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Abstract
Software supply chain attacks are increasingly frequent and
can be hard to guard against. Reproducible builds ensure
that generated artifacts (executable programs) can be reliably
created from their source code. However, the tools used by
the build process are also vulnerable to supply chain attacks
so a complete solution must also include reproducible builds
for the various compilers used.

With this problem as our main motivation we explore the
use of the widely available POSIX shell as the only trusted
pre-built binary for the reproducible build process. We have
developed pnut, a C to POSIX shell transpiler written in C
that generates human-readable shell code. Because the com-
piler is self-applicable, it is possible to distribute a human-
readable shell script implementing a C compiler that depends
only on the existence of a POSIX compliant shell such as
bash, ksh, zsh, etc. Together, pnut and the shell serve as the
seed for a chain of builds that create increasingly capable
compilers up to the most recent version of the GNU Com-
piler Collection (GCC) that is a convenient basis to build
any other required tool in the toolchain. The end result
is a complete build toolchain built only from a shell and
human-readable source files. We discuss the level of C lan-
guage support needed to achieve our goal, the generation of
portable POSIX shell code from C, and the performance of
the compiler and generated code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’24, October 20–21, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1180-0/24/10
https://doi.org/10.1145/3687997.3695639

CCS Concepts: • Software and its engineering→ Soft-
ware development process management; Source code
generation; • Security and privacy→ Software security
engineering.

Keywords: Compiler, Bootstrapping, Reproducible Builds

ACM Reference Format:
Laurent Huberdeau, Cassandre Hamel, Stefan Monnier, and Marc
Feeley. 2024. The Design of a Self-Compiling C Transpiler Targeting
POSIX Shell. In Proceedings of the 17th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’24), October 20–
21, 2024, Pasadena, CA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3687997.3695639

1 Introduction
Traditional C compilers generate executable programs that
are not portable, meaning that the produced program’s exe-
cution is limited to a specific processor type and operating
system. In our work we have explored the peculiar choice
of using the POSIX shell [18] as a compilation target. POSIX
shell was standardized over 30 years ago and it is an excep-
tionally portable execution environment for these reasons:

• It has multiple conforming implementations, including
Korn Shell (ksh [4]), Bourne-Again Shell (bash [7]),
Z Shell (zsh [11]), Almquist Shell (ash [2]), Debian
Almquist Shell (dash [10]), and Yet Another Shell
(yash [13]).

• It is cross-platform, with implementations on all the
major operating systems (Linux, macOS, and Win-
dows), including old versions of those operating sys-
tems.

• It is readily accessible, as many operating systems have
a POSIX shell preinstalled. OnWindows, theWindows
Subsystem for Linux (WSL) or one of the many bash
packages for Windows can be used.

• It is a widely used standard for scripts controlling crit-
ical aspects of the operating system, so it is unlikely
to evolve in a backward incompatible way.

The execution speed and portability of the generated shell
scripts are clearly important issues. One of our contributions
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is to find ways to implement certain critical C language
features, such as pointers and file I/O, that are reasonably
efficient across the various shell implementations for our use
cases. Moreover, the readability of the generated scripts is
an issue our work addresses. We have developed pnut, a C
transpiler that preserves the structure of the C source code.
Pnut has a compiler backend that generates readable and
portable POSIX shell scripts from C source code.

Pnut has been written in C and its main source code file,
pnut.c, is compilable by pnut. This self-compilation pro-
duces the pnut.sh shell script which is a portable version of
the pnut compiler. The two step procedure to create pnut.sh
using an existing C compiler is shown in Figure 1. Once cre-
ated, pnut.sh can compile and execute C programs on any
system with a POSIX shell, and with no requirement for a
preinstalled C compiler or other tool. This allows C program-
mers with little experience in shell programming to develop
system utilities (installers, configurators, daemons, etc) that
work as is on a wide variety of computers.

Pnut’s shell backend was designed to produce shell script
code that is easy for humans to understand and review. Con-
sequently, a motivated software development team can do a
code audit of scripts generated by pnut, including pnut.sh
itself, to verify that it does not contain malicious code. The
scripts generated by pnut avoid shell constructs that would
hinder this auditing process. As explained in Section 2, this
makes pnut.sh particularly interesting as a trusted seed for
the purpose of reproducible builds.
In this paper, we motivate the design choices we took

to make pnut a practical tool for compiling C. The lessons
learned about portable and efficient shell scripting in the
context of compiling C are likely to be applicable to compil-
ers for other languages that generate portable shell scripts.
For reference, when we measure performance to support
our claims and choices it is done in the hardware/software
environment which corresponds to a typical development
computer with recent versions of various shells:

OS: Ubuntu 22.04.2 with Linux 6.5.0-41
Processor: AMD Ryzen 9 5900X @ 4.95GHz

RAM: 128GiB
shells: bash 5.1.16(1)-release, dash 0.5.11,

ksh 93u+m/1.0.0-beta.2, yash 2.51, zsh 5.8.1
Section 2 explains the compiler’s use for reproducible

builds, which is the main motivation for creating pnut. Sec-
tion 3 explains the main challenges to compiling C to shell
code and our solutions. Section 4 goes over the architecture
and optimizations used in pnut. Pnut’s C library is described
in Section 5. Section 6 gives a performance evaluation of
pnut on various shells. Finally, related work is in Section 7.
To bring the reader up to speed on the POSIX shell lan-

guage, we provide a brief overview of the relevant aspects
of the language in Appendix A.

We also provide pnut, its source code and scripts to repro-
duce our results in the artifact accompanying this paper [14].

2 Reproducible Builds and Bootstrapping
A reproducible build is a process of building software in a way
that ensures that the resulting executable programs can be
reproduced bit-to-bit. To achieve this, the source files must
be the same for every build and the compiler used must be
deterministic. Moreover, the compiler version must be fixed,
as different versions can generate different outputs.

