
Tail Calling Between Code Generated by C and
Native Backends

Laurent Huberdeau
DIRO

Université de Montréal
Canada

laurent.huberdeau@umontreal.ca

Marc Feeley
DIRO

Université de Montréal
Canada

feeley@iro.umontreal.ca

Abstract
Compiler backends are typically incompatible; it is not
possible to call the code generated by one backend from
code generated by another. When writing a new back-
end, not being able to use the runtime library of an
existing backend makes the development process longer
and more complex than it should be as everything has
to be rewritten from scratch. Having interoperability of
code generated by different backends allows code shar-
ing for non-performance critical parts and simplifies the
development of new backends. This paper presents an
approach used in the Gambit Scheme compiler to seam-
lessly mix the execution of code generated by C and
native backends, by making tail calls and non-tail calls
between the two worlds possible. Our approach uses a
dual purpose control point representation and bridges
which are executed when control jumps from one world
to the other. The technique is presented in the context
of the ongoing development of Gambit’s native backend
which targets the x86-32, x86-64 and ARM architectures.

CCS Concepts • Software and its engineering →
Retargetable compilers ; Source code generation; Runtime
environments;

Keywords Compiler, Backend, Interoperability, Tail
Call, Scheme

1 Introduction
A popular implementation approach for programming
languages consists in designing an abstract instruction
set tailored to the source language and implementing
this abstraction as a virtual machine (VM). This usually
simplifies the compiler, it offers portability when the VM
is based on an interpreter, and the abstract instruction
set can be used as the intermediate representation (IR)
of a compiler with multiple target languages.
This approach is particularly interesting for Scheme

because the language has constructs that have no direct
equivalent in other languages; tail calls and continuations
among others. The Bit [1], Picobit [8], Guile [7], Racket
[6] and Gambit [3] systems are all based on this approach.

SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA

2018.

The Gambit system uses the Gambit Virtual Machine
(GVM) [4] as the IR of a compiler that generates code
for several target languages, including C, JavaScript,
PHP, Python, Ruby, and Java. In a nutshell, each GVM
instruction is translated into a sequence of instructions
of equivalent effect in the target language.
Gambit’s C backend is the most mature. It handles

all of the Gambit Scheme features and is in a sense the
Gambit Scheme reference implementation. However, the
C language imposes code generation constraints that
affect performance, notably in regard to the handling of
tail calls and continuations. This has prompted an effort
to develop a family of backends that target the x86-32,
x86-64 and ARM architectures at the machine code level.
They are collectively called the native backend, as these
backends share a large part of their logic.
Because the GVM is a relatively high-level abstrac-

tion that, for example, does not specify how objects are
represented and how garbage collection is performed,
implementing the native backend could involve redesign-
ing and rewriting the whole runtime system. Not only
would this approach easily require a few man-years of
effort, but the support for the various Gambit Scheme
features would progress incrementally over the course of
the project, hindering large-scale experimentation and
adoption by users until all features are supported. We
have instead chosen to design the native backend so that
the code generated interoperates transparently with the
code generated by the C backend. In other words, the
native backend implements the same object represen-
tation as the C backend (allowing data to be shared
transparently) and it is possible to jump back and forth
between the existing runtime system (including library
procedures and garbage collector) compiled using the
C backend and code generated by the native backend.
This way the availability of the Gambit Scheme features
comes early in the development process because their
implementation using the C backend can be used as a
fallback until the moment they are handled directly, and
hopefully more efficiently, by the native backend.

Having early access to the C backend’s runtime system
simplifies the development process of the native backend.

1

SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA Laurent Huberdeau and Marc Feeley

Allocation procedures, the garbage collector, operating-
system interface procedures, complex library procedures
including display and pretty-print, ressource and
run time measurement procedures, exception handlers
(stack/heap overflow, wrong number of arguments, etc),
first-class continuations, can all be used in test programs.
These features are particularly useful in debugging the
machine code generation and to assess the performance
of various code generation approaches (choice of instruc-
tions, registers, etc).

This paper explains the design and implementation of
the mechanism to jump between code generated by the
C backend and code generated by the native backend
(cross jumps). Three important design objectives that
are achieved by our design are:

1. Cross jumps are transparent. A backend does not
know statically if a jump is a cross jump or not. It
is only at run time that the destination is known.
A library procedure compiled using the C backend
could be called with return addresses that cause
it to return to code generated by the C backend
sometimes and the native backend other times.
Moreover, cross jumps that are tail calls must not
consume space, on the stack or elsewhere.

2. Non-cross jumps are performed as efficiently as if
the other backend did not exist. For the native
backend, this means that it can implement pro-
cedure values and return addresses as pointers to
machine code, and a plain branch to address ma-
chine instruction can be used for procedure calls
and returns.

3. Cross jumps have a cost that is similar to non-cross
jumps within code generated by the C backend,
which uses trampolines for implementing jumps.

The paper is organized as follows. Section 2 presents
the GVM and how the C and native backends implement
tail calls and continuations. The technique and its imple-
mentation are explained in detail in Section 3. Section
4 evaluates the performance overhead of the technique
and its applicability to the development of the native
backend.

