
J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1Benchmarking Implementations of Functional Languages with\Pseudoknot", a Float-Intensive BenchmarkPieter H. Hartel 1 Marc Feeley 2 Martin Alt 3Lennart Augustsson 4 Peter Baumann 5 Marcel Beemster 6Emmanuel Chailloux 7 Christine H. Flood 8 Wolfgang Grieskamp 9John H. G. van Groningen 10 Kevin Hammond 11 Bogumi l Hausman 12Melody Y. Ivory 13 Richard E. Jones 14 Jasper Kamperman 15Peter Lee 16 Xavier Leroy 17 Rafael D. Lins 18Sandra Loosemore 19 Niklas R�ojemo 20 Manuel Serrano 21Jean-Pierre Talpin 22 Jon Thackray 23 Stephen Thomas 24Pum Walters 25 Pierre Weis 26 Peter Wentworth 27AbstractOver 25 implementations of di�erent functional languages are benchmarked using the same program, a oating-point intensive application taken from molecular biology. The principal aspects studied are compile time and1 Dept. of Computer Systems, Univ. of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, e-mail:pieter@fwi.uva.nl2 D�epart. d'informatique et r.o., Univ. de Montr�eal, succursale centre-ville, Montr�eal H3C 3J7, Canada, e-mail:feeley@iro.umontreal.ca3 Informatik, Universit�at des Saarlandes, 66041 Saarbr�ucken 11, Germany, e-mail: alt@cs.uni-sb.de4 Dept. of Computer Systems, Chalmers Univ. of Technology, 412 96 G�oteborg, Sweden, e-mail:augustss@cs.chalmers.se5 Dept. of Computer Science, Univ. of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland, e-mail:baumann@i�.unizh.ch6 Dept. of Computer Systems, Univ. of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, e-mail:beemster@fwi.uva.nl7 LIENS, URA 1327 du CNRS, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 PARIS C�edex 05, France, e-mail:Emmanuel.Chailloux@ens.fr8 Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge Massachusetts 02139, USA, e-mail:chf@lcs.mit.edu9 Berlin University of Technology, Franklinstr. 28-29, 10587 Berlin, Germany, e-mail: wg@cs.tu-berlin.de10 Faculty of Mathematics and Computer Science, Univ. of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, TheNetherlands, e-mail: johnvg@cs.kun.nl11 Dept. of Computing Science, Glasgow University, 17 Lilybank Gardens, Glasgow, G12 8QQ, UK, e-mail:kh@dcs.glasgow.ac.uk12 Computer Science Lab, Ellemtel Telecom Systems Labs, Box 1505, S-125 25 �Alvsj�o, Sweden, e-mail:bogdan@erix.ericsson.se13 Computer Research Group, Institute for Scienti�c Computer Research, Lawrence Livermore National Labora-tory, P. O. Box 808 L-419, Livermore, CA 94550, e-mail: ivory1@llnl.gov14 Dept. of Computer Science, Univ. of Kent at Canterbury, Canterbury, Kent, CT2 7NF, UK, e-mail:R.E.Jones@ukc.ac.uk15 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, e-mail: jasper@cwi.nl16 Dept. of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, Pennsylvania 15213,USA, e-mail: petel@cs.cmu.edu17 INRIA Rocquencourt, projet Cristal, B.P. 105, 78153 Le Chesnay, France. e-mail: Xavier.Leroy@inria.fr18 Departamento de Inform�atica, Universidade Federal de Pernambuco, Recife, PE, Brazil, e-mail: rdl@di.ufpe.br19 Dept. of Computer Science, Yale Univ., New haven, Connecticut, e-mail: loosemore-sandra@cs.yale.edu20 Dept. of Computer Systems, Chalmers Univ. of Technology, 412 96 G�oteborg, Sweden, e-mail:rojemo@cs.chalmers.se21 INRIA Rocquencourt, projet Icsla, B.P. 105, 78153 Le Chesnay, France. e-mail: Manuel.Serrano@inria.fr22 European Computer-Industry Research Centre, Arabella Stra�e 17, D-81925 Munich, Germany. e-mail:jp@ecrc.de23 Harlequin Ltd, Barrington Hall, Barrington, Cambridge CB2 5RG, England, e-mail: jont@harlequin.co.uk24 Dept. of Computer Science, Univ. of Nottingham, Nottingham, NG7 2RD, UK, e-mail: spt@cs.nott.ac.uk25 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, e-mail: pum@cwi.nl26 INRIA Rocquencourt, projet Cristal, B.P. 105, 78153 Le Chesnay, France. e-mail: Pierre.Weis@inria.fr27 Dept. of Computer Science, Rhodes Univ., Grahamstown 6140, South Africa, e-mail: cspw@cs.ru.ac.za

2 Hartel, Feeley et al.execution time for the various implementations that were benchmarked. An important consideration is how theprogram can be modi�ed and tuned to obtain maximal performance on each language implementation.With few exceptions, the compilers take a signi�cant amount of time to compile this program, though mostcompilers were faster than the then current GNU C compiler (GCC version 2.5.8). Compilers that generate C orLisp are often slower than those that generate native code directly: the cost of compiling the intermediate formis normally a large fraction of the total compilation time.There is no clear distinction between the runtime performance of eager and lazy implementations when appro-priate annotations are used: lazy implementations have clearly come of age when it comes to implementing largelystrict applications, such as the Pseudoknot program. The speed of C can be approached by some implementa-tions, but to achieve this performance, special measures such as strictness annotations are required by non-strictimplementations.The benchmark results have to be interpreted with care. Firstly, a benchmark based on a single program cannotcover a wide spectrum of `typical' applications. Secondly, the compilers vary in the kind and level of optimisationso�ered, so the e�ort required to obtain an optimal version of the program is similarly varied.1 IntroductionAt the Dagstuhl Workshop on Applications of Functional Programming in the Real World in May1994 (Giegerich and Hughes, 1994), several interesting applications of functional languages were pre-sented. One of these applications, the Pseudoknot problem (Feeley et al., 1994) had been written inseveral languages, including C, Scheme (Rees and Clinger, 1991), Multilisp (Halstead Jr, 1985) andMiranday (Turner, 1985). A number of workshop participants decided to test their compiler technologyusing this particular program. The �rst point of comparison is the speed of compilation and the speedof the compiled program. The second point is how the program can be modi�ed and tuned to obtainmaximal performance on each language implementation available.The initial benchmarking e�orts revealed important di�erences between the various compilers. The�rst impression was that compilation speed should generally be improved. After the workshop we havecontinued to work on improving both the compilation and execution speed of the Pseudoknot program.Some researchers not present at Dagstuhl joined the team and we present the results as a record of asmall scale, but exciting collaboration with contributions from many parts of the world.As is the case with any benchmarking work, our results should be taken with a grain of salt. We areusing a realistic program that performs a useful computation, however it stresses particular languagefeatures that are probably not representative of the applications for which the language implementationswere intended. Implementations invariably trade-o� the performance of some programming features forothers in the quest for the right blend of usability, exibility, and performance on `typical' applications.It is clear that a single benchmark is not a good way to measure the overall quality of an implementation.Moreover, the performance of an implementation usually (but not always) improves with new releasesas the implementors repair bugs, add new features, and modify the compiler. We feel that our choiceof benchmark can be justi�ed by the fact that it is a real world application, that it had already beentranslated into C and several functional languages, and that we wanted to compare a wide range oflanguages and implementations. The main results agree with those found in earlier studies (Cann, 1992;Hartel and Langendoen, 1992).Section 2 briey characterises the functional languages that have been used. The compilers and inter-preters for the functional languages are presented in Section 3. The Pseudoknot application is introducedin Section 4. Section 5 describes the translations of the program to the di�erent programming languages.The benchmark results are presented in Section 6. The conclusions are given in the last section.y Miranda is a trademark of Research Software Ltd.

Pseudoknot benchmark 3language source ref. typing evaluation order matchSML familyCaml INRIA Weis (1993) strong, poly eager higher patternSML Committee Milner et al. (1990) strong, poly eager higher patternHaskell familyClean Nijmegen Plasmeijer and strong, poly lazy higher patternvan Eekelen (1994)Gofer Yale Jones (1994) strong, poly lazy higher patternLML Chalmers Augustsson and strong, poly lazy higher patternJohnsson (1989)Miranda Kent Turner (1985) strong, poly lazy higher patternHaskell Committee Hudak et al. (1992) strong, poly lazy higher patternRUFL Rhodes Wentworth (1992) strong, poly lazy higher patternLisp familyCommon Committee Steele Jr (1990) dynamic eager higher accessLispScheme Committee Rees and Clinger (1991) dynamic eager higher accessParallel and concurrent languagesErlang Ericsson Armstrong et al. (1993) dynamic eager �rst patternFacile ECRC Thomsen et al. (1993) strong, poly eager higher patternID MIT Nikhil (1991) strong, poly eager higher patternnon-strictSisal LLNL McGraw et al. (1985) strong, mono eager �rst noneIntermediate languages�CMC Recife Lins and Lira (1993) strong, poly lazy higher accessSto�el Amsterdam Beemster (1992) strong, poly lazy higher caseOther functional languagesEpic CWI Walters and strong, poly eager �rst patternKamperman (1995)Opal TU Berlin Didrich et al. (1994) strong, poly eager higher patternTrafola Saarbr�ucken Alt et al. (1993) strong, poly eager higher patternCANSI C Committee Kernighan and weak eager �rst noneRitchie (1988)Table 1. Language characteristics. The source of each language is followed by a key reference to thelanguage de�nition. The remaining columns characterise the typing discipline, the evaluation strategy,whether the language is �rst- or higher-order, and the pattern-matching facilities.