Ideally, the compiler usedwould itself be built reproducibly,
which brings the question of how to compile the compiler.
Historically, this was seen just as a technical hurdle which
was to be overcome via something called a bootstrap but
whose actual details were largely considered as irrelevant,
as long as it ended up delivering a functional compiler.
The dark art of the bootstrap consists sometimes in vari-

ous ad-hoc workarounds, as documented for example in [15,
Appendix C], and in the general case it relies on the use
of an older but already compiled version of the same com-
piler, which can be discarded once the new version has been
successfully compiled. The latter approach is generally less
ad-hoc but can still be delicate, as discussed by Appel [3].
Yet, the technical difficulties of bootstrapping a compiler

have nowadays been overtaken by other concerns such as
having to keep around a precompiled version of the compiler,
that it complicates porting the compiler to a new platform, or
the fact that it fundamentally undermines the ideals of Free
Software since it requires distributing precompiled code (ba-
sically a “binary blob”) alongside the source code. The more
serious problems come down to reproducibility and security
and often presents themselves as software supply chain at-
tacks. These attacks are problematic because compromised
software that is distributed in an executable form is opaque,
making it hard for the user to detect any tampering (addition
of viruses, backdoors, etc) done prior to its distribution.
A given compiler’s source code may result in not bit-for-

bit identical executables depending on which older compiler
is used to bootstrap it, even after recompiling itself, and
those different executables can behave differently, which can
be abused using the famous trusting trust attack [19] where
compromised compiler can also compromise the executable
form of the software even if the source code has not been
compromised. Because a toolchain is also software built by
another toolchain, this argument applies recursively all the
way back to some primordial tools that must be trusted and
from which all the other toolchains can be built.

We propose that a practical choice for a universally avail-
able “root language” is a POSIX shell, as a shell will be used
for some of the preparation steps of the build process, such
as obtaining the sources, decompressing them, checking file
hashes, etc. In this case, the shell has to be a trusted tool,
otherwise it could compromise the sources at the very start
of the build process. Moreover, the many independent imple-
mentations of the POSIX shell make it possible to use diverse
double compilation [22] to increase confidence in the result.
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Figure 1. The file pnut.sh is created by a two step bootstrap procedure. The file pnut.c is compiled by an existing C compiler,
such as gcc. The executable compiler pnut.exe that is produced can then be used to compile pnut.c again to create pnut.sh.
The traditional “T” notation [1] for compilers is used, indicating the source/target/host language triplet. A given color indicates
a specific translator, ignoring the host language. Red is used for the pnut compiler, which compiles C to POSIX shell. The
inverted black triangle represents a machine of type M, whose architecture and OS don’t matter here.

Figure 2. The first steps of a reproducible build process on an i386 Linux computer. The pnut.sh C to shell compiler (red) is
executed with a POSIX shell to compile the pnut-exe.c program (beige) to the pnut-exe.sh shell script which is then used to
compile pnut-exe.c once more to produce the pnut-exe.exe executable compiler. This compiler can then be used to compile
more feature-full C compilers, here TCC (green).

This is an important motivation for developing the pnut
transpiler that compiles a subset of the C language to the
POSIX shell language. One can view it as a tool to help write
shell scripts, or as a way to bootstrap a compiler written in C
with an executable version that is human-readable, making it
possible to prevent attacks through a compromised compiler.

Because reproducible builds are an important use case for
pnut, we have also developed the pnut-exe C compiler, a
variant of pnut where the shell backend has been replaced
by one that generates Linux ELF format executable programs
for the Intel x86 architecture. Compiling the pnut-exe.c C
source file using pnut.sh produces the pnut-exe.sh shell
script, that can then be used to compile pnut-exe.c again to
obtain the pnut-exe.exe executable that is much faster than
the pnut-exe.sh shell script. pnut-exe.exe can then be
used to build increasingly powerful compilers in a chain, such
as the Tiny C Compiler (TCC [9]) that can then be used to
build other C compilers up to the GNU Compiler Collection
(GCC). The first few steps of the reproducible build process
are based on pnut are shown in Figure 2. A key point is that
the party interested in performing a reproducible build from
a POSIX shell only needs to obtain the files pnut.sh and

pnut-exe.c to start the process, and these are source code
files that can be audited for security issues. We will refer to
Figures 1 and 2 in subsequent sections to explain some of
our design requirements.

3 Compiling C to POSIX Shell
Given pnut’s goal to have easily auditable generated code,
these design principles were adopted:

• Preserve the general structure of the C source code.
• Generate regular shell code and avoid special cases.
• Avoid the use of hardcoded constants and magic num-
bers in the shell code.

• Avoid the use of the shell eval command and other
kinds of dynamic code evaluation, both for readability
and efficient safety auditing.

• Prioritize readability over performance, but don’t ig-
nore performance.

As a consequence, optimizations that would improve the
execution speed such as inlining, dead code elimination, loop
unrolling and constant folding are not performed by pnut.
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These constraints and the low-level nature of the C lan-
guage make taking advantage of certain features of the shell
language difficult. For example, the shell string processing
utilities are too high-level to be useful for the low-level op-
erations on C strings. The opposite is also true where some
C constructs are difficult to map to shell. As a result, certain
C features are not supported, this includes:

• goto and switch case fall-through: The shell doesn’t
have a direct way to implement this kind of control
flow, and supporting it would require transformations
that would diminish its readability.

• The address of (&) operator on local variables. Support-
ing this would prevent the direct mapping of C local
variables to shell variables.

• Floating point numbers: Floating point numbers are
not supported natively by the shell and would require
a large amount of code to implement fully (recall that
making use of external programs such as the Unix bc
is forbidden by our design constraints).

These features are not needed on a large class of programs
and, in particular, were not used for writing pnut.c and
pnut-exe.c. We note that these limitations stem from the
requirement for readability and auditability of the shell code.
The pnut-exe compiler, which targets machine code, is not
subject to these limitations and is thus suitable for building
TCC whose source code uses these features. That being said,
pnut.sh supports a comfortable subset of the C language
including all signed arithmetic operators, structures, enums,
pointers, pointer arithmetic and C preprocessor directives.
Also, as some of the implementation choices taken are

at the cost of some performance, we evaluate their impact
compared to the other options. The following table gives the
time taken by pnut.sh to compile pnut-exe.c on different
shells with default options which will be used as the baseline
when comparing different code generation approaches:

ksh dash bash yash zsh
24.6 s 43.8 s 60.7 s 61.9 s 664.2 s Time

3.1 Shell Variables and Functions
Because all shell variables live in the same namespace, it is
important to use a naming scheme that prevents conflicts be-
tween the internal variables used by pnut and the variables
of the compiled program. To this end, the underscore charac-
ter serves as a prefix to create separate namespaces for the
variables of the compiled program. Because local variables
are most common, they are assigned the empty namespace
and have the same name as in the C code. Global variables
are prefixed with one underscore to help distinguish them
from local variables, and internal variables are prefixed with
two underscores. This naming scheme is short and easily
recognizable and is used throughout the shell code gener-
ated by pnut. This prevents the use of C variables starting

with an underscore, but it is an acceptable compromise as it
improves readability to preserve the same name.