2 Background
2.1 Gambit Virtual Machine

The Gambit Virtual Machine is the abstract machine tar-
geted by the compiler’s frontend. The machine uses a set
of locations that can store any Scheme object reference.
There are general purpose registers numbered starting
at 0 (e.g. r1), frames that are stored on a stack (e.g.
frame[1] is the first slot of the current frame) and global
variables (e.g. global[a] to access the global variable a).
The backends can parameterize the generation of code for
the GVM by specifying the number of available registers,

the set of inlined primitives and the procedure calling
convention. In the existing backends, only 5 registers
are used, 2 of which have a special purpose. The first
register, r0, contains the return address of the current
procedure and the last, r4, which we call the self register,
is used when calling closures. One of the general purpose
registers, r1, is also used to contain the return value of
procedures. The frontend generates a control flow graph
of basic blocks that contain code for the GVM.

The GVM defines seven instructions: label, jump, ifjump,
switch, copy, close and apply. The label instruction is
the first instruction of each basic block and gives the
block’s identifier, which is a small number prefixed by #
(e.g. #2), in addition to its kind. There are two kinds
of basic blocks: first-class blocks and local blocks. First-
class blocks can be used like any other Scheme object
reference and are for control flow between procedures.
There are two types of first-class blocks: entry points
and return points, which correspond to procedure values
and return addresses respectively. When called, entry
points verify the number of arguments before proceeding
with the execution of the basic block. Local basic blocks
are not first-class objects as they are only used for con-
trol flow inside the procedure. The label instruction also
indicates the current size of the stack frame. This is used
to access locations on the stack with the correct offset
from the top of the stack.
Basic blocks always end with a branch instruction

indicating the frame size at the end of the basic block.
This allows the backend to adjust the stack pointer only
once as explained below. There are two different types
of branches: conditional and unconditional. Conditional
branches are generated for if, case and cond Scheme
expressions and correspond to the ifjump and switch
GVM instructions. Unconditional branches correspond
to the GVM’s jump instruction. Conditional and uncon-
ditional branches have an important difference in regard
to their destinations. Conditional branches may only
jump to local blocks and unconditional branches may
jump to local blocks as well as first-class blocks. We call
jump instructions to first-class blocks external jumps
as the control goes to a label that may be in another
procedure. For external jumps, the jump’s operand may
be a reference to a closure, an entry point or a return
point.

The jump instruction optionally specifies a number of
arguments. This is used by the callee to verify that the
number of arguments passed to the procedure is correct
and to support rest and optional parameters. When the
value is given, the destination of the external jump must
be a procedure (closure or entry point), otherwise, it
must be a return point. This is used to generate efficient
code for the jump.

2

Tail Calling Between Code Generated by C and Native Backends SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA

(define (display-length lst)
(display (length lst)))

#1 fs=0 entry -point nparams =1
frame [1] = r0 ; Create continuation frame containing r0
jump fs=1 global[length] r0=#2 nargs =1 ; Non tail call length procedure

#2 fs=1 return -point
r0 = frame [1] ; Extract return address from continuation frame
jump fs=0 global[display] nargs =1 ; Tail call display procedure

Figure 1. Scheme and GVM code of display-length

The remaining instructions only appear between the
label and branch instructions of the basic blocks.
The copy instruction assigns the value of the source

operand to the destination operand.
The close instruction creates one or more closure ob-

jects and assigns them to the destination operands. The
closure object contains a reference to the entry point
that is executed when the closure is jumped to and the
value of its free variables. When called, a reference to
the closure is assigned to the self register, allowing the
closure’s code to access its free variables.
The apply instruction executes a primitive (a simple

operation like ##car) and stores the result in the des-
tination operand. For example r1 = (##cons r2 r3)

allocates a pair whose car and cdr are initialized from r2
and r3, and stores the reference to this pair in r1. The
set of primitives that are usable in apply instructions, in-
lined primitives, may vary from one backend to another,
but there is always a procedure of the same name in
the runtime library performing the same operation. This
means that a given primitive operation can always be
performed by a call to the runtime library using a jump
instruction, but if the backend handles its inlining, an
apply instruction can be used, usually with much lower
execution time.

The GVM’s stack is composed of frames. There are two
types of stack frames: activation frames and continuation
frames. The first is created before calling a procedure. It
contains the arguments of the call that are not passed
in the registers. It is empty if the arguments all fit
in the registers, a fairly common situation. When tail
calling, the topmost frame can be reused to store the
arguments of the destination procedure. When a non-tail
call is made, a continuation frame is created and the
destination procedure’s activation frame is added on top
of it. The continuation frame is used to save the values
of the registers that are needed at the return point of
the call.
The stack is managed implicitly by the label and

branch instructions. The label instructions indicate the
current frame size (e.g. fs=0) before the execution of

the basic block and the branch instructions indicate the
frame size at the end of the basic block. The frame
size difference is how many slots have been pushed (or
popped if negative). Using the initial frame size, back-
ends can access the slots of the frame with the correct
offset. Writes to frame slots with index higher than the
current frame size are equivalent to push operations and
pops are done at the end of the basic block when the
frame size decreases.