4 Hartel, Feeley et al.2 LanguagesThe Pseudoknot benchmark takes into account a large number of languages and an even larger numberof compilers. Our aim has been to cover as comprehensively as possible the landscape of functionallanguages, while emphasising typed languages.Of the general purpose functional languages, the most prominent are the eager, dynamically typedlanguages Lisp and Scheme (the Lisp family); the eager, strongly typed languages SML and Caml (theSML family); and the lazy, strongly typed languages Haskell, Clean, Miranda and LML (the Haskellfamily). These languages are su�ciently well known to obviate an introduction. There are also somevariants of these languages, such as the Gofer and RUFL variants of Haskell. The syntax and semanticsof these variants is su�ciently close to that of their parents that no introduction is needed.Four of our functional languages were designed primarily for concurrent/parallel applications. Theseare Erlang, an eager, concurrent language designed for prototyping and implementing reliable real-timesystems; Facile, which combines SML with a model of higher-order concurrent processes based on CCS; ID,an eager, non-strict, mostly functional, implicitly parallel language; and Sisal, an eager, implicitly parallelfunctional language designed to obtain high performance on commercial scalar and vector multiprocessors.The concurrent/parallel capabilities of these four languages have not been used in the Pseudoknotbenchmark, so a further discussion of these capabilities is not relevant here. It should be pointed outhowever, that because these languages were intended for parallel execution, the sequential performanceof some may not be optimal (See Section 6.3.3).Two of the functional languages are intended to be used only as intermediate languages, and thus lackcertain features of fully edged programming languages, such as pattern matching. These languages are�CMC, a Miranda based language intended for research on the categorical abstract machine (Lins, 1987);and Sto�el, an intermediate language designed to study code generation for high level languages on �ne-grained parallel processors. The Sto�el and �CMC compilers have been included because these compilerso�er interesting implementation platforms, not because of the programming language they implement.A further three functional languages were designed for a speci�c purpose: Epic is a language forequational programming, which was primarily created to support the algebraic speci�cation languageASF+SDF (Bergstra et al., 1989); Trafola is an eager language that was designed as a transformationlanguage in a compiler construction project; and Opal is an eager language that combines concepts fromalgebraic speci�cation and functional programming in a uniform framework.Finally, C is used as a reference language to allow comparison with an imperative language.Table 1 provides an overview of the languages that were benchmarked. The table is organised bylanguage family. The �rst column of the table gives the name of the language. The second column givesthe source (i.e. a University or a Company) if a language has been developed in one particular place.Some languages were designed by a committee, which is also shown. The third column of the table givesa key reference to the language de�nition.The last four columns describe some important properties of the languages. The typing discipline maybe strong (and static), dynamic, or weak; a strong typing discipline may be monomorphic (mono) orpolymorphic (poly). The evaluation strategy may be eager, lazy or eager with non-strict evaluation. Thelanguage may be �rst order or higher order. Accessing components of data structures may be supportedby either pattern-matching on function arguments, local de�nitions and/or as part of case expressions(pattern, case), by compiler generated access functions to destruct data (access), or not at all (none). Thereader should consult the references provided for further details of individual languages.3 CompilersHaving selected a large number of languages, we wished to provide comprehensive coverage of compilersfor those languages. For a number of languages, we set out to benchmark more than one compiler, so asto provide direct comparisons between di�erent implementations of some prominent languages as well asbetween the languages themselves.For the Lisp family we use the CMU common Lisp native code compiler, and the Bigloo and Gambitportable Scheme to C compilers.

Pseudoknot benchmark 5compiler version source ref. FTP / EmailBigloo 1.7 INRIA Serrano (1994) Ftp: ftp.inria.fr:Rocquencourt /INRIA/Projects/icsla/Implementations/Caml Light 0.61 INRIA Leroy (1993) Ftp: ftp.inria.fr:Rocquencourt /lang/caml-light/Caml Gallium INRIA Leroy (1992) Email: Xavier.Leroy@inria.frRocquencourtCamloo 0.2 INRIA Serrano and Weis (1994) Ftp: ftp.inria.fr:Rocquencourt /lang/caml-light/CeML 0.22 LIENS Chailloux (1992) Email: Emmanuel.Chailloux@ens.frClean 1.0b Nijmegen Smetsers et al. (1991) Ftp: ftp.cs.kun.nl:/pub/Clean/CMU CL 17e Carnegie Mellon MacLachlan et al. (1992) Ftp: lisp-sun1.slisp.cs.cmu.edu:/pub/Epic 0.8 CWI Walters and (1995) http://www.cwi.nl/ gipe/epic.htmlKampermanEpic-C 0.2 CWI Walters and (1995) http://www.cwi.nl/ gipe/epic.htmlKampermanErlang 6.0.4 Ellemtel AB Hausman (1994) commercialEmail: erlang@erix.ericsson.seFacile Antigua ECRC Thomsen et al. (1993) Email: facile@ecrc.deFAST 33 Southampton/ Hartel et al. (1994) Email: pieter@fwi.uva.nlAmsterdamGambit 2.3 Montr�eal Feeley and Miller (1990) Ftp: ftp.iro.umontreal.ca:/pub/parallele/gambit/�CMC 0.1 Recife Lins and Lira (1993) Email: rdl@di.ufpe.brBrazilGofer 2.30a Yale Jones (1994) Ftp: nebula.cs.yale.edu:/pub/haskell/gofer/Haskell 0.999.6 Chalmers Augustsson (1993) Ftp: ftp.cs.chalmers.se:/pub/haskell/chalmers/Haskell 0.22 Glasgow Peyton Jones et al. (1993) Ftp: ftp.dcs.glasgow.ac.uk:/pub/haskell/glasgow/Haskell 2.1 Yale Yale Haskell group (1994) Ftp: nebula.cs.yale.edu:/pub/haskell/yale/ID TL0 2.1 MIT/Berkeley Nikhil (1991) Email: chf@lcs.mit.eduLML 0.999.7 Chalmers Augustsson and Ftp: ftp.cs.chalmers.se:Johnsson (1990) /pub/haskell/chalmers/LML Pre-rel. Nottingham/ Thomas (1995) Email: spt@cs.nott.ac.uk(OP{TIM) KentMLWorks n.a. Harlequin Ltd. Harlequin Ltd. (1994) commercialMiranda 2.018 Research Turner (1990) commercialSoftware Ltd. Email: mira-request@ukc.ac.ukNearly Pre rel. Chalmers R�ojemo (1995) Ftp: ftp.cs.chalmers.se:Haskell /pub/haskell/nhc/Opal 2.1c Berlin Schulte and Ftp: ftp.cs.tu-berlin.de:Grieskamp (1991) /pub/local/uebb/ocsRUFL 1.8.4 Rhodes Wentworth (1991) Ftp: cs.ru.ac.za:/pub/ru/Sisal 12.9.2 LLNL Cann (1992) Ftp: sisal.llnl.gov/pub/sisalSML/NJ 1.07 AT&T Bell Labs. Appel (1992) Ftp: research.att.com:/dist/ml/Sto�el Amsterdam Beemster (1993) Email: beemster@fwi.uva.nlTrafola 1.2 Saarbr�ucken Alt et al. (1993) Email: alt@cs.uni-sb.deTable 2. Compiler details consisting of the name of the compiler and/or language, the University orCompany that built the compiler, a key reference to the description of the implementation and theaddress from which information about the compiler can be obtained.

6 Hartel, Feeley et al.compiler compiler options execution options collector oatBigloo {unsafe {O4 mark-scan doubleCaml Light gen. doubleCaml Gallium gen. doubleCamloo {unsafe {O4 mark-scan doubleCeML {O 1-space singleChalmers {c {Y{S {H50Mg { 2-space single{Y{A500k {cppClean {nt {s 10k {h ... 2-space/ doublemark-scanCMU CL (speed 3) (safety 0) (debug 0) 2-space single(compilation-speed 0)Epic -s80 mark-scan singleEpic-C mark-scan singleErlang BEAM {fast {h 600000 2-space doubleFacile gen. doubleFAST {fcg {v 1 {h ... {s 400K 1 2-space singleGambit {:h4096 2-space double�CMC 2-space doubleGlasgow {O {fvia{C {O2{for{C +RTS {H1M gen. singleGofer {DTIMER 2-space singleID strict, merge{partitions none double(tlc: opt)LML Chalmers {H24000000 {DSTR {c 2-space singleLML(OP{TIM) LMLC: {H24000000 {DSTR {c 2-space single{fno{code {fout{ic;SPGC: {c {iMLWorks no details availablea 2-space doubleMiranda /heap ...; /count mark-scan doubleNHC(HBC) {H30M 2-space singleNHC(NHC) {h2M 1-space singleOpal opt=full debug=no refcount singleRUFL {w {m300 mark-scan doubleRUFLI {iw {m300 {r32000 mark-scan doubleSisal {cpp {seq {O refcount double{c atan2 {cc={OSML/NJ gen. doubleSto�el {O2 (for C) 2-space doubleTrafola {TC {INLINE 1 {HE 8000000 1-space sgl/dblYale see CMU CL 2-space singlea MLWorks is not yet available. Compilation was for maximum optimisation, no debugging or statistics collectionwas taking place at runtime.Table 3. Compilation and execution options. The type of garbage collector is one of 2-space(non-generational 2-space copying collector); mark-scan; gen. (generational with two or more spaces);1-space (mark-scan, one space compactor); or reference counting. Floating-point arithmetic used iseither single- or double-precision.For the SML family we use: SML/NJ, an incremental interactive native code compiler; MLWorks,a commercial native code compiler; Caml Light, a simple byte-code compiler; Camloo, a Caml to Ccompiler derived from the Bigloo Scheme compiler; Caml Gallium, an experimental native-code compiler;and CeML, a compiler that has been developed to study translations of Caml into C.For Haskell we use the Glasgow compiler, which generates either C or native code; the Chalmers nativecode compiler and the Yale compiler, which translates Haskell into Lisp. A large subset of Haskell istranslated into byte-code by the NHC compiler. The Haskell relatives RUFL and Gofer can both compileeither to native code or to a byte code. The Clean native code compiler from Nijmegen is used for Clean.For Miranda, the Miranda interpreter from Research Software Ltd is used, as well as the FAST compiler,which translates a subset of Miranda into C. For LML the Chalmers LML native code compiler is used,as well as a modi�ed version that translates into a low-level intermediate form based on FLIC. Afterextensive optimisations (Thomas, 1993) this LML(OP{TIM) back-end generates native code.

Pseudoknot benchmark 7For the four concurrent/parallel languages we use the Erlang BEAM compiler, a portable compilerthat generates C; the Facile compiler, which uses the SML/NJ compiler to translate the SML codeembedded in Facile programs into native code; the ID compiler, which translates into an intermediatedata ow representation that is subsequently compiled into C by the Berkeley Tl0 back-end; and theSisal compiler, which compiles via C with special provisions to update data structures in place, withoutcopying.Epic is supported by a so-called hybrid interpreter, which allows the combination of interpreted andcompiled functions. Initially, all functions are translated to, essentially, byte-code. Then, individual func-tions can be translated into C, and can be linked to the system. This leads to a stratum of possibilities,with, in one extreme, all functions being interpreted, and in the other, all functions being compiled andonly the dispatch overhead being paid. In this document, the two extremes are being benchmarked underthe names Epic, and Epic-C, respectively.Of the four remaining languages Opal, �CMC and Sto�el are translated into C whereas Trafola istranslated into an interpreted code.An overview of the compilers that have been used may be found in Table 2. Since this table is intendedfor reference rather than comparisons, the entries are listed in alphabetical order. The �rst column givesthe name of the language and/or compiler, the second shows the source of the compiler. A key referencethat describes the compiler is given in the third column. The last column gives instructions for obtainingthe compiler by FTP or email.To make the best possible use of each of the compilers, compilation and runtime options have beenselected that should give fast execution. We have consistently tried to optimise for execution speed. Inparticular no debugging information, run time checks or pro�ling code have been generated. Where a`{O' option or higher optimisation setting could be used to generate faster code, we have done so. Theprecise option settings that were used for each compiler are shown in columns 2 and 3 of Table 3. Thefourth column shows what type of garbage collection is used, and the last column indicates whethersingle or double oating-point precision was used. Where alternatives were available, we have chosensingle-precision, since this should yield better performance.4 ApplicationThe Pseudoknot program is derived from a `real-world' molecular biology application (Feeley et al., 1994).In the following sections the program is described briey from the point of view of its functional structureand its main operational characteristics. The level of detail provided should be su�cient to understandthe later sections that describe the optimisations and performance analyses of the program. For moredetail on the biological aspects of the program, the reader is referred to Feeley et al. (1994).4.1 Functional behaviourThe Pseudoknot program computes the three-dimensional structure of part of a nucleic acid moleculefrom its primary structure (i.e. the nucleotide sequence) and a set of constraints on the three-dimensionalstructure. The program exhaustively searches a discrete space of shapes and returns the set of shapesthat respect the constraints.More formally, the problem is to �nd all possible assignments of the variables x1; : : : ; xn (n = 23here) that satisfy the structural constraints. Each variable represents the 3D position, orientation, andconformation (i.e. the internal structure) of a nucleotide in the nucleic acid molecule. Collectively theyrepresent the 3D structure of the molecule. There are four types of nucleotides (A, C, G, and U), whichcontain from 30 to 34 atoms each. To reduce the search space, the domains of the variables are discretizedto a small �nite set (i.e. xi 2 Di). These domains are dependent on the lower numbered variables (i.e. Diis a function of x1; : : : ; xi�1) to take into account the restricted ways in which nucleotides attach relativelyto one another. The constraints specify a maximal distance between speci�c atoms of the molecule.The heart of the program is a backtracking search. For each possible assignment of x1, all possibleassignments of x2 are explored, and so on until all variables are assigned a value. A satisfactory set of