One kind of internal variable is temporary variable created
to store intermediate results. These use the __t prefix and
are numbered starting from 1. By using the internal variable
namespace, it makes it clear that these variables are not
present in the C code and were generated by the compiler.

In addition, certain variables such as IFS and PATH have a
special meaning in the shell. These variables are not allowed
by pnut. While pnut could assign different variable names
to these special variables, that would make the generated
shell code less readable and these variables can easily be
avoided by the programmer. An exception to this rule is
the argv variable which has a special meaning in zsh and
is commonly used in C for the command line arguments
received by main. This variable is mapped to argv_ in the
generated shell code, and the C variable argv_ is forbidden
to ensure that there are no naming conflicts.

All function names are prefixed with underscore with no
restriction regarding the use of underscores in the function
name. This leaves the namespace with no prefix available
for the runtime library functions and prevents conflicts with
the shell’s built-in functions and utilities.

3.2 Calling Convention
A major difference between POSIX shell and C is the treat-
ment of functions. POSIX shell procedures cannot declare
local variables, as shell variables are globally scoped, and
they cannot return a result value. We will nevertheless refer
to them as shell functions as this is the commonly used term.

3.2.1 Returning from Functions. One way of returning
a value from a function is to assign the value to a global
variable, which can then be read by the caller of the function.
Using the fact that shell allows assigning to variables with
computed names using string and arithmetic expansion, we
choose to have functions take as their first argument the
name of the variable that receives the result, the return vari-
able. We think this style reads easily as all function calls have
the same structure. Also, since the results of C functions are
often assigned to variables, this choice makes it possible for
a function to assign the result directly where the caller wants
the result to be. Concretely, the C function call
x = f(y, 1) is mapped to the shell code _f x $y 1.

In the cases where the result of a function is ignored, the
internal variable __ is used as the return variable as a conven-
tion. This shell variable cannot be accessed by the C program,
and so any value written to it is effectively discarded. The
presence of __ in a function call is a reminder that the result
of the function is ignored.

3.2.2 Local Variables. We use the term local variable to
mean a programmer-declared local variable or parameter, or
a compiler introduced temporary. Since POSIX shell offers
only globally scoped variables, local scoping of variables is
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obtained with a shallow binding approach. For this, we use
a callee-save calling convention. Every function starts by
saving the local variables to a stack so that the function is
free to use them. The variables are then assigned their local
value by the function. The variables get restored from the
stack when the function returns. Unlike the traditional C
stack implementation, this stack is used only for saving local
variables and is not used for control flow, meaning that there
is no stack space used when there are no local variables.
To make the bookkeeping of local variables easy to read,

it is abstracted using the let and endlet functions:

1 __SP=0
2 let() { # $1: variable name , $2: optional value
3 : $((__SP += 1)) $(( __$__SP=$1)) # Push
4 : $(($1=$2+0)) # Init
5 }
6

7 endlet () { # $1: return variable
8 # $2...: function local variables
9 __ret=$1 # Don 't overwrite return value
10 : $(( __tmp = $__ret))
11 while [ $# -ge 2 ]; do
12 : $(($2 = __$__SP)) $((__SP -= 1)); # Pop
13 shift;
14 done
15 : $(( $__ret=__tmp)) # Restore return value
16 }

The let function takes the name of a local variable as its
first argument and optionally takes the initial value as the
second argument. It saves the value of the variable to the
stack and assigns its initial value or 0 if the initial value is
not specified. The endlet function takes the name of the
return variable as its first argument, followed by the names
of the variables to restore. It makes sure not to overwrite the
return variable in case a local variable of the callee has the
same name as the return variable specified by the caller.
Calls to let appear at the head of function bodies, and

calls to endlet appear last. These statements always come
together, but endlet can undo the effect of multiple lets
and may appear in the middle of a function returning early.

This bookkeeping has a cost, since all functions, no matter
how small, require it as they all have the return variable
parameter when compiled to shell. Fortunately, the POSIX
specification includes local scoping for positional parameters
– the initial value of a function parameter can be retrieved us-
ing its corresponding positional parameter. This feature can
be used for parameters that stay constant over the execution
of a function and removes the need to save them to the stack.
This is done for the return variable which is always $1. This
allows functions without parameters and local variables to
avoid the overhead of local variable management.
In a function, the positional parameters can also be set

using the set command. This command replaces the posi-
tional parameters with the arguments given to it and can be
used as a way to store data that’s visible only in the function

call. This feature makes it possible to save the value of local
variables in the positional parameters instead of saving them
to the stack with let, greatly speeding up the calling con-
vention. However, set is less readable than using let, so we
use let by default and set is kept as a compilation option if
performance is needed since the difference in performance
can be significant, as shown here by comparing pnut.sh
compiling pnut-exe with this option to the baseline:

ksh dash bash yash zsh
15.0 s 34.5 s 38.6 s 35.4 s 252.2 s Time
0.61 × 0.79 × 0.64 × 0.57 × 0.38 × Ratio

3.2.3 Function Declaration. Combining the callee-save
calling convention with using a result variable, the prologue
of the generated shell functions is minimal, consisting of calls
to let followed by the initialization of the local variables if
necessary. The let calls for parameters are placed on the
same line as the function declaration, matching the position
where parameters are declared in C and hiding the fact that
function arguments are passed as positional parameters.

The epilogue is also short, with only an assignment to the
result variable and a call to endlet before returning. The
fib function in Figure 3 shows the prologue and epilogue
and compares it to the set version of the same function.

3.3 Memory
Unlike bash and other more advanced shells, the POSIX stan-
dard doesn’t provide arrays or any other data structure with
indexing. The only way to store data is in variables, with each
variable containing either a string or an integer (represented
as a string). Fortunately, it is possible to define variables with
a dynamic name using arithmetic expansion, which is how
arrays and ultimately the heap can be implemented.

We assign each memory location the variable underscore
followed by the address – address 0 corresponds to _0, ad-
dress 1 corresponds to _1, etc. This prevents the use of C
variables named with an underscore followed by a number,
which are valid in C. We think this is an acceptable compro-
mise, as the underscore is short and easily recognizable.