As an example, Figure 1 shows the Scheme and GVM
code of the display-length procedure that displays the
length of a list.

Basic block #1 is the display-length procedure’s en-
try point. The label instruction specifies that 1 argument
is expected (nparams=1). Because this argument and
the return address are passed in registers the activation
frame is empty (fs=0). The second instruction creates
a continuation frame by saving the return address (r0)
to the stack (it is the only value needed at the return
point of the length procedure). The last instruction of
the basic block is a jump to the length procedure with
basic block #2 as the return point passed in register
r0. The number of arguments of the call is 1. Because
the first argument is always passed in r1, r1 already
contains lst, the argument for the length procedure.
The result of length is also in r1.

Basic block #2 is a return point as it is used as the
continuation of the call to length. Before its execution,
the topmost frame is a continuation frame with only 1
slot: the return point of the display-length procedure.
The return point is restored in r0 to execute a tail call to
display. Again, the argument of display, which is the
result of length, is already in r1 and is left untouched.
Note that when tail calling display, the continuation
frame is reclaimed (fs=0).

2.2 Object Representation

We describe here the object representation used before
Gambit’s C backend was modified to accommodate the
native backend. A Scheme object reference is a machine

3

SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA Laurent Huberdeau and Marc Feeley

…sub
type

HEADER entry free_var_1

Reference to a closure

free_var_2
length

sub
type

unused padding hostHEADER

void host(processor_state_struct *ps) { … }

…sub
type

HEADER element_0 element_1

Reference to a vector

element_2
length

sub
type

HEADER cdr car

Reference to a pair

Reference to an entry point

sub
type

entry padding hostHEADER

void host(processor_state_struct *ps) { … }

frame
descriptor

Reference to a return point

sub
type

padding hostHEADER

void host(processor_state_struct *ps) { … }

Figure 2. C backend Scheme object representation for memory allocated objects

word, either 32 or 64 bits wide depending on the archi-
tecture. A low-bit tagging is used with the two lowest
bits containing one of the 4 possible tags:

00 – fixnum value in the remaining 30 or 62 bits
01 – reference to a memory-allocated object other

than a pair
10 – other immediate value (characters, #f, #t, (),

#!eof, #!void, ...)
11 – reference to a pair

Memory-allocated objects are word-aligned, so they
start at an address that is a multiple of 4 or 8, leaving
enough space in the object reference to store the 2 tag
bits. The first word of all objects, including pairs, is a
word-size header. It contains other type information in
the least-significant 8 bits (the subtype) and the length
of the object in the remaining bits of the word (useful
for variable length objects such as vectors, strings and
closures).
The type tests (fixnum? 𝑥) and (pair? 𝑥) can be

done quickly by checking the tag bits of 𝑥. Type tests
for other memory-allocated objects, like (flonum? 𝑥)
and (vector? 𝑥), require checking that the tag bits are
01 and then checking the subtype field of the header.
Figure 2 shows the memory layout of some types of

objects for a 64 bit architecture. The top two show the
pair and vector objects. In this drawing, arrows starting

from a dot are object references. Note that a reference
to a pair points to the fourth byte of the header (tag =
11) and a reference to a vector, like all other memory
allocated objects, points to the second byte of the header
(tag = 01). When accessing the content of the object, the
tag can easily be cancelled in the offset used to indirect
memory. For example, if 𝑥 is a reference to a pair, the
car can be extracted by reading the word at address
𝑥+ 13 (13 = 2× 8− 3). Modern architectures, including
x86 and ARM, can typically do this address calculation
at no cost, so the untagging is often free. Similarly, the
choice of 00 as the tag for fixnums simplifies fixnum
addition and subtraction, rather frequent operations.
Indeed, adding or subtracting two fixnums can be done
with the machine instructions yielding a correctly tagged
fixnum result.

2.3 First-Class Control Points and the
Trampoline

Figure 2 also shows the memory layout of entry points,
return points and closures. The flat closure representa-
tion is used, containing a pointer to the closure’s entry
point followed by the closure’s non-global free variables.
Note that both entry points and closures count as pro-
cedures, but entry points can only have free variables
that are global variables. For that reason entry points

4

Tail Calling Between Code Generated by C and Native Backends SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA

typedef struct processor_state_struct {
WORD r0, r1, r2, r3, r4; /* GVM registers */
WORD *fp; /* frame pointer */
WORD *hp; /* heap pointer */
WORD na; /* number of arguments */
WORD pc; /* tagged pointer to a label_struct */
...