8 Hartel, Feeley et al.oating-point operations square root andtrigonometric functions� 3,567,672+ 2,798,571 p 69,600>, �, < 129,656 arctan 40,184� 330,058 cos 40,184= 40,184 sin 40,184total 6,866,141 total 190,152Table 4. Breakdown of the `real' work involved in the Pseudoknot problem as counted by the FASTsystem. The oating-point operations occurring in the trigonometric functions and the square root arenot counted separately.assignments is a solution. As the search deepens, the constraints are checked to prune branches of thesearch tree that do not lead to a solution. If a constraint is violated, the search backtracks to explore thenext possible assignment of the current variable. When a leaf is reached, the current set of assignmentsis added to the list of solutions. For the benchmark, there are 50 possible solutions.The computation of the domains is a geometric problem which involves computations on 3D transfor-mation matrices and points (3D vectors). Notable functions include tfo_combine (multiplication of 3Dmatrices), tfo_align (creation of a 3D matrix from three 3D vectors), and tfo_apply (multiplicationof a 3D matrix by a 3D vector). Another important part of the program is the conformation database ofnucleotides. This database contains the relative position of all atoms in all possible conformations of thefour nucleotides (a total of 46 conformations). This data is used to align nucleotides with one anotherand to compute the absolute position of atoms in the molecule.The program used in the present benchmarking e�ort is slightly di�erent from the original (Feeleyet al., 1994). The latter only computed the number of solutions found during the search. However, inpractice, it is the location of each atom in the solutions that is of real interest to a biologist, since thesolutions typically need to be screened manually by visualising them consecutively. The program was thusmodi�ed to compute the location of each atom in the structures that are found. In order to minimise I/Ooverhead, a single value is printed: the distance from the origin to the farthest atom in any solution (thisrequires that the absolute position of each atom be computed).4.2 Operational behaviourThe Pseudoknot program is heavily oriented towards oating-point computations, and oating-pointcalculations should thus form a signi�cant portion of the total execution time. For the C version (executedon machine 10 c.f. Table 7) this percentage was found to be at least 25%.We also studied the extent to which the execution of the functional versions is dominated by oating-point calculations, using state-of-the-art compilers for the eager SML and the lazy FAST versions ofthe program. The time pro�le obtained for the MLWorks compiler for SML suggests that slightly over50% of the run time is consumed by three functions, tfo_combine, tfo_align and tfo_apply, whichdo little more than oating-point arithmetic and trigonometric functions. This means that half the time,little more than the oating-point capability of this implementation is being tested, and some of thatfunctionality is actually provided by an operating system library.Statistics from the lazy FAST compiler show that with lazy evaluation the most optimised version of theprogram does about 7 million oating-point operations, excluding those performed by the 190 thousandtrigonometric and square root function calls. A detailed breakdown of these statistics is shown in Table 4.Overall, the program makes about 1.5 million function calls and claims about 15 Mbytes of space (themaximum live data is about 30 Kbytes).

Pseudoknot benchmark 95 Translations, annotations and optimisationsThe Pseudoknot programwas hand-translated from either the Scheme or the C version to the various otherlanguages that were benchmarked. All versions were hand-tuned to achieve the best possible performancefor each compiler. The following set of guidelines were used to make the comparison as fair as possible:1. Algorithmic changes are forbidden but slight modi�cations to the code to allow better use of aparticular feature of the language or programming system are allowed.2. Only small changes to the data structures are permitted (e.g. a tuple may be turned into an arrayor a list).3. Annotations are permitted, for example strictness annotations, or annotations for inlining andspecialisation of code.4. All changes and annotations should be documented.5. Anyone should be able to repeat the experiments. So all sources and measurement procedures shouldbe made public (by ftp somewhere).6. All programs must produce the same output (the number 33.7976 to 6 signi�cant �gures).The optimisations and annotations made to obtain best performance with each of the compilers arediscussed in the following subsections. We will make frequent reference to particular parts of the programtext. As the program is relatively large it would be di�cult to reproduce every version in full here. Thereader is therefore invited to consult the archive that contains most of the versions of the program atftp.fwi.uva.nl, �le /pub/computer-systems/functional/packages/pseudoknot.tar.Z.The guidelines above were designed on the basis of the experience gained at the Dagstuhl workshopwith a small subset of the present set of implementations. We tried to make the guidelines as clear andconcise as possible, yet they were open to di�erent interpretations. The problems we had were aggravatedby the use of di�erent terminology, particularly when one term means di�erent things to people fromdi�erent backgrounds. During the process of interpreting and integrating the benchmarking results in thepaper we have made every e�ort to eradicate the di�erences that we found. There may be some remainingdi�erences that we are unaware of.In addition to these unintentional di�erences, there are intentional di�erences: some experimentersspent more time and e�ort improving their version of Pseudoknot than others. These e�orts are docu-mented, but not quanti�ed, in the sections that follow.5.1 Sources used in the translationsThe translation of the Pseudoknot program into so many di�erent languages represented a signi�cantamount of work. Fortunately this work could be shared amongst a large number of researchers. The basictranslations were not particularly di�cult or interesting, so we will just trace the history of the variousversions. The optimisations that were applied will then be discussed in some detail in later sections.The Scheme version of the Pseudoknot benchmark was used as the basis for the Bigloo, Gambit, CMUCommon Lisp, and Miranda versions.The Miranda source was used to create the Clean, FAST, Erlang, �CMC, Gofer, Haskell, Sto�el andSML sources. The Haskell source was subsequently used to create the ID, RUFL and LML sources, andtogether with the SML source to create the Opal source. The SML version was subsequently used as thebasis for the translation to Caml, Epic and Facile.The Sisal version is the only functional code to have been derived from the C version of the program.Some typed languages (RUFL, Opal) require explicit type signatures to be provided for all top levelfunctions. For other languages (SML/NJ) it was found to be helpful to add type signatures to improvethe readability of the program.All but two of the sources were translated by hand: the Sto�el source was translated by the FASTcompiler from the Miranda source and the Epic source was produced by a translator from (a subset of)SML to Epic, which was written in Epic.

10 Hartel, Feeley et al.5.2 Splitting the sourceMost of the compilers that were used have di�culty compiling the Pseudoknot program. In particular theC compilers, and also most of the compilers that generate C, take a long time to compile the program.For example, GCC 2.5.8 requires more than 900 seconds (on machine 10, See table 7) to compile theprogram with the {O optimisation enabled. The bundled SUN CC compiler takes over 300 seconds (withthe same option setting and on the same machine).The reason it takes so long to compile Pseudoknot is because the program contains four large functions(which in C comprise 574, 552, 585 and 541 lines of code, respectively) which collectively build theconformation database of nucleotides. These functions contain mostly oating-point constants. If thebodies of these four functions are removed, leaving 1073 lines of C code, the C compilation time isreduced to approximately 13 seconds, for both SUN CC and GCC. Since the functional versions of theprogram have the same structure as the C version, the functional compilers are faced with the samedi�culty.In a number of languages that support separate compilation (e.g. Haskell, LML and C), the programhas been split into 6 separate modules. Each global data structure is placed in its own module which isthen imported by each initialisation module. The main program imports all of these modules. Splittingthe source reduced the compilation times by about 8% for GCC and 3% for SUN CC. As the mainproblem is the presence of large numbers of oating-point constants in the source, this is all we couldhope for.The NHC compiler is designed speci�cally to compile large programs in a modest amount of space.There are two versions of this compiler: NHC(HBC), which is the NHC compiler when compiled bythe Chalmers Haskell compiler HBC; and NHC(NHC), which is a bootstrapped version. The monolithicsource of the Pseudoknot program could be compiled using less than 8 MB heap space by NHC(NHC),whereas NHC(HBC) requires 30 MB heap space. HBC itself could not compile the monolithic source in80 MB heap space, even when a single-space garbage collector was used.A number of the functional compilers that compile to C (e.g. Opal and FAST) generated such largeor so many C procedures that some C compilers had trouble compiling the generated code. For example,the C code generated by Epic-C consists of many functions occupying 50000 lines of code. It is generatedin 3.5 minutes, but had to be split by hand in order for the gcc compiler to compile it successfully (taking2.5 hours; both times on machine 10 c.f. Table 7).As a result of the Pseudoknot experience, the Opal compiler has been modi�ed to cope better withextremely large functions such as those forming the nucleotide database.One way to dramatically reduce C compilation time at the expense of increased run time is to representeach vector of oating-point constants in the conformation database as a single large string. This stringis then converted into the appropriate numeric form at run time. For the Bigloo compiler, which uses thistechnique to successfully reduce compilation time, the run time penalty amounted to 30% of the totalexecution time. 5.3 PurityTo allow a fair comparison of the quality of code generation for pure functions, none of the functionalversions of Pseudoknot exploit side-e�ects where these are available in the source language.5.4 TypingMost of the languages are statically typed, in which case the compilers can use this type information tohelp generate better code. Some of the compilers for dynamically typed languages can also exploit statictype information when this is provided.For example, the Erlang version of Pseudoknot used guards to give some limited type information, asin the following function de�nition where X1 etc. are typed as oating-point numbers.> pt_sub({X1,Y1,Z1},{X2,Y2,Z2})> when float(X1),float(Y1),float(Z1),