To reference dynamic variables, expansion is used to pre-
fix the address with _. Arithmetic expansion can be nested
multiple times and is expanded inside-out, permitting read
and writes to dynamic variables, and so to memory locations.
With this, pointers to objects are simply the address of the
beginning of the object just like in C. For example, writing
and reading the array arr at index i is achieved like this:

1 : $((_$((arr + i)) = 42)) # arr[i] = 42
2 : $((x = _$((arr + i)))) # x = arr[i]

3.3.1 Shell’s Internal Representation of theHeap. The
use of variables to represent the heap can cause performance
issues. All shells (dash, bash, ksh, zsh, mksh, yash) store
variables using one hash table for all variables, and so the
time to access variables varies depending on the number
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1 int fib(int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 return fib(n-1) + fib(n-2);
6 }
7 }
8
9
10
11

C source code

1 _fib() { let n $2
2 let __t1; let __t2
3 if [ $n -lt 2 ] ; then
4 : $(($1 = n))
5 else
6 _fib __t1 $((n - 1))
7 _fib __t2 $((n - 2))
8 : $(($1 = __t1 + __t2))
9 fi
10 endlet $1 __t2 __t1 n
11 }

Using let and endlet

1 _fib() { set $@ $n $__t1 $__t2
2 n=$2
3 if [ $n -lt 2 ] ; then
4 : $(($1 = n))
5 else
6 _fib __t1 $((n - 1))
7 _fib __t2 $((n - 2))
8 : $(($1 = __t1 + __t2))
9 fi
10 : $((__tmp=$1)) $((n=$3)) $((__t1=$4)) $((__t2=$5)) $(($1=__tmp))
11 }

Using set

Figure 3. Comparing let/endlet with set for Fibonacci

of variables in the environment, which directly correlates
with the amount of memory allocated by the C program. A
consequence of this internal representation of the heap is
that as more memory is allocated, the slower many of their
operations get. Also, because memory location variables are
pieced together dynamically, the shell must hash the variable
name, which can impact access time as longer variable names
take longer to hash, meaning that smaller addresses are faster
to access than larger addresses.

3.3.2 MemoryManagement. Because shell variables don’t
need to be declared before they can be used, new memory
locations can be created by simply accessing new variables.
In turn, those memory locations are added to the shell envi-
ronment when they are first written to. This separates the
allocation of memory and the use of hash table slots.

This simplifies malloc’s implementation as it doesn’t need
to initialize memory and a bump allocator is sufficient to re-
serve addresses. This allows large memory objects to be allo-
cated without impacting performance as their memory loca-
tions occupy the shell environment only if they are touched.

POSIX shell includes the unset command, which removes
variables from the shell environment. This command is used
to implement free, to reduce the size of the environment.
We note that with the bump allocator design, free does not
reduce the memory usage towards the memory limit, but
because the POSIX standard requires signed long integer
arithmetic, meaning at least 2 GiB (231) can be accessed with
this scheme. Here is the implementation of malloc and free:

1 __ALLOC =1 # 0 is reserved for NULL
2 _malloc () { # $1 = return variable , $2 = size
3 : $(( _$__ALLOC = $2)) # Track object size
4 : $(( $1 = __ALLOC + 1)) # Assign return value
5 : $(( __ALLOC += $2 + 1)) # Update bump pointer
6 }
7

8 _free () { # $2 = object to free
9 __ptr=$(($2 - 1)) # Start of object
10 __end=$(( __ptr + _$__ptr)) # End of object
11 while [ $__ptr -lt $__end ]; do
12 unset "_$__ptr"
13 : $(( __ptr += 1))
14 done
15 }

3.4 Strings and I/O
Another difference between C and POSIX shell is how strings
are represented. In C, strings are represented using null-
terminated arrays of bytes, which can be used like any other
array, while in shell, strings are a special type that can be
modified only using the provided API. This API is limited, be-
ing mainly useful for concatenating, cutting, and comparing
strings, and it does not allow random access to characters –
one of the most common access patterns used in C programs.

3.4.1 String Representation. To reconcile this incompat-
ibility, we settled on representing strings as arrays of integer
character codes, This requires packing and unpacking the
shell strings into arrays of bytes whenever a string crosses
from C code to shell code and vice-versa. This operation is
required to initialize string literals or to do any kind of I/O,
which is very common for programs like compilers.

Converting from a C string to a shell string is relatively
simple, as it can be done by outputting each character using
the printf \\octal_num command and capturing the output
in a command substitution in this manner:
1 _puts() { # $2 = address of string to print
2 __ptr=$2
3 while [ $((__c = _$__ptr)) != 0 ]; do
4 printf \\$((__c /64))$((__c /8%8))$((__c%8))
5 : $((__ptr += 1))
6 done
7 }
8

9 # $1 = address of string to pack
10 pack_string () { __str=$(_puts __ $1); }

This C string to shell string conversion may be slow on
certain shells as it uses a subshell, but since almost all conver-
sions are to then print the string, the subshell can be skipped
and the characters be printed directly.

Going the other way is more costly, as extracting the char-
acters is difficult in POSIX shell. Using variable expansion,
it is possible to remove the first character of a string us-
ing tail=${string#?} where "?" matches any character,
and then remove this string from the original string using
${string%"$tail"} to obtain the first character. This op-
eration is repeated until the string is empty. The following
function shows how this can be done:
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1 unpack_string () { # $1 = string to unpack
2 __str=$1
3 _malloc __addr $((${#__str} + 1))
4 __ptr=$__addr
5 while [ -n "$__str" ] ; do
6 __tail=${__str#?} # Remove head char
7 __head=${__str%"$__tail"} # Get head char
8 __byte=$(LC_CTYPE=C printf %d "'$__head")
9 : $(( _$__ptr = __byte)) # Store byte
10 : $(( __ptr += 1)) # Advance
11 __str=$__tail
12 done
13 : $(( _$__ptr = 0))
14 }

Shells are likely not optimized for this specific use case, so
we can expect that extracting 1 character requires traversing
the whole string at least once, and potentially allocating a
substring. This work is repeated for each character in the
string, meaning that the time complexity of unpacking a
string is𝑂 (𝑛2), where 𝑛 is the length of the string. For partic-
ularly long lines, the quadratic time can cause considerable
slowdown in the program’s performance.

To mitigate this problem, we found that extracting longer
chunks from long lines and iterating on those smaller sub-
strings is much faster. Specifically, we break long lines into
256-character chunks, then again into 16-character chunks
before extracting individual characters.

3.4.2 String Literals. Given the cost of unpacking strings,
the initialization of string literals requires attention as ini-
tializing all strings at the beginning of the program could
noticeably increase startup time. Also, each string initializa-
tion allocates memory which grows the environment and
contributes to slowing down the execution. As a result, string
literals are initialized the first time they are used, using the
defstr function below.

