving a lot of free-
dom and flexibility during the exploration phase, it would be inter-
esting to build from scratch a system with the features described in
this paper. Such a system would have to take into consideration the
frequent need for serialization, try to have processes as lightweight
and efficient as possible, look into optimizations at the level of what
needs to be transferred between nodes, etc. Apart from the opti-
mizations it would also benefit from an environment where a more
direct user interaction with the system would be possible. We in-
tend to take on those problems in future research while pursuing
the ideas laid in this paper.

10. Acknowledgments
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

References
[1] Gul Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986.
[2] Joe Armstrong. Making reliable distributed systems in the presence

of software errors. PhD thesis, The Royal Institute of Technology,
Department of Microelectronics and Information Technology,
Stockholm, Sweden, December 2003.

[3] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, second edition,
1996.

[4] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-Order Distributed
Objects. ACM Transactions on Programming Languages and
Systems, 17(5):704–739, 1995.

[5] Ray Dillinger. SRFI 38: External representation for data with shared
structure. http://srfi.schemers.org/srfi-38/srfi-38.
html.

[6] Marc Feeley. Gambit-C version 4. http://www.iro.umontreal.
ca/∼gambit.

[7] Marc Feeley. SRFI 18: Multithreading support. http://srfi.
schemers.org/srfi-18/srfi-18.html.

[8] Marc Feeley. SRFI 21: Real-time multithreading support. http:
//srfi.schemers.org/srfi-21/srfi-21.html.

[9] Marc Feeley. A case for the unified heap approach to erlang
memory management. Proceedings of the PLI’01 Erlang Workshop,
September 2001.

[10] Matthew Fuchs. Dreme: for Life in the Net. PhD thesis, New York
University, Computer Science Department, New York, NY, United
States, July 2000.

[11] David A. Halls. Applying mobile code to distributed systems. PhD
thesis, University of Cambridge, Computer Laboratory, Cambridge,
United Kingdom, December 1997.

[12] C. E. Hewitt and H. G. Baker. Actors and continuous functionals. In
E. J. Neuhold, editor, Formal Descriptions of Programming Concepts.
North Holland, Amsterdam, NL, 1978.

[13] Carl E. Hewitt. Viewing control structures as patterns of passing
messages. Journal of Artificial Intelligence, 8(3):323–364, 1977.

[14] Richard Kelsey, William Clinger, and Jonathan Rees (Editors).
Revised5 report on the algorithmic language Scheme. ACM SIGPLAN
Notices, 33(9):26–76, 1998.