Pseudoknot benchmark 11> float(X2),float(Y2),float(Z2) -> {X1-X2,Y1-Y2,Z1-Z2}.Similarly, for Common Lisp, type declarations were added to all oating-point arithmetic operations andto all local variables that hold oating-point numbers. This was unnecessary for the Scheme version,which already had calls to oating-point speci�c arithmetic functions.5.5 FunctionsFunctional abstraction and application are the central notions of functional programming. Each of thevarious systems implements these notions in a di�erent way. This, in turn, a�ects the translation andoptimisation of the Pseudoknot program.There is considerable variety in the treatment of function arguments. Firstly, some languages use curriedarguments; some use uncurried arguments; and some make it relatively cheap to simulate uncurriedarguments through the use of tuples when the normal argument passing mechanism is curried. Secondly,higher-order languages allow functions to be passed as arguments to other functions; whereas the �rst-order languages restrict this capability. Finally, even though most languages support pattern-matching,some do not allow `as-patterns', which make it possible to refer to a pattern as a whole, as well as to itsconstituent parts.There are several other issues that a�ect the cost of function calls, such as whether function bodies canbe expanded `in-line', and whether recursive calls can be transformed into tail recursion or loops. Theseissues will now be discussed in relation to the Pseudoknot program, with the e�ects that they have onthe performance where these are signi�cant.5.5.1 Curried argumentsThe SML/NJ source of the Pseudoknot program is written in a curried style. In SML/NJ version 1.07,this proved to have a relatively small e�ect on performance (less than 5% improvement compared withan uncurried style). For the older version of the SML/NJ compiler used for the Facile system, however(version 0.93), some of the standard compiler optimisations appear to be more e�ective on the uncurriedthan on the curried version of the program. In this case the di�erence was still less than 10%.5.5.2 Higher-order functionsThe Pseudoknot program occasionally passes functions as arguments to other functions. This is obviouslynot supported by the three �rst order languages Sisal, Erlang and Epic. The Sisal code was thereforederived from the C program, where this problem had already been solved. Erlang took the alternativeapproach of eliminating higher-order calls using an explicit application function p_apply. For examplereference is called by:> p_apply(reference,Arg1,Arg2,Arg3) -> reference(Arg1,Arg2,Arg3).where reference is a constant (it is a static function name). In Epic a similar mechanism was used.Higher-order functions are generally expensive to implement so many compilers will make attemptsto reduce how often such functions are used. In most cases higher-order functions simply pass the nameof a statically known function to some other function. These cases can be optimised by specialising thehigher order function. Many compilers will specialise automatically, in some cases this has been achievedmanually. For example for Yale Haskell the functions atom_pos and search were inlined to avoid a higherorder function call. 5.5.3 PatternsSome functions in the Pseudoknot program �rst destruct and then reconstruct a data item. In CeML,Haskell, LML and Clean as-patterns have been used to avoid this. As an example, consider the followingHaskell fragment:

12 Hartel, Feeley et al.> atom_pos atom v@(Var i t n) = absolute_pos v (atom n)Here the rebuilding of the constructor (Var i t n) is avoided by hanging on to the structure as a wholevia the variable v. The Epic compiler automatically recognises patterns that occur both on the left andthe right hand side of a de�nition; such patterns are never rebuilt.This optimisation has not been applied universally because as-patterns are not available in some lan-guages (e.g. Miranda). In FAST, a similar e�ect has been achieved using an auxiliary function:> atom_pos atom v = absolute_pos v (atom (get_nuc v))> get_nuc (Var i t n) = nThe bene�ts of avoiding rebuilding a data structure do not always outweigh the disadvantage of the extrafunction call, so this change was not applied to the other languages.Neither of the two intermediate languages support pattern matching. To access components of datastructures �CMC uses access functions; Sto�el uses case expressions.5.5.4 InliningFunctional programs normally contain many small functions, and the Pseudoknot program is no exception.Each function call carries some overhead, so it may be advantageous to inline functions, by expandingthe function body at the places where the function is used. Small functions and functions that are onlycalled from one site are normally good candidates for inlining. Many compilers will automatically inlinefunctions on the basis of such heuristics, and some compilers (e.g. Opal, Chalmers Haskell, GlasgowHaskell) are even capable of inlining functions across module boundaries.For Clean, FAST, Trafola and Yale Haskell many small functions (in particular the oating-pointoperator de�nitions) and constants were inlined explicitly.5.5.5 Tail recursion and loopsTail recursive functions can be compiled into loops, but some languages o�er loop constructs to allowthe programmer to express repetitive behaviour directly. In ID and Sisal the recursive function get_varis implemented using a loop construct. In Epic, this function coincides with a built-in polymorphicassociation table lookup, which was used instead. In ID the backtracking search function search has alsobeen changed to use a loop instead of recursion.5.6 Data structuresThe original functional versions of the Pseudoknot program use lists and algebraic data types as datastructures. The preferred implementation of the data structures is language and compiler dependent. Wewill describe experiments where lists are replaced by arrays, and where algebraic data types are replacedby records, tuples or lists.For the lazy languages strictness annotations on selected components of data structures and/or functionarguments also give signi�cant performance bene�ts.5.6.1 Avoiding listsThe benchmark program computes 50 solutions to the Pseudoknot constraint satisfaction problem. Eachsolution consists of 23 variable bindings, that is one for each of the 23 nucleotides involved. This createsa total of 50 � 23 = 1150 records of atoms for which the distance from the origin to the furthest atommust be computed. These 1150 records each contain between 30 and 34 atoms, depending on the typeof the nucleotide (33 for type A, 31 for type C, 34 for type G and 30 for type U). The sizes of theserecords of atoms are determined statically so they are ideal candidates for being replaced by arrays. Theadvantage of using an array instead of a list of atoms is the amortised cost of allocating/reclaiming allatoms at once. A list of atoms is traversed linearly from the beginning to the end, so the unit access

Pseudoknot benchmark 13cost of the array does not give an extra advantage in this case. This change from lists to arrays has beenimplemented in Caml, ID, and Scheme.In the Sisal code, the problem described above does not arise: instead of building the 1150 records, adouble loop traverses the 50 � 23 records. A further loop computes the maximumdistance to the origin.Consequently, no intermediate lists or arrays are created.The local function generate within p_03' was replaced by an ID array comprehension; in Sisal a loopconstruct was used. 5.6.2 Avoiding algebraic data typesSome of the algebraic data type constructors in the Pseudoknot program are rather large, with up to 34components. This leads to distinctly unreadable code when pattern matching on arguments of such typesand it may also cause ine�ciencies.For Sisal all algebraic data types were replaced by arrays, since Sisal compilers are speci�cally optimisedtowards the e�cient handling of arrays.For SML/NJ the 12 component coordinate transformation matrix TFO was changed to an array repre-sentation. This was found not to make a signi�cant di�erence.For the Caml Gallium compiler, some of the algebraic data types have been converted into recordsto guide the data representation heuristics; this transformation makes no di�erence for the other Camlcompilers, Caml light and Camloo.Trafola, Epic and RUFL implement algebraic data types as linked lists of cells, which implies a signif-icant performance penalty for the large constructors used by Pseudoknot.5.6.3 Strictness annotationsThe Pseudoknot program does not bene�t in any way from lazy evaluation because all computationscontained in the program are mandatory. It is thus feasible to annotate the data structures (i.e. lists,algebraic data types and tuples) in the program as strict. Those implementations which allowed strictnessannotations only had to annotate the components of algebraic data types as strict to remove the bulkof the lazy evaluations. The Gofer, Miranda, NHC, RUFL and Sto�el compilers do not permit strictnessannotations, but a variety of strictness annotations were tried with the other compilers.For Yale, Chalmers Haskell and the two LML compilers, all algebraic data types were annotated asstrict; for �CMC the components of Pt and TFO were annotated as strict; for Clean, the componentsof Pt, TFO and the integer component of Var were annotated as strict; for FAST all components ofthese three data types were annotated as strict. For Yale Haskell the �rst argument of get_var and thearguments of make_relative_nuc were also forced to be strict. This is permissible since the only caseswhere these arguments are not used give rise to errors, and are thus equivalent to demanding the valueof the arguments.Depending on the compiler, strictness annotations caused the Pseudoknot execution times to be reducedby 50%{75%. 5.6.4 UnboxingThe Pseudoknot program performs about 7 million oating-point operations. Unless special precautionsare taken, the resulting oating-point numbers will be stored as individual objects in the heap (a `boxed'representation). Representing these values as unboxed objects that can be held directly in registers, on thestack, or even as literal components of boxed structures such as lists, has a major impact on performance:not only does it reduce the space requirements of the program, but the execution time is also reducedsince less garbage collection is required if less space is allocated.There are a number of approaches that can be used to avoid maintaining boxed objects: Caml Gallium,SML/NJ, Bigloo and Gambit provide an analysis that will automatically unbox certain objects; CMUcommon Lisp and Glasgow Haskell provide facilities to explicitly indicate where unboxed objects can