1 defstr () { # $1 = variable name , $2 = string
2 if [ $(($1)) = 0 ]; then # check if undefined
3 # Unpack string with escape sequences
4 unpack_escaped_string $1 "$2"
5 fi
6 }
7

8 defstr __str_0 "Hello" # convert "Hello"
9 _puts __ __str_0 # print string

Each string literal is associated with a unique string vari-
able that acts as a cache and is passed to defstr. When the
variable is empty, the string is unpacked and the result is
saved in the variable. The calls to defstr are placed just
before the string literal is used, improving readability as the
string variable is located close to where it is used.

3.4.3 Printf. Cprograms often output text with the printf
function, which is usually implemented as a library function.

Most calls to printf are with a constant format string, mak-
ing it possible to decompose the function call into an equiv-
alent sequence of calls to _puts and to the shell’s printf
function.
This makes it possible to not include the printf imple-

mentation in the scripts produced by pnut, and save many
packing and unpacking of format strings and arguments.
This optimization is particularly useful for programs that
output a lot of text using printf, which includes pnut itself.

3.5 Magic Numbers
We define magic numbers as numbers that appear in the
shell code but not literally in the C code. These numbers
can obfuscate the code and potentially hide bugs as they can
be difficult to verify. These come from the use of character
literals, enums and structures, and can be given meaning by
assigning each to a readonly global variable with a descrip-
tive name.

For character literals, the character codes are assigned to
global variables named __character__ for alphanumerical
characters, and __name__ otherwise. For example, ’A’ is
given the __A__ variable, and ’ ’ the __SPACE__ variable. C
character literals are then mapped to these shell variables to
make the code more readable. This indirection adds at most
a few percent to the execution time of the shell, as shown in
the table below comparing pnut.sh with the character code
placed directly in the code to the baseline.

ksh dash bash yash zsh
24.0 s 42.7 s 61.2 s 61.3 s 655.7 s Time
0.98 × 0.97 × 1.01 × 0.99 × 0.99 × Ratio

3.5.1 Structures. Similarly, because structures are just
like arrays, with the fields placed in consecutive memory
locations which are accessed by adding the corresponding
offset to the structure’s base address, the offset of each field
is computed by pnut and assigned to a global variable. For
example, here is a C programwith structs and the generated
shell code:
1 struct Point { int x; int y; };
2

3 struct Point *p;
4 void init_point () {
5 p = malloc(sizeof(struct Point));
6 p->x = p->y = 0;
7 }

1 # Point struct member declarations
2 readonly __x=0
3 readonly __y=1
4 readonly __sizeof__Point =2
5

6 _p=0
7 init_point () {
8 _malloc _p $__sizeof__Point
9 : $((_$((_p + __x)) = _$((_p + __y)) = 0))
10 }
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Table 1. Time in seconds to initialize an array of size N

N ksh dash bash yash zsh
10000 0.03 0.03 0.04 0.05 0.05
100000 0.25 1.27 0.44 0.50 0.44
500000 1.21 34.96 2.14 2.62 2.26
1000000 2.47 312.49 4.24 5.09 4.60

3.6 Readability
The auditing of pnut.sh being an obligatory step to ensure
that the existing C compiler hasn’t tampered in any way
with the generated shell code, pnut can include the C source
code as comments in the shell code. With this option, each
top-level declaration is prefixed with a comment contain-
ing the C code from which it was generated. This includes
comments from the C code that often contain important in-
formation about the code, such as the purpose of a function
or the meaning of a variable. This makes it easy to see the
correspondence between the C code and the shell code and
to verify that the shell code is correct.

Because it can almost double the size of the scripts gener-
ated, this option is disabled by default and is only used when
generating pnut.sh using an existing compiler to ensure
that the generated shell code is correct.

3.7 Performance Portability
In general, we observe that the fastest shells are ksh and
dash, while the slowest shells are bash and zsh. This rule is
not absolute, as the performance of a shell can vary greatly
depending on the nature of the programs it runs.

3.7.1 Memory Use. As detailed earlier, performance can
degrade when the shell environment grows too large, which
is proportional to the amount of memory used by the pro-
gram. This degradation highly depends on the shell, with
ksh showing almost no sign of performance degradation,
while dash quickly shows linear access times to variables.
Table 1 shows the time to initialize an array of variable size.

To maximize portability, programs should limit their mem-
ory usage or delay it until absolutely necessary. A few ways
to do this are to reuse memory locations, free memory as
soon as possible, and leave memory uninitialized for as long
as possible. In pnut, the statically allocated arrays can be left
uninitialized using a compile-time option to avoid increasing
the environment size immediately on startup. This option is
disabled by default, as it deviates from the C standard, but is
used for pnut.sh to significantly speed it up.

3.7.2 Faster String Conversion. The shell string to C
string conversion plays a central part in all the input primi-
tives of pnut and can take a significant time for programs
that read from the standard input or files, even when the
lines are short. This is because opening a subshell to convert

Table 2. Time in seconds to convert characters using a sub-
shell compared to the fast method with different environ-
ment size.

ksh dash bash yash zsh

subshell (1000) 0.06 3.12 6.23 4.99 5.21
subshell (10000) 0.06 3.67 8.80 5.70 5.68
subshell (100000) 0.06 6.77 22.77 11.59 9.53

fast (1000) 0.01 0.01 0.04 0.15 0.03
fast (10000) 0.02 0.03 0.04 0.15 0.04
fast (100000) 0.02 0.03 0.04 0.15 0.05

each character is slow, and on certain shells becomes even
slower as the environment grows as Table 2 shows.

Instead, a lookup table can be used to convert characters to
their character code. This works for alphanumerical charac-
ters that can form valid variable identifiers, as the lookup can
be done using variable expansion. For other characters, the
case statement can be extended to match them. The subshell
is then required only for control characters and extended
ASCII characters, which are much rarer.
1 __c2i_0 =48 ... __c2i_z =122
2

3 __c="A" # Convert character to character code
4 case $__c in
5 [a-zA-Z0 -9]) __code=$(( __c2i_$__c)) ;;
6 " ") __code =32 ;;
7 *) __code=$(LC_CTYPE=C printf %d "'$__c") ;;
8 esac

This method (fast) is much faster on all shells, which can
be seen in Table 2 that compares the original method (sub-
shell) to the one using the lookup table when converting the
characters of a string containing a mix of alphanumerical
and special characters. Because both methods are influenced
by the size of the environment, the cases with 1000, 10000
and 100000 variables are shown.