} processor_state_struct;

typedef struct label_struct {
WORD HEADER;
WORD entry_or_descr; /* extracted with GET_ENTRY(pc) */
WORD unused;
void (*host)(processor_state_struct *ps); /* extracted with GET_HOST(pc) */

} label_struct;

void trampoline(processor_state_struct *ps) {
while (TRUE) GET_HOST(ps ->pc)(ps);

}

/* below is the code generated by the C backend */

label_struct labels []; /* forward declaration */

void host(processor_state_struct *ps) {

WORD start = 1+(WORD)& labels [0]; /* start control point of this host */

jump:
switch ((ps ->pc - start) / sizeof (label_struct)) {

case 0: ...; /* control point 0 of this host */
case 1: ...; /* control point 1 of this host */
case 2: ...; /* control point 2 of this host */
default: return; /* destination is in another host */

}
}

label_struct labels [] = {
{ ..., 1+(WORD)& labels [0], 0, host } /* label_struct of control point 0 */

, { ..., 1+(WORD)& labels [1], 0, host } /* label_struct of control point 1 */
, { ..., 1+(WORD)& labels [2], 0, host } /* label_struct of control point 2 */
};

Figure 3. Overall structure of the trampoline and the generated C code

and return points are statically allocated, and closures
are in general dynamically allocated in the heap.

Gambit’s C backend trampoline mechanism has evolved
since its original implementation [5]. The following de-
scription has been slightly simplified from the actual
implementation to avoid getting caught up with minor
details. Note that other Gambit backends (e.g. target-
ing JavaScript) also use a trampoline mechanism, as
explained in [2]. Figure 3 shows the overall structure of
the trampoline and the generated C code (host function
and labels array).

Entry points and return points are represented with a
label_struct structure that contains 4 word-size fields:

the header, the entry, an unused word, and the host which
is a pointer to a C function. This structure conceptually
represents a control point in the code that can be jumped
to from any point in the code, essentially analogous to
a label in assembly code. These correspond to either an
entry point or a return point, which are called first-class
control points (simply control points from here on). The
trampoline implements the jumping to the control point
corresponding to a label_struct structure.
The processor_state_struct structure stores the

state of the GVM. Among other things, it contains the
state of the GVM registers (r0 to r4), the frame pointer
(fp), the heap pointer (hp), the number of arguments

5

SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA Laurent Huberdeau and Marc Feeley

(na), and the current control point (named pc because
of the analogy with the program counter of a machine).
The executable code generated by the C backend is

contained in host C functions. In general a host contains
more than one control point and a program has more
than one host (this is useful for separate compilation,
in particular of the runtime library, and dynamically
loadable compiled modules). Gambit offers two compila-
tion modes: in multiple host mode a host C function is
generated for each top level procedure of a compiled file,
and in single host mode all the code of a file is enclosed in
a single host C function. In addition to the host C func-
tion(s) generated for a file, an array of label_struct
structures is generated by the compiler, one for each con-
trol point in the file. Each of these structures has a host
field that points to the host containing the control point.
The structures are ordered so that those that pertain to
a given host are contiguous in the array. For each host
the compiler knows at what index in the array the first
label_struct structure of that host is located, so it can
derive the object reference to this structure, which we
will call the start control point of that host. It is an easy
matter for a host to substract start from pc and divide
by the size of the label_struct structure to obtain an
index usable in a C switch statement to dispatch to one
of several cases each corresponding to one of that host’s
control points. Note that the division is actually imple-
mented as a shift because the label_struct structure
is padded to force its size to be a power of two.
Jumping between hosts is the responsibility of the

trampoline C function. In an endless loop, it extracts
the host field of the processor state’s pc and calls that
function, passing the processor state as the sole pa-
rameter. When the host function returns it will have
put in the processor state’s pc the destination control
point of the jump. At the next iteration of the loop,
the corresponding host will be called. The program’s
execution is started with an initialization of the proces-
sor state’s pc field and a call to the trampoline such as
ps->pc = 1+(WORD)&labels[0]; trampoline(ps);.
The GET_HOST macro extracts the host field of the

label_struct structure referenced by ps->pc. The tram-
poline’s loop appears to be infinite, but it is actually
exited directly from code in hosts using the C function
longjmp. Because this happens rarely it is more efficient
to use longjmp than to slow down the trampoline’s loop
with a condition.

To jump to a destination control point 𝑥 the C code ex-
ecutes ps->pc = 𝑥; goto jump;. This will repeat the
dispatch of the switch statement with the new desti-
nation. This optimizes the case where the destination
happens to be in the same host (for example a recursive
Scheme function returning within itself). When the des-
tination’s label_struct structure belongs to another

host the default case of the switch will be executed
and the trampoline will take care of jumping to that
host.
Gambit implements a few additional optimizations

not shown here that improve the execution speed of the
trampoline. A host C function copies the relevant parts
of the processor state (pc, fp, GVM registers, ...) into
local variables to improve the likelihood the C compiler
will allocate these to machine registers. Before returning
to the trampoline the host copies the modified variables
back to the processor state. Moreover, when the des-
tination control point is statically known and in the
same host, for example when calling a Scheme proce-
dure locally defined or one compiled with the special
declaration (declare (block)) and single host mode,
a simple goto is used. Finally, when compiling with gcc

and clang, the switch statement is replaced by a faster
indirect goto, which is a C extension supported by these
compilers.