14 Hartel, Feeley et al.safely be used. Our experience with each of these techniques will now be described in some detail, as itprovides useful insight into the properties of this relatively new technology.The Caml Gallium compiler employs a representation analysis (Leroy, 1992), which automaticallyexploits an unboxed representation for double-precision oating-point numbers when these are usedmonomorphically. Since the Pseudoknot benchmark does not use polymorphism, all oating-point num-bers are unboxed. This is the main reason why the Gallium compiler generates faster code than most ofthe other compilers.The latest version of the SML/NJ compiler (version 1.07) also supports automatic unboxing through arepresentation analysis (Shao, 1994). However, unlike Caml Gallium, it does not directly exploit specialload and store instructions to transfer oating-point numbers to and from the FPU. Changing this shouldimprove the overall execution time for this compiler.In an attempt to �nd better performance, a large number of variations were tried with the SML/NJcompiler. The execution time was surprisingly stable under these changes, and in fact no change madeany signi�cant di�erence, either good or bad, to the execution speed. In the end, the original transcriptionof the Scheme program, with a type signature for the main function was used for the measurements. Asimilar result was found for the MLWorks compiler, where a few optimisations were tried, and found togive only a marginal improvement (of 2%). The MLWorks timings apply to essentially the same sourceas the SML/NJ timings. MLWorks generates slightly faster code than SML/NJ for this program.The SML/NJ implementation of the Pseudoknot program actually performs better on the DECstation5000 than on the SPARC. On the DECstation 5000 it runs at 55% of the speed of C, whereas on theSPARC it runs at only 36% of the speed of C. We suspect that this is mainly due to memory e�ects.Previous studies (Diwan et al., 1994) have shown that the intensive heap allocation which is characteristicof the SML/NJ implementation interacts badly with memory subsystems that use a write-no-allocatecache policy, as is the case of the SPARC; in contrast, the use of a write-allocate policy coupled withwhat amounts to sub-block placement on the DECstation (the cache block size is four bytes) supportssuch intensive heap allocation extremely well.The Bigloo compiler uses a two-step representation analysis. The �rst step is a control ow analysisthat identi�es monomorphic parts of the program. The second step improves the representation of thoseobjects that are only used in these monomorphic parts. Unfortunately, it is not possible to avoid boxingentirely because some data structures are used heterogeneously in the Scheme source (e.g. oating-pointnumbers, booleans, and vectors are contained in the same vector). Even so, of the 7 million oating-pointvalues that are created by the Pseudoknot program, only 700 thousand become boxed.The Gambit compiler uses two simple `local' methods for reducing the number of oating-point numbersthat are boxed. Firstly, intermediate results for multiple argument arithmetic operators, such as whenmore than two numbers are added, are never boxed. This means that only 5.3 million of the 7 millionoating-point results need to be considered for boxing. Secondly, Gambit uses a lazy boxing strategy,whereby oating-point results bound to local variables are kept in an unboxed form and only boxed whenthey are stored in a data structure, passed as a function argument, or when they are live at a branch (i.e.at a function call or return). Of the 5.3 million oating-point results that might need to be boxed, only1.4 million actually become boxed. This optimisation decreases the run time by roughly 30%.In the Epic implementation specialised functions were de�ned for the two most common oating pointexpressions (two- and three-dimensional vector inproduct), leading to a 41% reduction of function callsand (un)boxing. Although the new functions were trivially written by hand, their utilization was addedautomatically by the addition of two rewrite rules to the { otherwise unaltered { SML-to-Epic translator.This is possible because Epic, unlike many functional languages, does not distinguish constructor symbolsfrom de�ned function symbols. Consequently, laws (in the sense of Miranda: (Thompson, 1986); in Epicall functions are de�ned by laws) can be introduced, which map speci�c patterns such as x1 � x2 + x3 �x4, to semantically equivalent, but more e�cient patterns which use a newly introduced function (i.e.,inprod2 (x1; x2; x3; x4)).In the Common Lisp version of the program, the Pt and TFO data types were implemented as vectorsspecialised to hold untagged single-float objects, rather than as general vectors of tagged objects. Thisis equivalent to unboxing those oating-point numbers.

Pseudoknot benchmark 15Cost Centre %time %alloc Cost Centre %time %alloctfo_combine 18.0 4.7 get_var 11.1 0.0tfo_apply 15.9 0.0 tfo_combine 10.5 26.5p_o3' 8.3 25.5 p_o3' 8.5 13.0tfo_align 6.2 1.9 pseudoknot_constraint 7.8 9.9dgf_base 5.9 21.6 search 7.8 2.6get_var 5.9 0.0 tfo_align 5.2 5.6absolute_pos 4.7 24.1 pt_phi 5.2 0.0... tfo_apply 5.2 0.0...(a) Original pro�le (by time) (c) Maximum map (by time)Cost Centre %time %alloc Cost Centre %time %alloctfo_apply 11.1 0.0 tfo_combine 9.7 26.5tfo_combine 10.5 23.2 p_o3' 7.7 13.0search 9.9 2.3 pseudoknot_constraint 4.6 9.9pseudoknot_constraint 8.2 8.7 mk_var 2.0 6.6get_var 7.0 0.0 tfo_align 10.2 5.6var_most_distant 6.4 8.7 tfo_inv_ortho 2.6 5.6tfo_align 5.8 4.9(b) Strict types (by time) (d) Maximum map (by allocation)Table 5. Time and allocation pro�le of Pseudoknot from the Glasgow Haskell system by function, as apercentage of total time/heap allocations.The Glasgow Haskell compiler has provisions for explicitly manipulating unboxed objects, using thetype system to di�erentiate boxed and unboxed values (Peyton Jones and Launchbury, 1991). The processof engineering the Pseudoknot code to reduce the number of boxed oating-point numbers is a goodillustration of how the Glasgow pro�ling tools can be used. We therefore present this aspect of thesoftware engineering process in detail below.The version of Pseudoknot which was used for Chalmers Haskell ran in 10.2 seconds when compiledwith the Glasgow Haskell Compiler for machine 16 c.f. Table 7. The raw time pro�ling information fromthis program (See Table 5-a) shows that a few functions account for a signi�cant percentage of the timeused, and over 80% of the total space usage. Three of the top four functions by time (tfo_combine,tfo_apply and tfo_align) manipulate TFOs and Pts, and the remainder are heavy users of the Varstructure. Since these functions can be safely made strict, they are prime candidates to be unboxed, aswas also done with the Common Lisp compiler.By unboxing these data structures using a simple editor script and changing the pattern match in thede�nition of var_most_distant_atom so that it is strict rather than lazy, an improvement of roughly afactor of 3 is obtained. This is similar to the improvements which are possible by simply annotating therelevant data structures to make them strict as with the Chalmers Haskell compiler. However, furtherunboxing optimisations are possible if the three uses of the function composition maximum . map arereplaced by a new, specialised function maximum_map as shown below. This function maps a functionwhose result is a oating-point number over a list of arguments, and selects the maximum result. It is notpossible to map a function directly over a list of unboxed values using the normal Prelude map function,because unboxed values cannot be passed to polymorphic functions.> maximum_map :: (a->Float#) -> [a]->Float#> maximum_map f (h:t) => max f t (f h)> where max f (x:xs) m = max f xs (let fx = f x in

16 Hartel, Feeley et al.Version seconds Mbytes (Residency)Original 10.0 + 0.2 36.8 (55K)Strict Types 3.5 + 0.3 10.1 (53K)Maximum Map 1.8 + 0.1 7.6 (46K)Table 6. Time and Heap Usage of three Pseudoknot variants compiled for machine 16 by the GlasgowHaskell compiler.> if fx `gtFloat#` m then fx else m)> max f [] m = m> max :: (a->Float#) -> [a] -> Float# -> Float#This optimisation is suggested indirectly by the time pro�le (Table 5-b) which shows that the top functionby time is tfo_apply. This is called through absolute_pos within most_distant_atom. Merging thethree nested function calls that collectively produce the maximum value of a function applied to a listof arguments allows the compiler to determine that the current maximum value can always be held in aregister (an extreme form of deforestation (Wadler, 1990)). When this transformation is applied to theHaskell source, the total execution time is reduced to 1.8 seconds user time (still on machine 16). Anautomatic generalised version of this hand optimisation, the foldr/build transformation (Gill and PeytonJones, 1994), has now been incorporated into the Glasgow Haskell compiler.The �nal time pro�le (Table 5-c) shows get_var and p_o3' jointly using 20% of the Haskell executiontime with tfo_combine, tfo_align and tfo_apply accounting for a further 20%. (The minor di�erencesin percentage time for tfo_combine in Tables 5-c and 5-d are probably explained by sampling error oversuch a short run). While the �rst two functions could be optimised to use a non-list data structure, it isnot easy to optimise the latter functions any further. The total execution time is now close to that forC, with a large fraction of the total remaining time being spent in the Unix mathematical library. Sincethe allocation pro�le (Table 5-d) suggests that there are no space gains which can be obtained easily, itwas decided not to attempt further optimisations. The overall time and space results for Glasgow Haskellare summarised in Table 6. In each case, the heap usage reported is the total number of bytes that wereallocated, with the maximum live data residency after a major garbage collection shown in parentheses.The foldr/build style deforestation of maximum . map has also been applied to the ID, SML and Schemesources. For SML/NJ this transformation, and other, similar deforestation transformations made nomeasurable improvement (though several led to minor slowdowns).5.6.5 Single threadingIn a purely functional program, a data structure cannot normally be modi�ed once it has been created.However, if the compiler can detect that a data structure is modi�ed by only one operation and thatthis operation executes after all other operations on the data structure (or can be so delayed), then thecompiler may generate code to modify the data structure in place. The Sisal compiler includes specialoptimisations (preallocation (Ranelletti, 1987) and copy elimination (Gopinath and Hennesy, 1989)) thatmake safe destructive updates of data structures possible. In order to exploit this, the Sisal version ofthe Pseudoknot program was written so as to expose the single threaded use of some important datastructures. An example is given below, where the array stack is single threaded, so that the new versionsstack1 and stack2 occupy the same storage as the original stack:

Pseudoknot benchmark 17C (Pseudo code) Sisal revised> letadd new element to stack > stack1 := array_addh(stack,element)increment stack countercall pseudoknot domains > stack2 := pseudoknot_domains(stack1, ...)> indecrement stack counter > array_remh(stack2)> end letIn principle, this code is identical to the C code. The Sisal compiler realises that there is only a singleconsumer of each stack. It tags the data structure as mutable and generates code to perform all updates inplace. Consequently, the Sisal code maintains a single stack structure similar to the C code, eliminatingexcessive memory usage and copy operations. As in the C code, when a solution is found, a copy ofthe stack is made to preserve it. The Sisal code runs in approximately 85KB of memory and achievesexecution speeds comparable to the C code.5.7 Floating-Point PrecisionWhen comparing our performance results, there are several reasons why oating-point precision mustbe taken into account. Firstly, it is easier to generate fast code if single-precision oating-point numbersare used, since these can be unboxed more easily. Secondly, both memory consumption and garbagecollection time are reduced, because single-precision oating-point numbers can be represented morecompactly. Thirdly, single-precision oating-point arithmetic operations are often signi�cantly faster thanthe corresponding double-precision operations.Traditionally, functional languages and their implementations have tended to concentrate on symbolicapplications. Floating-point performance has therefore been largely ignored. One notable exception isSisal, which is intended more as a special-purpose language for scienti�c computations than as a general-purpose language.Since single-precision gives su�cient accuracy for the Pseudoknot program on our benchmark machine,and since single-precision operations are faster than double-precision operations on this architecture,compilers that can exploit single-precision arithmetic are therefore at some advantage. The advantageis limited in practice by factors such as the dynamic instruction mix of the code that is executed: forexample, for the GNU C version of Pseudoknot overall performance is improved by only 12% when single-precision oating-point is used; for the Trafola interpreter, however, performance was improved by 16%;and for the Opal compiler, performance was improved by a factor of 2.6 ResultsComparative time measurements are best done using a single platform. However, many of the compilersare experimental and in constant ux. They are therefore di�cult to install at another site in a consistentand working state. Therefore we have decided to collect the compiled binaries of the Pseudoknot program,so as to be able to execute all binaries on the same platform. The measured execution times of theprograms are thus directly comparable and accurate.The compile times are not directly comparable. To make a reasonable comparison possible, a relativemeasure has been de�ned. This is somewhat inaccurate, but we think that this is quite acceptable, sincefor compile times it is more the order of magnitude that counts than precise values. The relative unit`pseudoknot' relates compilation time to the execution time of the C version of the Pseudoknot program,where both are measured on the same platform. The more obvious alternative of comparing to the Ccompilation times of Pseudoknot was rejected because not all architectures that are at stake here use thesame C compiler (See Table 7). The Pseudoknot is computed as:relative speed = 1000�C execution timecompilation time