4 Implementation of Pnut
Because the shell can be a tricky platform to build on, pnut
was designed to be relatively simple and efficient. This means
restricting the use of memory and I/O, which can be expen-
sive on some shells, and trying to keep the code compact
since the more code, the more time it takes to bootstrap. As
a result, pnut is a single-pass compiler with no external de-
pendency such as Yacc or Lex, using instead a hand-written
lexer and recursive descent parser.
The single-pass nature of pnut is not constraining since

most optimizations done in a multi-pass compiler are specif-
ically avoided in pnut to favor readability. It also makes
managing memory usage easier as few objects are kept in
memory at any given time and static buffers can be reused
between each top-level declaration. On the other hand, it
also means relatively few checks are done on the program
which pnut assumes to be well-formed. This is a reasonable
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assumption as the compiler’s main purpose is to compile
itself and specific programs that are known to be good.

4.1 Lexer and Parser
Having no external dependency, pnut’s lexer and recursive
descent parser are hand-written using a fairly regular struc-
ture. Identifiers and keywords are interned, which makes
comparisons between identifiers very fast and reduces mem-
ory usage as only one copy of each is kept in memory.

One particularity of the C language is its preprocessor, of
which pnut supports most features: object and function-like
macros, token pasting, stringification, conditional compi-
lation and includes. The preprocessing is done as tokens
are read, which somewhat complicates the lexer but allows
preprocessing to be single-pass and minimize memory usage.

4.2 Code Generation
Shell code generation is heavily dependent on string con-
catenation, which can result in quadratic time and memory
complexity if implemented naively. To solve this problem,
pnut uses a tree-like data structure to represent concate-
nation. The data structure also differentiates between im-
mutable (mainly coming from the string intern pool and
from string literals) and mutable strings, and escaped strings
to avoid copying strings when it is not needed. To output
the compiled code, the structure is traversed and the strings
are outputted to stdout directly, again avoiding allocating
more memory than needed.
The tree nodes are stored in a preallocated buffer that is

reset and reused between each top-level declaration. Reusing
this buffer alone reduces total memory usage from almost
300K shell variables to 120K when compiling pnut-exe which
has a significant impact on performance on some shells.
Since the runtime library is embedded in the C code, the

functions used by the program are tracked and only the parts
of the library that are needed are added to the compiled code.
This reduces the amount of code generated which reduces
compilation time and bloat of the generated scripts.

4.3 Other Optimizations
The generation of the runtime library is done at the end of
the compilation and is more-or-less a series of printf calls.
Because printf calls are handled as a special case where the
shell’s printf directly receives the string literal, this avoids
much unpacking and packing of strings.

Local variablemanagement can be costly and is best avoided
for small functions that are called very frequently. Non-
recursive functions can often have their local variables made
global with a simple renaming to prevent conflicts with other
global variables. This was done on many of the reader and
lexer functions as they are small and called very frequently
as an alternative to inlining since the function call cost is
small compared to the variable management cost. That trans-
formation is not done automatically by pnut as it changes the

1 void exit(int status) {
2 asm (
3 "mov $1, %%eax\n" /* 1 = SYS_EXIT */
4 ".byte 0xcd ,0x80\n" /* int 0x80 */
5 : : "b" (status)
6 );
7 }

Figure 4. An implementation of the exit function suitable
for TCC and GCC when targeting a Linux computer with
i386 processor. The exit status is passed in the ebx processor
register and the int 0x80 instruction calls the Linux kernel
to execute the system call specified in register eax.

structure of the generated code and cannot be implemented
simply given the single-pass nature of the compiler.

5 C Library
The C language defines a number of standard functions that
are part of the C library, a.k.a the libc, that is typically linked
with all C programs. The prototypes of these functions are
defined in header files such as stdio.h for the standard I/O
functions (e.g. printf and fopen) and stdlib.h for miscel-
laneous utility functions (e.g. malloc and exit).
While many of the libc functions can be defined using

plain C code, some require calling functions inside the op-
erating system kernel. Traditionally, the libc functions are
defined using a mix of C code and assembler code (possibly
through the use of the asm construct, which is an extension
supported by many C compilers). Figure 4 shows a typical
implementation of the exit function with the asm construct
for a Linux computer with i386 processor.

Interfacing with the operating system through assembler
code is inappropriate for pnut, so it does not support the asm
construct. Instead, a specific set of libc functions are im-
plemented directly by the code generator. This builtin libc
is thus part of the compiler’s logic, as shown in Figures 1
and 2. For example, the code generator knows that a call to
the libc exit function can be translated to shell code that
uses the shell’s exit command. This approach is particularly
interesting for implementing calls to the libc printf func-
tion by a direct translation to the printf command, which
is a required command in the POSIX shell standard. There
is a minor drawback that some advanced printf format
specifiers of the C printf are not implemented by the shell
printf. We believe this is an acceptable tradeoff because the
generated code is easier to understand.

The builtin libc of pnut covers the following functions:
stdlib: exit, malloc, free
stdio: fopen, fclose, fgetc, printf, putchar, getchar
unistd: read, write, open, close
Functions in this set that have no direct translation to

standard shell commands, such as getchar, malloc, and
open, are implemented by a small runtime system that is
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added to the generated script. Here too the code of this
runtime system is embedded in the compiler, so that the
pnut.sh compiler is fully self-contained.
The functions in the builtin libc are the only ones that

are called in pnut.c and pnut-exe.c, allowing the second
step of Figure 1 and the first two steps of Figure 2 to be done
with no extra files needed (i.e. header files and libraries).

The pnut-exe compiler uses a similar approach except the
builtin libc does not contain an implementation of printf.
Instead, we make use of a custom external libc which im-
plements printf and other useful functions in plain C code.
In particular, the external libc’s printf, which supports
advanced formatting specifiers, calls write implemented by
the builtin libc. The external libc can also be used by pnut
to compile programs relying on a larger set of libc func-
tions. It currently contains the set of libc functions needed
to compile TCC (step 3 of Figure 2). Figure 5 lists this set.

6 Evaluation
Pnut is designed to be a practical tool for compiling C to
POSIX shell. It meets the goals of readability, portability
and reasonable performance, and has enough support of the
C language for pnut to compile itself and pnut-exe in a
reasonable time, which demonstrates that POSIX shell is a
viable “root language” for bootstrapping larger toolchains.

6.1 Readability
While readability is subjective, pnut generates shell code
that has the following properties:

• It follows the structure of the original C code, with
indentation and using the same names for variables
and functions.

• The code is regular, simple and predictable.
• It can include the C code as comment for auditing.