2.4 Jumping to Procedures and Return Points

Procedures are either entry points or closures. In both
cases, the first field after the header is entry, which
contains a reference to a label_struct structure. Pro-
cedures that are entry points have an entry field that
contains a reference to itself. To jump to procedure 𝑥, the
code ps->pc = GET ENTRY(ps->r4 = 𝑥); goto jump;

is executed. This jumps to the entry point whether 𝑥 is a
closure or not. In addition, this puts in the self register,
r4, a reference to the called procedure, which is useful
in the case 𝑥 is a closure to access its free variables. To
jump to return point 𝑥, the simpler ps->pc = 𝑥; goto

jump; is executed. In the GVM jump instruction these
cases can be distinguished because in the first case the
number of arguments is specified in the jump instruction,
and not in the second case.

3 Jumping between C and native code
3.1 Bridges

The way the GVM’s state is stored is an important dif-
ference between the C and native backends. In the C
backend, parts of the GVM state are copied to the host’s
local variables for efficiency and it is the C compiler’s
option to assign these to machine registers of its choosing.
In the native backend, most of the state is stored in regis-
ters and fixed machine registers are assigned to the GVM
registers (for example, on x86-64, rdi/rax/rbx/rdx/rsi
are assigned to r0..r4). This means that cross jumps can’t
be done with a simple branch instruction. The different
assignment of registers makes this impossible. Instead,
whenever there is a cross jump, a bridge routine is used
to move the GVM’s state to where the other backend
expects it. There are two bridges, one for C to native

6

Tail Calling Between Code Generated by C and Native Backends SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA

cross jumps (to_native_bridge), and one for native to
C cross jumps (from_native_bridge).

3.2 Control Point Representation

To achieve our objective that the native backend uses
simple and fast branch to address instructions to perform
jumps, the representation of control points had to be
changed. The reference to a control point must be a
pointer to the executable machine code. For example,
a reference to an entry point must point to the first
machine instruction of that basic block. Thus a control
point reference can no longer point to the header of the
label_struct, which contains data. The layout of a
label_struct was changed so that the host field is now
the first, just before the header. The second field after
the header, which was unused, now contains executable
machine code (the code field). Finally an object reference
is now a tagged pointer to the second field after the
header. This means that a control point reference points
to the second byte of the label_struct’s code field.
These changes are illustrated in Figure 4 for the x86-64,
which has 64 bit words.

For label_structs generated by the C backend, the
code field contains machine code that jumps to the
from_native_bridge. This is a call instruction, on x86,
or a branch-and-link instruction on ARM. When code
generated by the native backend jumps to a control
point in code generated by the C backend, the branch
instruction first transfers control to the executable code
in the code field which then transfers control to the
bridge. A side effect of the call (or branch-and-link)
instruction is to store on the stack (or register) the
address of the label_struct. This information is then
used by the bridge to know which label_struct is the
destination of the jump. The pointer will then be stored
in the pc field of the processor state before returning to
the trampoline, causing the jump to the appropriate C
host function.
To support cross jumps in the other direction, the

native backend generates label_structs before each
control-point (see bottom part of Figure 4) such that:

1. The host field stores a pointer to to_native_bridge.
2. The reference to the control point is a pointer to

the first machine instruction of the basic block.

When code generated by the C backend jumps to a
control point in code generated by the native backend,
the trampoline will naturally cause a call to the host
function to_native_bridge and the processor state’s
pc field will have a reference to the destination control
point. The bridge then copies the state of the GVM from
the processor state structure to the appropriate machine
registers, and then branches to the machine code at the
destination control point.

The representation of closures must also be changed
to accommodate the native backend. The native backend
can jump to closures like control points using a branch to
address instruction to the closure reference. To support
this, a code field is also added to the closures (both
those generated by the C and native backends). This
field contains the machine code that reads the closure’s
entry field and branches to that address using a call
(or branch-and-link) instruction. This has the side-effect
of saving to the stack (or register) the address of the
closure, which will be used to setup the self register
either by the from_native_bridge if it is a native to C
cross jump, or by the first few instructions at the entry
point if it is a native to native non-cross jump.

3.3 Continuations

Because control may freely go between code generated by
the C and native backends, the stack may contain a mix
of continuation frames of procedures compiled by both
backends. This is not an issue as the backends implement
the GVM in the same way with the same stack, the same
frame structure and the same frame descriptors. This
allows garbage collection and first-class continuations
to work seamlessly without modification. For the same
reasons, serialization of procedures and continuations
compiled by the native backend is also possible.

3.4 Implementation Details

The native backend reserves one of the machine registers
to point to the processor state, thus making it easy to ac-
cess the GVM state that has not been copied to machine
registers, such as the number of arguments (na field) and
the stack and heap limit pointers. This register is rcx
on x86-64, ecx on x86-32, and r5 on ARM. Moreover, to
allow compact instructions to call from_native_bridge,
the address of this routine is stored in a word just
before the processor state, so the x86-64 can use a
call [rcx-8] and the x86-32 can use a call [ecx-4],
both 3 byte instructions that fit in a machine word. On
ARM negative offsets on memory accesses are not en-
coded as compactly as positive offsets, so r5 is made
to point to the word just before the actual processor
state, allowing from_native_bridge to be called with
the 4 byte instruction sequence ldr r7,[r5]; blx r7

(r7 is a temporary register). Figure 5 shows the machine
instructions in the code fields of label_structs and clo-
sures. Note that for x86-32 and ARM, which both have
32 bit words, two words are needed in closures to store
the machine instructions. The implementation of the
bridges for x86-64 is given in Appendix A (moderately
edited to make it easier to read).