18 Hartel, Feeley et al.no. SUN machine mem. cache op. system processor C compiler1 4/50 32 M 64 K SunOS 4.1.3. standard gcc 2.5.82 4/75 64 M 64 K SunOS 4.1.3. standard gcc 2.5.83 4/330 96 M 128 K SunOS 4.1.1. standard gcc 2.5.44 4/630MP 64 M 64 K SunOS 4.1.2 SUNW gcc 2.45 4/670 64 M 64 K SunOS 4.1.3. standard gcc 2.5.76 4/670MP 64 M 64 K SunOS 4.1.3 TMS390Z55 gcc 2.5.77 4/670 64 M 64 K SunOS 4.1.3. TI Supersparc gcc 2.5.78 4/670 64 M 64 K SunOS 4.1.2. Cypress CY605 gcc 2.4.59 4/670MP 64 M 1 M SunOS 4.1.3. SUNW, system 600 gcc 2.5.810 4/690 64 M 64 K SunOS 4.1.2. standard gcc 2.5.811 4/690MP 64 M 64 K SunOS 4.1.3 ROSS 40MHz Super cc12 4/690 64 M 1 M SunOS 4.1.3. standard gcc 2.5.813 SPARC 10/30 32 M 1 M SunOS 4.1.3. TMS390Z55 gcc 2.5.814 SPARC 10/41 64 M 1 M SunOS 4.1.3. standard gcc 2.5.715 SPARC 10/41 96 M 1 M SunOS 4.1.3. standard gcc 2.5.816 SPARC 10/41 96 M 20K/32K+1M SunOS 4.1.3. TMS390Z50 gcc 2.5.717 SPARC 10/41 128 M 20K/32K+1M Solaris 2.3 standard gcc 2.5.818 SPARCStat. 5 64 M 16K/8K SunOS 4.1.3 standard gcc 2.6.019 SPARCStat. 20 128 M 16K/20K+1M SunOS 4.1.3 Supersparc gcc 2.5.8Table 7. Details of the SUN machines and C compilers used to compile the Pseudoknot program. Thetype of the machine is followed by the size of the memory (in MB), the size of the cache (as a total oras instruction/data + secondary cache size), the operating system name and version, and the type ofprocessor used. The last column gives the C compiler/version that has been used on the machine.To `compile at 1000 knots' thus means to take the same amount of time to compile as it takes the Cversion of Pseudoknot to execute.With so many compilers under scrutiny, it is not surprising that a large number of machines are involvedin the di�erent compilations. The most important characteristics of the SUN machines may be found inTable 7. The table is ordered by the type of the machine.To measure short times with a reasonable degree of accuracy, the times reported are an average ofeither 10 or 100 repeated runs. The resulting system and user times divided by 10 (100) are reported inthe Tables 8 and 9. 6.1 Compile timeTable 8 shows the results of compiling the programs. The �rst column of the table shows the name ofthe compiler (c.f. Table 2). The second column `route' indicates whether the compiler produces nativecode (`N'), code for a special interpreter (`I'), or compiles to native code through a portable C back-end(`C'), Lisp (`L'), or Scheme (`S'), or through a combination of these back-ends. The third column gives areference to the particular machine used for compilation (c.f. Table 7). The next three columns give theuser+system time and the space required to compile the Pseudoknot program. Unless noted otherwise,the space is the largest amount of space required by the compiler, as obtained from ps -v under theheading SIZE. The column marked `C-runtimes' gives the user+system time required to execute the Cversion of the Pseudoknot program on the same machine as the one used for compilation. The last twocolumns `pseudoknots' show the relative performance of the compiler with respect to the C-runtimes.It is possible to distinguish broad groups within the compilers. The faster compilers are, unsurprisingly,those that compile to an intermediate code for a byte-code or similar interpreter, and which thereforeperform few, if any, optimisations. NHC is an outlier, perhaps because unlike the other compilers in thisgroup, it is a bootstrapping compiler.With the exception of Bigloo and Camloo, which are faster than many native compilers, implementa-

Pseudoknot benchmark 19compiler route mach. times space C-runtimes pseudoknotsuser + sys Mb A/Ha user + sys user + sysCompiled via another high level language: C, L(isp) or S(cheme)Bigloo C 5 56.5 + 6.4 7.5 A 3.0 + 0.1 53 + 16Camloo S+C 5 98 + 17.6 4.6 A 3.0 + 0.1 31 + 6Sisal C 9 112 + 13.3 2.4 A 1.4 + 0.1 12 + 8Gambit C 15 167 + 4.2 8.7 A 1.7 + 0.1 10 + 24Yale L 11 610 + 186 14 H 4.7 + 0.1 8 + 1�CMC C 4 332 + 11 13 A 2.7 + 0.3 8 + 27FAST C 10 450 + 40 100 A 2.7 + 0.1 6 + 2Opal C 2 1301 + 19 15 A 3.0 + 0.1 2 + 5Glasgow C 16 564 + 30 47 A 1.3 + 0.1 2 + 3Erlang BEAM C 1 > 1 Hour 8 A 3.3 + 0.1CeML C 5 > 1 Hour 35 A 3.0 + 0.1ID C 15 > 1 Hour 64 A 2.8 + 0.1Epic-C C 10 > 2 Hours 12.4 A 2.7 + 0.1Sto�el C 17 > 2 Hours 25 A 1.3 + 0.1Compiled into native codeClean N 8 30 + 10 9 A 2.7 + 0.1 90 + 10RUFL N 10 41.6 + 8 3 A 2.7 + 0.1 65 + 12CMU CL N 11 118 + 25 14 H 4.7 + 0.1 40 + 4Caml Gallium N 7 45.9 + 2.0 3.8 A 1.4 + 0.1 31 + 50SML/NJ N 19 40.3 + 2.3 35 A 0.9 + 0.1 22 + 43LML Chalmers N 18 78.7 + 24.0 14.2 A 1.3 + 0.1 17 + 4LML(OP{TIM) N 18 85.5 + 13.5 13.6 A 1.3 + 0.1 15 + 7Facile N 14 123 + 2.5 11.3 A 1.7 + 0.1 14 + 40MLWorks N 3 394 + 19 14.4 R 4.9 + 0.1 12 + 5Chalmers N 13 181 + 45 50 A 1.3 + 0.1 7 + 2InterpretedGofer I 10 6.7 + 0.7 3 A 2.7 + 0.1 403 + 143RUFLI I 10 9.1 + 1.7 1 A 2.7 + 0.1 297 + 59Miranda I 10 12.5 + 0.8 13 A 2.7 + 0.1 216 + 125Caml Light I 6 29.7 + 1.1 2.3 A 2.7 + 0.1 91 + 91Trafola I 10 31.4 + 11.5 6 A 2.7 + 0.1 86 + 9Epic I 10 114 + 1.6 8.4 A 2.7 + 0.1 24 + 62NHC(HBC) I 13 122 + 7.3 30 A 1.6 + 0.1 13 + 14NHC(NHC) I 13 560 + 5.0 8.7 A 1.6 + 0.1 3 + 20C compilersSUN CC {O N 10 325 + 26 8 A 2.7 + 0.1 8 + 4GNU GCC {O N 10 910 + 97 21 A 2.7 + 0.1 3 + 1a A = Mbytes allocated space; H = Mbytes heap size; R = Mbytes maximum resident set sizeTable 8. Results giving the time (user+system time in seconds) and space (in Mbytes) required forcompilation of the Pseudoknot program. The `pseudoknots' give the relative speed with respect to theexecution (not compilation) of the C version.

20 Hartel, Feeley et al.tions that generate C or Lisp are the slowest compilers. Not only does it take extra time to produce andparse the C, but C compilers have particular di�culty compiling code that contains large numbers ofoating-point constants. The worst case example is the Sto�el compiler. It takes 216 seconds to generatethe C code and more than 2 hours to compile the C (on machine 17 c.f. Table 7). Most of this time isspent compiling the function that initialises the data structures containing oating-point numbers. Asthe bottom two rows of the table show, C compilers also have particular di�culty compiling the handwritten C version of the Pseudoknot program due to this phenomenon.The faster compilers also generally allocate less space. This may be because the slower compilersgenerally apply more sophisticated (and therefore space-intensive) optimisations.6.2 Execution timeAll programs have been executed a number of times (on machine 10 c.f. Table 7) with di�erent heap sizesto optimise for speed. The results reported in Table 9 show the best execution time, inclusive of garbagecollection time. The �rst column of the table shows the name of the compiler/interpreter (c.f. Table 2).The second column `route' duplicates the `route' column from Table 2. The third column states whetheroating-point numbers are single- or double-precision. Columns 4 and 5 give the user and system timerequired to execute the Pseudoknot program. The last column shows the space required, which unlessnoted otherwise, represents the largest amount of space required by the program, as obtained from ps -vunder the heading SIZE.The product moment correlation coe�cient calculated from all compilation speeds (as reported inpseudoknots in Table 8) and execution times (as reported in seconds in Table 9) is 0.70. This shows thatthere is a strong correlation between compilation time and execution speed: the longer it takes to compile,the faster the execution will be. Only the Clean implementation o�ers both fast compilation and fastexecution. The set of Caml compilers o�ers a particularly interesting spectrum: Caml Gallium is a slowcompiler which produces fast code; Caml Light compiles quickly, but is relatively slow; and Camloo isintermediate between the two.The Epic-C code generator was designed to allow selected, individual functions to be compiled, thusproviding an almost continuous spectrum of possibilities from fully interpreted to fully compiled code.The present facilities for compiling code provide little improvement over interpreted code at the cost ofhuge compilation times. The reason is that the C code faithfully mimics each interpreter step withoutoptimizations, such as the use of local variables or loops. This results in C functions which behave identicalto their interpreted counterparts. As much as 90% of the speedup of Epic-C with respect to epic wasachieved by compiling 6 of the 170 functions occurring in the Epic version of Pseudoknot.For the compiled systems there is a very rough relationship between execution speed and heap usage:faster implementations use less heap. There does not, however, seem to be any correlation between non-strictness and heap usage. 6.2.1 SummaryOverall, the (eager) Sisal compiler achieved the best performance. The next best implementation is the(lazy) Glasgow Haskell compiler for a heavily optimised version of the program. The next group ofcompilers are for Lisp, Scheme and SML, which generally yield very similar performance. An outlier isthe Bigloo optimising Scheme compiler, whose performance is more comparable to most of the non-strictimplementations (Chalmers, FAST, ID, Sto�el, Yale, and Glasgow Haskell on less optimised code), whichform the next obvious group.Unsurprisingly, perhaps, the interpretive systems yield the worst performance. The interpreters forCaml Light, Epic, NHC, and Trafola (which compile to an intermediate byte-code, which is then inter-preted) are, however, signi�cantly faster than their conventional brethren, Gofer, RUFLI and Miranda(which interpret a representation that is closer to the program than a byte-code). Interpreters for strictlanguages (Caml Light, Epic) do seem on the whole to be faster than interpreters for non-strict languages(NHC, Gofer, RUFLI, Miranda).