As a result, the pnut.sh script can be read and audited by
a programmer without too much difficulty (Appendix B gives
an example). As a rough measure of readability, we compare
the size of the generated shell script (with no embedded
C source code comments) to the size of the original C code
(stripped of its comment) in the following table. The pnut.sh
and pnut-exe.sh shell scripts have respectively 36% and 30%
more LOC than the C code. This increase in size includes the
runtime functions that are not present in the C code, making
the actual difference smaller in practice.
Pnut version C source Shell code Shell runtime
pnut.c 5263 7154 (1.36 ×) 415
pnut-exe.c 4746 6149 (1.30 ×) 415

6.2 Portability
Pnut is able to bootstrap itself on all tested shells, despite
some shells deviating slightly from the POSIX standard. It has
been tested on the shells ksh, dash, bash, yash, and zsh, and
on Linux (x86_64), MacOS (ARM), and Windows (x86_64 on

stdlib: malloc, free, realloc, exit
stdio: fopen, fdopen, fclose, fputc, fwrite, fputs,
puts, vfprintf, fprintf, printf, vsnprintf, snprintf,
sprintf
string: memset, memcpy, memmove, memcmp, strlen,
strcpy, strcat, strchr, strrchr, strcmp

Figure 5. The set of functions provided by the external libc.

WSL), all of which can run pnut.sh and compile pnut-exe
without any issues. This includes bash version 2.05b from
2002, which demonstrates the stability of the POSIX shell
standard and the non-reliance on more modern shell features
and bashisms. This is not surprising as no external utilities
are used, nor any platform-specific code, making pnut.sh
exceptionally portable.

6.3 Performance
Pnut’s performance can be evaluated in two ways: the time
taken by pnut.sh to compile a C program to shell and the
execution time of the generated shell script.

In addition to the time taken by pnut.sh to compile
pnut-exe.c, we also measure the time to compile smaller
programs using pnut.sh. These programs include a simple
hello world (hello.c), a program that prints the first 20 Fi-
bonacci numbers (fib.c), a program counting the number
of characters, words and lines of a file (wc.c), a file reading
program (cat.c), a program computing the SHA256 of a file
(sha256sum.c), the C4 compiler[17] 1 (c4.c) and the Rib-
bit Virtual Machine [16] (repl.c) running a R4RS Scheme
REPL. The compilation options used are the same ones that
are in the baseline times of Section 3 using the let/endlet
functions to manage local variables, character literals vari-
ables and the fast runtime library. The compilation times
are shown in Table 3 and are compared to pnut executables
produced by GCC (with the -O3 optimization level) and by
pnut.exe (i386 version).

Except for small programs, the execution of pnut.sh takes
a few seconds even on the fastest shells. These long compila-
tion times mean that using pnut.sh directly is not practical
for compiling large programs. The slow compilation is due
to the shell’s slow execution speed as pnut compiled with
GCC and pnut-exe are much faster and can compile large
programs in a reasonable amount of time. pnut.sh being
slow is not an issue since it is only meant to compile the
faster pnut-exe executable, and this step is only required
when used for reproducible builds.

The execution times of the generated shell files are shown
in Table 4. Again, we include for reference executables pro-
duced by GCC (with the -O3 optimization level) and from
pnut-exe. C4 is given its own source code as input, the
1The c4.c compiler is a minimal C compiler that can compile itself. It can
be compiled by pnut with the addition of a single memset call and adjusting
some buffer sizes.
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Table 3. Compilation times of programs using pnut.sh per shell. The times taken for the pnut.exe executable made from
GCC and pnut-exe to compile the same programs are included for comparison.

pnut.exe pnut.exe
ksh dash bash yash zsh (GCC) (pnut-exe)

hello.c (5 LOC) 0.028s 0.019s 0.059s 0.059s 0.085s 0.001s 0.004s
fib.c (19 LOC) 0.089s 0.059s 0.190s 0.197s 0.314s 0.001s 0.005s
cat.c (41 LOC) 0.183s 0.119s 0.407s 0.427s 0.666s 0.001s 0.018s
wc.c (64 LOC) 0.281s 0.188s 0.655s 0.673s 1.246s 0.001s 0.021s
sha256sum.c (233 LOC) 1.512s 1.105s 4.058s 4.078s 9.007s 0.001s 0.034s
c4.c (529 LOC) 5.494s 5.274s 13.956s 14.259s 67.350s 0.002s 0.085s
repl.c (814 LOC) 13.361s 13.650s 23.543s 19.614s 105.406s 0.002s 0.079s
pnut.c (6698 LOC) 31.008s 72.997s 76.548s 76.455s 1094.586s 0.006s 0.469s
pnut-exe.c (6296 LOC) 24.991s 44.610s 61.606s 62.309s 660.516s 0.005s 0.368s

Table 4. Execution times of small programs produced by pnut.sh per shell. The time taken for the same executables compiled
by GCC and pnut-exe are included for comparison.

ksh dash bash yash zsh GCC pnut-exe

hello.c (5 LOC) 0.002s 0.001s 0.001s 0.002s 0.001s 0.001s 0.001s
fib.c (19 LOC) 0.784s 0.399s 1.617s 1.948s 2.557s 0.001s 0.001s
cat.c (41 LOC) 2.828s 1.189s 3.611s 3.992s 4.508s 0.001s 0.001s
wc.c (64 LOC) 3.174s 1.627s 5.009s 5.611s 7.615s 0.001s 0.001s
sha256sum.c (233 LOC) 5.964s 2.446s 7.478s 8.286s 6.831s 0.002s 0.008s
c4.c (529 LOC) 1.691s 18.330s 3.903s 3.969s 23.144s 0.001s 0.058s
repl.c (814 LOC) 3.251s 21.117s 6.241s 6.469s 52.086s 0.001s 0.002s

R4RS REPL receives a simple hello world program and other
programs that take a file as input use a 64KiB file with 512
characters per line and 128 lines. The execution time of the
hello.c is almost instant, showing that the initialization
time of the generated script is minimal, fib.c takes a few
seconds which is expected as it does mostly arithmetic and
function calls, which the shell is not particularly good at.
The other scripts that do I/O are between 1000 and 10000
times slower than the executables produced by GCC, but
still only take a few seconds to read and output a file or to
count the number of characters, words and lines of a file.
The sha256sum and repl programs are the slowest as they
combine I/O with many arithmetic operations, but are still
usable on small inputs.

6.4 Use for Reproducible Builds
As of now, pnut is complete enough to bootstrap itself and
compile pnut-exe. Work to build TCC with pnut-exe is
ongoing. Once this is achieved, building GCC is easy as it
can be done with a known recipe from TCC.