7

SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA Laurent Huberdeau and Marc Feeley

sub
type

HEADER unused codehost
FF 51 FC

call [rcx-8]
00 00 00 00 00

…sub
type

HEADER entry code

Reference to a closure

free_var_1 free_var_2
length FF 15 F100 FF FF FF 00

call [rip-15]

void host(processor_state_struct *ps) { … }

sub
type

HEADER code

Reference to a return point

host
FF 51 FC

call [rcx-8]
00 00 00 00 00

frame
descriptor

void to_native_bridge(processor_state_struct *ps) { … }

sub
type

HEADER entry code

Reference to an entry point

host
machine code00 …

sub
type

HEADER unused codehost

…sub
type

HEADER entry code

Reference to a closure

free_var_1 free_var_2
length FF 15 F100 FF FF FF 00

call [rip-15]

machine code00 …

sub
type

HEADER code

Reference to a return point

host
frame

descriptor
machine code00 …

Generated by C backend

from_native_bridge processor_state_struct
…

ps
rcx

from_native_bridge: mov [rcx],rdi
 …

Generated by x86-64 backend

sub
type

HEADER entry code

Reference to an entry point

host
FF 51 FC

call [rcx-8]
00 00 00 00 00

void host(processor_state_struct *ps) { … }

void host(processor_state_struct *ps) { … }

Figure 4. Scheme object representation for memory allocated objects for C and x86-64 backends

codeReference to an entry 
or return point FF 51 F8

call [rcx-8]
00 00 00 00 00

x86-64

codeReference to a closure
FF 15 F100 FF FF FF 00

code
FF 51 FC

call [ecx-4]
00

x86-32

code
E8 ?? ??00 ?? ?? 00 00
call labelcall [rip-15]

code2

code
68 B8 47

ldr r7,[r5] ; blx r7
2F

ARM THUMB2

code
46 54 F87C 08 FC 00 00

mov r4,pc ; ldr pc,[r4,#-8]

code2

Figure 5. Machine instructions in the code fields of label structs and closures, for the x86-64, x86-32 and ARM
architectures

8

Tail Calling Between Code Generated by C and Native Backends SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA

(declare (standard-bindings) (not safe))

(define (dec x) ;; variant of program defines dec in the runtime library
(fx- x 1))

(define (run n f)
(let loop ((n n))

(if (fx > n 0)
(loop (f n))))) ;; call/return dec

(time (run 100000000 dec))

Figure 6. Scheme program for measuring the cost of jumps

Kind of jumps for procedure call and return to dec procedure
C to C C to C native to C to

Architecture native to native (intra host) (inter host) native (cross jumps)
x86-64 0.107 rsd=0.2% 0.07× 0.238 rsd=0.0% 0.17× 1.436 rsd=0.1% 1× 2.264 rsd=0.0% 1.58×
x86-32 2.947 rsd=0.2% 0.17× 6.787 rsd=0.1% 0.40× 16.854 rsd=0.1% 1× 19.605 rsd=0.1% 1.16×
ARM 2.758 rsd=0.3% 0.24× 4.054 rsd=0.2% 0.35× 11.431 rsd=0.2% 1× 11.680 rsd=0.2% 1.02×

Figure 7. Execution time in seconds of 108 calls to the dec procedure, the relative standard deviation over 100 runs,
and in bold the relative execution time (relative to the C to C inter host jumps)

4 Evaluation
4.1 Use Cases

There are a few use cases for our cross jump mecha-
nism. First, assuming the native backend yields higher
performance than the C backend, Scheme code kernels
whose performance is critical can be compiled with the
native backend and called from a main program com-
piled with the C backend. Another use case is allowing
programs compiled with the native backend to call com-
plex runtime library procedures. These runtime library
procedures are currently compiled with the C backend as
they are mostly written in Scheme with low-level parts
written in C. The Scheme part can’t just be compiled
using the native backend because many primitives are
not yet inlined and the FFI needed to interface to the
C parts is also not yet ported to the native backend. In
both of these use cases the cost of cross jumps is not
critical because each procedure call represents a con-
siderable amount of work. A low cost for cross jumps
is more important for runtime library procedures that
don’t represent much work, such as type tests and struc-
ture accessors. It is expected that the native backend will
eventually inline all of these, for performance reasons,
but as the development progresses there will always be
some subset of the primitives that are not yet inlined
and that must be implemented with a cross jump to the
runtime library. In this use case the cross jump mech-
anism is a crutch that allows compiling and testing all

types of programs, but with reduced performance when
non inlined primitives are often called. This is partic-
ularly convenient when debugging the performance of
the native backend’s code generation for specific parts of
code within a big program using lots of primitives. The
debugging can focus on the specific parts that only use
inlined primitives. For this to work in practice, the cost
of cross jumps must be low.