Pseudoknot benchmark 21compiler route oat time(s) spaceuser + sys Mb A/HaCompiled via another high level language (C or Lisp)Glasgow C single 3.9 + 0.2 1 AOpal C single 4.7 + 0.5 0.8 ACeML C single 8.7 + 0.6 2 AFAST C single 11.0 + 0.5 1 AYale L single 11.9 + 7.2 14 HEpic-C C single 43.9 + 2.9 23 ASisal C double 3.7 + 0.2 0.7 AGambit C double 6.2 + 0.7 4.4 ACamloo S+C double 11.2 + 1.5 4.9 AID C double 11.6 + 2.9 14 ABigloo C double 11.7 + 2.4 4.9 A�CMC C double 14.7 + 1.1 22 ASto�el C double 26.6 + 2.1 5.6 AErlang BEAM C double 31.8 + 4.5 11 ACompiled into native codeCMU CL N single 5.8 + 3.3 14 HLML(OP{TIM) N single 7.7 + 0.3 1.2 AChalmers N single 12.1 + 1.0 3 ALML Chalmers N single 12.5 + 0.4 2.1 ACaml Gallium N double 5.1 + 0.5 0.3 AClean N double 5.1 + 0.8 2.5 AMLWorks N double 6.3 + 0.1 0.3 ASML/NJ N double 6.9 + 1.2 2.6 AFacile N double 15.5 + 4.3 7.9 ARUFL N double 87 + 2.8 3 AInterpretedEpic I single 56 + 2.8 21 ATrafola I single 124 + 6.3 10.7 ANHC I single 176 + 5.7 2.6 AGofer I single 370 + 12.0 3 ACaml Light I double 52 + 7.4 0.3 ARUFLI I double 529 + 13.0 4 AMiranda I double 1156 + 34.0 13 AC compilersGNU GCC C single 2.4 + 0.1 0.3 AGNU GCC C double 2.7 + 0.1 0.3 Aa A = Mbytes allocated space; H = Mbytes heap sizeTable 9. The execution times (user+system time in seconds) and space (MB) of Pseudoknot asmeasured on platform 10.

22 Hartel, Feeley et al.6.3 Analysis of Performance ResultsApart from the issues already discussed, such as oating-point precision, many language and implemen-tation design issues clearly a�ect performance. This section attempts to isolate the most important ofthose issues. 6.3.1 Higher-OrdernessIt is commonly believed that support for higher-order functions imposes some performance penalty, andthe fact that the fastest language system (Sisal) is �rst-order may therefore be signi�cant. Unfortunately,the other �rst-order implementations (Erlang and Epic) yield relatively poor performance. Sisal is alsothe only monomorphic language studied, and polymorphism is known to exact some performance penalty,so results here must be inconclusive. 6.3.2 Non-StrictnessAs the Glasgow Haskell compiler shows, if the compiler can exploit strictness at the right points, thepresence of lazy evaluation need not be a hindrance to high performance. This implementation is actuallyfaster than most of the strict implementations.Generally, however, non-strict compilers do not achieve this level of performance, typically o�eringonly around 75% of the performance of eager implementations such as SML/NJ or Gambit, or 50% of theperformance of CMU Common Lisp, and only after the exploitation of strictness through unboxing andsimilar optimisations. Without these features, on the basis of the Glasgow results, performance can beestimated as just under a quarter of the typical performance of a compiler for an eager language. For thesecompilers and this application, support for laziness therefore costs directly a factor of 3, with a further50% probably attributable to the use of di�erent implementation techniques for prede�ned functions etc.,which are needed to allow for the possibility of laziness.The di�erence between the Yale Haskell and Common Lisp results is due partly to use of tagged versusuntagged arrays, and partly to the overhead of lazy lists in Haskell. These were the only signi�cantdi�erences between the hand-written Common Lisp code and the Lisp code produced by the Yale Haskellcompiler. The Haskell code generator could be extended to use untagged arrays for homogeneous oating-point tuple types as well, but this has not yet been implemented.The LML(OP-TIM) compiler generates faster code than the corresponding Chalmers LML compiler be-cause if a case alternative unpacks strict arguments, LML(OP-TIM) takes into account that the unpackedvalues are evaluated (in Weak Head Normal Form).6.3.3 Concurrency/Parallelism SupportSeveral of the compilers benchmarked here include support for concurrency or parallelism. In some cases(e.g. Facile, Glasgow Haskell), this support does not a�ect the normal sequential execution time. Inother cases (e.g. ID, Gambit and Erlang BEAM) it is not possible to entirely eliminate the overhead ofparallelism.The low performance recorded by the Erlang BEAM compiler reects the fact that Erlang is a pro-gramming language primarily intended for designing robust, concurrent real-time systems. Firstly, a lowpriority has been placed on oating-point performance. Secondly, to support concurrent execution re-quires the implementation of a scheduling mechanism and a notion of time. Together, these add someappreciable overhead to the Erlang BEAM execution.6.3.4 Native Code GenerationIt is interesting that several of the compilers that generate fast code compile through C rather than beingnative compilers. Clearly, it is possible to compile e�cient code without generating assembler directly.Space usage for these compilers is also generally low: the compilers have clearly optimised both for timeand space.

Pseudoknot benchmark 236.3.5 Language DesignOf the languages studied, Sisal is the only one that was speci�cally designed for `numeric' rather than`symbolic' computations, and clearly the design works well for this application. Floating-point perfor-mance has traditionally taken second-place in functional language implementations, so we may hope thatthese results spur other compiler writers to attempt to duplicate the Sisal results.7 ConclusionsOver 25 compilers for both lazy and strict functional languages have been benchmarked using a singleoating-point intensive program. The results given here compare compilation time and execution timefor each of the compilers against the same program implemented in C. Compilation time is measured interms of `pseudoknots', which are de�ned in terms of the execution time of the benchmark program. Theexecution times of all compiled programs are reported in seconds as measured on a single machine.Benchmarking a single program can lead to results which cannot easily be generalised. Special care hasbeen taken to make the comparison as fair as possible: the Pseudoknot program is not an essentially lazyprogram; the di�erent implementations use the same algorithm; all of the binaries were timed on one andthe same machine.The e�ort expended by individual teams translating the original Scheme program, and subsequentlyoptimising their performance varied considerably. This is the result of a deliberate choice on the part ofthe teams carrying out the experiments. Firstly, this variability gives some compilers an advantage (butnot an unfair advantage). Secondly, the aim of the Pseudoknot benchmark is speci�cally to get the bestpossible performance from each of the implementations (using the guidelines discussed in Section 5). Thereis a wide variability in the kind and level of optimisation o�ered by each compiler. The programminge�orts required to make these optimisations e�ective will thus be as varied as the o�erings of the compilersthemselves. This should be kept in mind when interpreting our results.Turning to the benchmark itself, we observe that the C version of the program spends 25% of its timein the C library trigonometric and square root routines. This represents the core of the application: theremaining work is `overhead' that should be minimised by a good implementation. While this patternmay not generally hold for scienti�c applications, the program is still useful as a benchmark, since the`real' work it does (the trigonometric and oating-point calculations) is so clearly identi�able. Not all thebenchmark implementations are capable of realising this, but some implementations do extremely well.Because the benchmark is so oating-point intensive, implementations that used an unboxed oating-point representation had a signi�cant advantage over those that did not. Implementations that werecapable of exploiting single-precision (32-bit) oating-point have some additional advantage, though thisis signi�cant only for the faster implementations, where a greater proportion of execution time is spenton oating-point operations.To achieve good performance from lazy implementations, it proved necessary to apply strictness an-notations to certain commonly-used data structures. When appropriate strictness annotations are used,there is no clear distinction between the runtime performance of eager and lazy implementations, and insome cases the performance approaches that of C.Inserting these strictness annotations correctly can be a �ne art, as demonstrated by the e�orts ofthe Glasgow team. While the behaviour of the Pseudoknot program is not sensitive to incorrectly placedstrictness annotations, in general lazy functional programs are not so well behaved in this respect, andconsiderable e�ort might be expended introducing annotations without changing the termination proper-ties of a program. To make lazy functional languages more useful than they are now, clearly more e�ortshould go into providing users with simple to use and e�ective means of analysing and improving theperformance of their programs.The benchmark proved to stress compilers more than expected: the compilation times for most compiledimplementations (including the two C compilers) was surprisingly high. Generating C as intermediatecode, however, does not necessarily make the compiler slow, as demonstrated by the performance of theBigloo and Camloo compilers. However, generating fast C does often lead to high compilation times.The Pseudoknot benchmark represents a collaborative e�ort of an unprecedented scale in the functional

24 Hartel, Feeley et al.programming community. This has had a positive inuence on the work that is taking place in thatcommunity. Firstly, researchers learn of the techniques applied by their co-authors in a more direct waythan via the literature. Secondly, researchers are more strongly motivated to apply new techniques becauseof the competitive element. Thirdly, using a common benchmark always points at weaknesses in systems,that were either known and put aside for later, or uncovered by the benchmarking e�ort. The Pseudoknotbenchmark has been the trigger to improve a number of implementations. Finally, researchers workingon implementations of the di�erent language families are brought closer together, so that the functionalprogramming community as a whole may emerge stronger.AcknowledgementsThe comments of the anonymous referees were very useful.Mark Jones produced the Gofer version of the Pseudoknot program.Will Partain and Jim Mattson performed many of the experiments reported here for the GlasgowHaskell compiler. The work at Glasgow is supported by an SOED Research Fellowship from the RoyalSociety of Edinburgh, and by the EPSRC AQUA and PARADE grants.The work at Nijmegen is supported by STW (Stichting voor de Technische Wetenschappen, The Nether-lands).Jon Mountjoy performed some of the experiments for the RUFL implementation.The ID version of the Pseudoknot program was the result of a group e�ort. Credit goes to Jamey Hicks,R. Paul Johnson, Shail Aditya, Yonald Chery and Andy Shaw.Zhong Shao made several important changes to the SML/NJ implementation, and Andrew Appel andDavid MacQueen provided general support in the use of this system. David Tarditi performed several ofthe SML/NJ experiments.John T. Feo and Scott Denton of Lawrence Livermore National Laboratory collaborated on the Sisalversion of the Pseudoknot program.The �CMC version of Pseudoknot was the result of team work with Gen�esio Cruz Neto and Ri-cardo Lima. The �CMC group is supported by CNPq. (Brazilian Government) grants 40.9110/88-4,46.0782/89.4, and 80.4520/88-7.Marc Feeley was supported in part by a grant from the Natural Sciences and Engineering ResearchCouncil of Canada. ReferencesM. Alt, C. Fecht, C. Ferdinand, and R. Wilhelm. The Trafola-S subsystem. In B. Ho�mann and B. Krieg-Br�uckner,editors, Program development by speci�cation and transformation, LNCS 680, pages 539{576. Springer-Verlag,Berlin, May 1993.A. W. Appel. Compiling with Continuations. Cambridge Univ. Press, Cambridge, England, 1992.J. Armstrong, M. Williams, and R. Virding. Concurrent programming in Erlang. Prentice Hall, Englewood Cli�s,New Jersey, 1993.L. Augustsson. HBC user's manual. Programming Methodology Group Distributed with the HBC compiler,Depart. of Comp. Sci, Chalmers, S{412 96 G�oteborg, Sweden, 1993.L. Augustsson and T. Johnsson. The Chalmers Lazy-ML compiler. The computer journal, 32(2):127{141, Apr1989.L. Augustsson and T. Johnsson. Lazy ML user's manual. Programming methodology group report, Dept. ofComp. Sci, Chalmers Univ. of Technology, G�oteborg, Sweden, 1990.M. Beemster. The lazy functional intermediate language Sto�el. Technical report CS-92-16, Dept. of Comp. Sys,Univ. of Amsterdam, Dec 1992.M. Beemster. Optimizing transformations for a lazy functional language. In W.-J. Withagen, editor, 7th Computersystems, pages 17{40, Eindhoven, The Netherlands, Nov 1993. Eindhoven Univ. of Technology.J. A. Bergstra, J. Heering, and P. Klint. Algebraic Speci�cation,. The ACM Press in co-operation with Addison-Wesley, ACM Press Frontier Series, 1989.D. C. Cann. The optimizing SISAL compiler: version 12.0. Manual UCRL-MA-110080, Lawrence LivermoreNational Laboratory, Livermore, California, Apr 1992.D. C. Cann. Retire FORTRAN? a debate rekindled. CACM, 35(8):81{89, Aug 1992.