4.2 Performance of Cross Jumps

To evaluate the performance of cross jumps we have
used the program shown in Figure 6. The run procedure
performs 108 calls to the procedure dec, a quick proce-
dure that simply decrements its fixnum argument. Two
jumps are executed per call to dec, one to its entry point
and one to return back to the run procedure. The run
time is measured using the time special form. A variant
of this program is identical except it defines dec in the
Scheme runtime library compiled by the C backend. The
variant and original program are then compiled with the
C backend using single host mode and with the native
backend. Consequently, the jumps to and from dec are
performed differently in all four configurations: (1) from
C to C in different hosts (inter host), (2) from C to C
within the same host (intra host), (3) from native to C
to native (i.e. two cross jumps), and (4) from native to
native. Configurations (1) and (2) use the trampoline,
configuration (3) uses the trampoline and both bridges,
and configuration (4) uses neither.

9

SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA Laurent Huberdeau and Marc Feeley

Benchmark C backend x86-64 backend
(ack 3 12) 0.895 rsd=0.4% 1× 0.818 rsd=0.9% 0.91×
(fib 40) 0.304 rsd=0.0% 1× 0.277 rsd=0.4% 0.91×
(tak 40 20 11) 1.112 rsd=0.1% 1× 1.001 rsd=0.7% 0.90×

Figure 8. Execution time in seconds for highly recursive benchmarks compiled with the C and x86-64 backends, the
relative standard deviation over 100 runs, and in bold the execution time relative to the C backend

We used Gambit v4.9.0 and the following hardware, all
running Debian: x86-64 = Intel i7-7700K @ 4.2GHz, x86-
32 = Coppermine Pentium III @ 0.7GHz ARM = Quad
Cortex A7 @ 0.9GHz. The programs were run 100 times.
The mean execution times and standard deviation are
shown in Figure 7. The table also shows the execution
times relative to the pure trampoline (C to C inter
host jumps), which corresponds to the situation where a
program compiled with the C backend calls a runtime
library procedure.

The execution time for the program includes the exe-
cution of the loop in run, the creation of the continuation
for the call to dec, the execution of dec’s body, and the
execution of the jumps to and from dec. The first three
parts represent few machine instructions (unsafe fixnum
operations and tail recursive loop) compared to one it-
eration of the trampoline, so we can use the execution
time as a rough measure of the cost of the jump (it is
an overestimation of the cost of native to native jumps
which represent relatively little time compared to the
overhead of the loop).
We see that the cost of cross jumps is comparable

to the pure trampoline, between 2% and 58% higher
depending on the architecture. We feel that this is a
reasonably low overhead compared to the C to C inter
host jumps.

4.3 Performance of Native to Native Jumps

Another interesting result is the very low cost of native
to native jumps, at least an order of magnitude faster
than pure trampoline jumps on x86-64. This means that
there may be a considerable improvement in performance
when Scheme code performing frequent procedure calls is
compiled with the native backend (either kernels called
from code compiled with the C backend, or complete
programs). To explore this aspect we used the well known
highly recursive benchmarks ack, fib, and tak with
fixnum arithmetic, which have the virtue of requiring
very few inlined primitives (all of which are inlined by
the native backend). When compiled with the C backend,
all jumps use the trampoline and are intra host jumps.
When compiled with the x86-64 backend, all jumps use
the branch to address instruction.

The benchmarks were run 100 times. The mean execu-
tion times and standard deviation are shown in Figure 8.

We can see that the x86-64 backend generates code that
is 9-10% faster than the C backend for these benchmarks.
An examination of the machine code generated by both
backends suggests that the execution time difference is
mostly due to how the jumps are implemented. We can
thus expect that the native backend will bring some
execution time improvement to programs with frequent
procedure calls.

4.4 Sample Uses

As a demonstration of the usefulness of the bridge, the
native backend can be used to compile the triangl

benchmark from the R7RS benchmark suite. Two pro-
cedures used by this benchmark, vector->list and
list->vector, are currently only defined in the Scheme
runtime library compiled by the C backend. Still, the
native backend manages to compile triangl by using
cross jumps for calling these procedures and the result-
ing program executes only 10% slower than when the C
backend is used.

Another use for the bridge is calling the ##exec-stats
runtime library procedure. This procedure evaluates the
thunk it receives and collects statistics on the execution.
This is useful for evaluating the performance of the code
generated by the backends and verify that it executes
correctly. This procedure is called using the bridge as
it requires the FFI which is only implemented by the C
backend.

5 Conclusion
This paper has presented a technique used in the C
and native backends of Gambit Scheme that supports
transfers of control between the code generated by these
backends. It is tranparent and supports tail calls and
continuations. This allows easy reuse of parts of the
Gambit runtime library currently compiled from Scheme
to C by the C backend or hand written in C, such as the
garbage collector and I/O subsystem.