Pseudoknot benchmark 25E. Chailloux. An e�cient way of compiling ML to C. In P. Lee, editor, ACM SIGPLAN Workshop on ML and itsApplications, pages 37{51, San Francisco, California, Jun 1992. School of Comp. Sci, Carnegie Mellon Univ.,Pittsburg, Pennsylvania, Technical report CMU-CS-93-105.K. Didrich, A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. OPAL: Design and implementation of an algebraicprogramming language. In J. Gutknecht, editor, Programming Languages and System Architectures, LNCS 782,pages 228{244, Zurich, Switzerland, Mar 1994. Springer-Verlag, Berlin.A. Diwan, D. Tarditi, and E. Moss. Memory subsystem performance of programs with copying garbage collection.In 21st Principles of programming languages, pages 1{14, Portland, Oregon, Jan 1994. ACM, New York.M. Feeley and J. S. Miller. A parallel virtual machine for e�cient Scheme compilation. In Lisp and functionalprogramming, pages 119{130, Nice, France, Jul 1990. ACM, New York.M. Feeley, M. Turcotte, and G. Lapalme. Using Multilisp for solving constraint satisfaction problems: an appli-cation to nucleic acid 3D structure determination. Lisp and symbolic computation, 7(2/3):231{246, 1994.R. Giegerich and R. J. M. Hughes. Functional programming in the real world. Dagstuhl seminar report 89, IBFIGmbH, Schloss Dagstuhl, D-66687 Wadern, Germany, May 1994.A. J. Gill and S. L. Peyton Jones. Cheap deforestation in practice: An optimiser for Haskell. In Proc. IFIP, Vol.1, pages 581{586, Hamburg, Germany, Aug 1994.K. Gopinath and J. L. Hennesy. Copy elimination in functional languages. In 16th Principles of programminglanguages, pages 303{314, Austin, Texas, Jan 1989. ACM, New York.The Yale Haskell Group. The Yale Haskell Users Manual (version Y2.3b). Dept. of Comp. Sci, Yale Univ.(Distributed with the Yale Haskell compiler), Jul 1994.R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation. ACM transactions on programminglanguages and systems, 7(4):501{538, Oct 1985.Harlequin. MLWorks draft documentation. Harlequin Ltd, Cambridge, England, 1994.P. H. Hartel, H. W. Glaser, and J. M. Wild. Compilation of functional languages using ow graph analysis.Software|practice and experience, 24(2):127{173, Feb 1994.P. H. Hartel and K. G. Langendoen. Benchmarking implementations of lazy functional languages. In 6th Functionalprogramming languages and computer architecture, pages 341{349, Copenhagen, Denmark, Jun 1993. ACM, NewYork.B. Hausman. Turbo erlang: Approaching the speed of C. In E. Tick and G. Succi, editors, Implementationsof Logic Programming Systems, pages 119{135. Kluwer Academic Publishers, Boston/Dordrecht/London, Mar1994.P. Hudak, S. L. Peyton Jones, and P. L. Wadler (editors). Report on the programming language Haskell { anon-strict purely functional language, version 1.2. ACM SIGPLAN notices, 27(5):R1{R162, May 1992.M. P. Jones. The implementation of the Gofer functional programming system. Research ReportYALEU/DCS/RR-1030, Dept. of Comp. Sci, Yale Univ., New haven, Connecticut, May 1994.B. W. Kernighan and D. W. Ritchie. The C programming language - ANSI C. Prentice Hall, Englewood Cli�s,New Jersey, second edition edition, 1988.X. Leroy. Unboxed objects and polymorphic typing. In 19th Principles of Programming Languages, pages 177{188,Albuquerque, New Mexico, Jan 1992. ACM, New York.X. Leroy. The Caml Light system, release 0.61. Software and documentation distributed by anonymous FTP onftp.inria.fr, 1993.R. D. Lins. Categorical Multi-Combinators. In G. Kahn, editor, 3rd Functional programming languages andcomputer architecture, LNCS 274, pages 60{79, Portland, Oregon, Sep 1987. Springer-Verlag, Berlin.R. D. Lins and B. O. Lira. �CMC: A novel way of implementing functional languages. J. Programming Languages,1(1):19{39, Mar 1993.R. A. MacLachlan. CMU common Lisp user's manual. Technical report CMU-CS-92-161, School of Comp. Sci,Carnegie Mellon Univ., Jul 1992.J. R. McGraw, S. K. Skedzielewski, S. Allan, R. Oldehoeft, J. R. W. Glauert, C. Kirkham, B. Noyce, andR. Thomas. Sisal: Streams and iteration in a single assignment language. Language reference manual version1.2 M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, California, Mar 1985.R. Milner, M. Tofte, and R. Harper. The de�nition of Standard ML. MIT Press, Cambridge, Massachusetts, 1990.R. S. Nikhil. ID version 90.1 reference manual. Computation Structures Group Memo 284-2, Laboratory forComp. Sci, MIT, Cambridge Massachusetts, Jul 1991.S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L. Wadler. The Glasgow Haskell compiler: atechnical overview. In Proc. Joint Framework for Information Technology (JFIT) Technical Conference, pages249{257, Keele, England, Mar 1993. DTI/SERC.S. L. Peyton Jones and J. Launchbury. Unboxed values as �rst class citizens in a non-strict functional language.In R. J. M. Hughes, editor, 5th Functional programming languages and computer architecture, LNCS 523, pages636{666, Cambridge, Massachusetts, Sep 1991. Springer-Verlag, Berlin.M. J. Plasmeijer and M. C. J. D. van Eekelen. Concurrent Clean - version 1.0 - Language Reference Manual,draft version. Dept. of Comp. Sci, Univ. of Nijmegen, The Netherlands, Jun 1994.

26 Hartel, Feeley et al.J. E. Ranelletti. Graph transformation algorithms for array memory memory optimization in applicative languages.PhD thesis, Comp. Sci. Dept, Univ. of California at Davis, California, Nov 1987.J. A. Rees and W. Clinger. Revised4 Report on the Algorithmic Language Scheme. MIT, Cambridge, Mas-sachusetts, Nov 1991.N. R�ojemo. Highlights from nhc { a space-e�cient Haskell compiler. In 6th Functional programming languagesand computer architecture, pages 282{292, La Jolla, California, Jun 1995. ACM, New York.W. Schulte and W. Grieskamp. Generating e�cient portable code for a strict applicative language. In J. Dar-lington and R. Dietrich, editors, Phoenix Seminar and Workshop on Declarative Programming, pages 239{252,Sasbachwalden, West Germany, Nov 1991. Springer-Verlag, Berlin.M. Serrano. Bigloo user's manual. Technical report 0169, INRIA-Rocquencourt, France, Dec 1994.M. Serrano and P. Weis. 1 + 1 = 1: an optimizing Caml compiler. In ACM-SIGPLAN Workshop on ML and itsapplications, pages 101{111. Research report 2265, INRIA Rocquencourt, France, Jun 1994.Z. Shao. Compiling Standard ML for E�cient Execution on Modern Machines. PhD thesis, Princeton Univ,Princeton, New Jersey, Nov 1994.S. Smetsers, E. G. J. M. H. N�ocker, J. van Groningen, and M. J. Plasmeijer. Generating e�cient code forlazy functional languages. In R. J. M. Hughes, editor, 5th Functional programming languages and computerarchitecture, LNCS 523, pages 592{617, Cambridge, Massachusetts, Sep 1991. Springer-Verlag, Berlin.G. L. Steele Jr. Common Lisp the Language. Digital Press, Bedford, second edition, 1990.S. Thomas. The Pragmatics of Closure Reduction. PhD thesis, University of Kent at Canterbury, Canterbury,UK, 1993.S. Thomas. The OP-TIM { a better PG-TIM. Technical report NOTTCS-TR-95-7, Dept. of Comp. Sci., Univ.of Nottingham, England, 1995.S. Thompson. Laws in Miranda. In Lisp and functional programming, pages 1{12, Cambridge, Massachusetts,Aug 1986. ACM, New York.B. Thomsen, L. Leth, S. Prasad, T.-S. Kuo, A. Kramer, F. Knabe, and A. Giacalone. Facile antigua release {programming guide. Technical report ECRC-93-20, European Computer-Industry Research Centre, Munich,Germany (The reference manual and license agreement are available by anonymous ftp from ftp.ecrc.de.), 1993.D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In J.-P. Jouannaud, editor,2nd Functional programming languages and computer architecture, LNCS 201, pages 1{16, Nancy, France, Sep1985. Springer-Verlag, Berlin.D. A. Turner. Miranda system manual. Research Software Ltd, 23 St Augustines Road, Canterbury, Kent CT11XP, England, Apr 1990.P. L. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science, 73(2):231{248, 1990.H. R. Walters and J. F. Th. Kamperman. Epic: Implementing language processors by equational programs.Technical report in preparation, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands, 1995.P. Weis and X. Leroy. Le langage Caml. Inter�Editions, 1993.E. P. Wentworth. Code generation for a lazy functional language. Technical report 91/19, Dept. of Comp. Sci,Rhodes Univ., Dec 1991.E. P. Wentworth. RUFL reference manual. Technical report 92/1, Dept. of Comp. Sci, Rhodes Univ., Jan 1992.