Experiments show that the overhead of our approach
is comparable to that of the trampoline. Our approach
is particularly useful for the development of the native
backend as it makes available the debugging features of
Gambit and allows the compilation of complex programs
to test the correctness and performance of the machine
code generation.

10

Tail Calling Between Code Generated by C and Native Backends SFPW’18, Sept. 28, 2018, Saint Louis, MO, USA

Acknowledgments
This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

References
[1] Danny Dubé and Marc Feeley. 2005. Bit: A very compact

Scheme system for microcontrollers. Higher-order and symbolic

computation 18, 3-4 (2005), 271–298.
[2] Marc Feeley. 2015. Compiling for Multi-Language Task Migra-

tion. In ACM Dynamic Languages Symposium. 63–77.
[3] Marc Feeley. 2018. Gambit Scheme Compiler v4.9.0. (Sept.

2018). http://gambitscheme.org/
[4] Marc Feeley and James S. Miller. 1990. A parallel virtual

machine for efficient Scheme compilation. In ACM SIGPLAN

Conference on Lisp and Functional Programming. 119–130.

[5] Marc Feeley, James S. Miller, Guillermo J. Rozas, and Jason A.
Wilson. 1997. Compiling Higher-Order Languages into Fully

Tail-Recursive Portable C. Technical Report 1078. Université

de Montréal, DIRO.
[6] Casey Klein, Matthew Flatt, and Robert Bruce Findler. 2012.

The Racket virtual machine and randomized testing. Higher-

Order and Symbolic Computation 25, 2-4 (2012), 209–253.
[7] Thomas Lord. 1995. An Anatomy of Guile: The Interface to

Tcl/Tk. In Tcl/Tk Workshop. 95–114.
[8] Vincent St-Amour and Marc Feeley. 2009. PICOBIT: a compact

Scheme system for microcontrollers. In International Sympo-
sium on Implementation and Application of Functional Lan-
guages. 1–17.

A Implementation of Bridges for
x86-64

// C to native bridge
void to_native_bridge(processor_state_struct *ps) {

__asm__ __volatile__ (

"mov %0, %%rcx" // copy ps into %rcx

"mov %%rsp , -2*8(%% rcx)" // save C sp

// setup handler for returning from native code
"lea from_native_bridge (%%rip), %%rax"
"mov %%rax , -1*8(%% rcx)" // setup handler

// setup frame pointer and heap pointer registers
"mov 5*8(%% rcx), %%rsp" // rsp = ps->fp
"mov 6*8(%% rcx), %%rbp" // rbp = ps->hp

// setup self register
"mov 4*8(%% rcx), %%rsi" // rsi = ps->r4

"mov 8*8(%% rcx), %%rax" // rax = ps->pc
"cmpq $0x100000 , -1 -2*8(%% rax)" // closure?
"jl setup_other_registers"
"add $3, %%rsi" // handle closures
"push %%rsi"
"add $-3, %%rsi"

"setup_other_registers :"
"mov (%%rcx), %%rdi" // rdi = ps->r0
"mov 1*8(%% rcx), %%rax" // rax = ps->r1
"mov 2*8(%% rcx), %%rbx" // rbx = ps->r2
"mov 3*8(%% rcx), %%rdx" // rdx = ps->r3

"jmp * 8*8(%% rcx)" // jump to ps->pc

// native to C bridge
"from_native_bridge :"

"mov %%rdi , (%%rcx)" // ps->r0 = rdi
"mov %%rax , 1*8(%% rcx)" // ps->r1 = rax
"mov %%rbx , 2*8(%% rcx)" // ps->r2 = rbx
"mov %%rdx , 3*8(%% rcx)" // ps->r3 = rdx

// recover destination control point in ps->pc
"pop %%rax"
"add $-3, %%rax" // rax = destination ctrl pt
"mov %%rax , 8*8(%% rcx)" // ps->pc = rax

"cmpq $0x100000 , -1 -2*8(%% rax)" // closure?
"jl store_self_register"
"pop %%rsi" // handle closures
"add $-6, %%rsi"

"store_self_register :"
"mov %%rsi , 4*8(%% rcx)" // ps->r4 = rsi
"mov %%rsp , 5*8(%% rcx)" // ps->fp = rsp
"mov %%rbp , 6*8(%% rcx)" // ps->hp = rbp

"mov -2*8(%% rcx), %%rsp" // restore C sp

: // no outputs
: // inputs

"m" (ps)
: // clobbers

"%rdi","%rax","%rbx","%rdx","%rsi",
"%rcx","%rbp"

);
}

11

http://gambitscheme.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Gambit Virtual Machine
	2.2 Object Representation
	2.3 First-Class Control Points and the Trampoline
	2.4 Jumping to Procedures and Return Points

	3 Jumping between C and native code
	3.1 Bridges
	3.2 Control Point Representation
	3.3 Continuations
	3.4 Implementation Details

	4 Evaluation
	4.1 Use Cases
	4.2 Performance of Cross Jumps
	4.3 Performance of Native to Native Jumps
	4.4 Sample Uses

	5 Conclusion
	Acknowledgments
	References
	A Implementation of Bridges for x86-64