7 Related Work
As far as we know, Pnut is the only C to POSIX shell com-
piler that supports a large enough subset of C to be able to
compile itself. There are some compilers for domain-specific
languages that produce shell scripts, all with the explicit goal
of simplifying shell scripting:

• Amber [12]: Aims to facilitate shell scripting, produces
scripts that are Bash-compatible. Written in Rust.

• Batsh [8]: C-like language that can be compiled to
both Bash and Windows Batch. Written in OCaml.

• Bish [6]: Aims to make Bash scripting easier with a
more modern syntax. Written in C++.

• Powscript [21]: Transpiler from a CoffeeScript-like
language to Bash, with an option to generate POSIX
compatible code. Written entirely in Bash.

These projects show that there is interest for higher-level
languages that compile to shell scripts. However, all of these
projects require the use of a custom language, which can be
a barrier to entry for some users. In contrast, Pnut works
with most standard C code and doesn’t require programmers
to learn a new language. And because it is self-applicable
with no external dependencies its installation is trivial which
makes it accessible to an even wider audience.

On the reproducible build side, a similar project is Guix’s
Full-Source Bootstrap [5] whose goal is to root the Guix pack-
age ecosystem in a minimal set of trusted binaries. It does
so by compiling the GNU toolchain (GCC, make, binutils)
starting from a 357-byte seed program that can be reasonably
audited manually given its size. Since so much software is
built on top of C, this allows most Guix packages to be built
from source in a fully reproducible way.
This approach is fundamentally different from the one

pnut takes as it tries to remove pre-built binaries as much as
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possible from the bootstrapping process while Pnut assumes
the existence of a shell. The consequence of Guix’s approach
is a reliance on a large amount of x86 machine encoding
of instructions and assembler code that require experts to
audit. Both approaches are likely complementary by having
pnut.sh or scripts generated with it be part of the seeds used
in the full-source bootstrap project as they can be manually
audited unlike pre-built binaries.

Timewill tell if pnut can contribute to the Guix Full-Source
Bootstrap as the project is still in progress. As noted by
Tournier [20], the binaries for the Guile Scheme compiler,
Bash, tar, mkdir and xz, totaling 25 MB in size, are required
to initiate the bootstrap process. It is unclear how the project
will rid itself of these dependencies without having to rewrite
part of their source because so much of the full-source boot-
strap now relies on them.
This dependency on bash is convenient for pnut since it

is a POSIX shell. This means that it could potentially be used
to reduce the size of the prebuilt binaries by compiling some
of them, tar for example, using only pnut.sh and bash, and
without having to rewrite them from scratch.

Additionally, by starting from a minimal seed, Guix’s Full-
Source Bootstrap includes numerous steps to reach TCC
and GCC, and because so many of the tools are purpose-
built, auditing the entire source code is a significant task. In
contrast, we think pnut can bootstrap these binaries in fewer
steps and less code to audit, with all code being written in C
and readable shell, making the task easier.

8 Conclusion
We have presented pnut, a C to POSIX shell transpiler writ-
ten in C that can compile itself and that generates human-
readable shell code. Because the compiler is self-applicable,
pnut can be distributed as a human-readable shell script,
pnut.sh, that can run on any system with a POSIX compli-
ant shell. This makes pnut.sh a practical tool for bootstrap-
ping a complete build toolchain reproducibly as it can be
easily audited, which defeats possible "trusting trust" attacks
that are generally ignored as they are difficult to detect.
Additionally, because POSIX shell is not a typical com-

pilation target, we discussed the design choices that make
the generated code humanly readable while preserving the
structure and semantics of the original C code. Special atten-
tion to performance was given to ensure that pnut.sh and
other generated scripts are reasonably fast on all shells so
that all POSIX compliant shells can make use of pnut, and
performance pitfalls that happen when using the shell as a
compilation target are documented with ways to avoid them.
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A POSIX Shell Overview
The POSIX shell language is relatively basic, offering few
of the facilities of modern programming languages. Most
shell implementations extend this language in various ways,
but those extensions are not standardized and not portable.
Being mainly used to manipulate various forms of strings,
most of the shell’s features center around this.

A.1 Strings and Expansion
Strings can be expressed with double quotes, single quotes,
and no quotes when the string’s characters have no special
meaning for the shell. Shell variables are assigned string
values with the syntax name=string.

Variables are accessed using the expansion mechanism.
Commands are first expanded before being executed. Ex-
pansion is central to how the shell works and is how most
operations are done. For our needs, the expansion steps are:

1. Variable expansion
2. Arithmetic expansion
3. Command substitution

The $ character introduces all these expansion kinds. For
variable expansion to happen, the syntax $name is used,
or the alternative ${name} which is useful in situations
where the expansion needs to be immediately followed by
a character that is valid for variable names. The value of
the variable is then substituted in its place. Expansion of
undefined variables is legal, and produces an empty string.
Expansion also can be transformed with the following forms:

• ${#name}: Length of the variable value
• ${name#pattern}: Remove shortest prefix pattern
• ${name%pattern}: Remove shortest suffix pattern
• ${name-value}: $name if non-empty, otherwise value

In these forms the pattern is itself the subject of variable
expansion, which is useful to match a computed pattern.
Arithmetic expansion runs second and is used to eval-

uate integer expressions with the syntax $((expression)).
Section A.2 explains this in more details.

Command substitution comes next and handles the syntax
$(command) and the alternative syntax `command`. This
expansion is done by running the command in a subshell,
and substituting it with the standard output of the command.
A subshell works like a subprocess, inheriting all charac-
teristics of its parent. This includes variables and function
declarations. However, any changes in the subshell are dis-
carded when it ends. It is the idiomatic way to capture the
output of a command in a variable for later use, for example:

num=42 thing=" black cat"
x="$num${thing}s" # x = "42 black cats"
echo "length of \"$x\" is ${#x}"
hex=$(printf "0x%x" $num) # capture output
echo "$num = $hex" # prints: 42 = 0x2a
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A.2 Arithmetic Expansion
The arithmetic expansion $((expression)) evaluates the ex-
pression using signed integer arithmetic with at least 32 bit
precision2. Most of the C integer arithmetic operators are al-
lowed in the expression, with the exception of the increment
and decrement operators, the sizeof operator and prefix &
and * operators. Moreover, function calls are not allowed in
expressions. Operators have the same precedence as C. This
close similarity is convenient for translating C to shell.

In expressions, variables are accessed without the $ prefix,
with empty or undefined variables replaced by 0. Assignment
operators such as = and += are supported, and update the
variable outside the expression, declaring it if needed. For
example, $(( (x = y = 1 << 5) > 10 )) expands to 1
(true) and assigns 32 to the variables x and y.

A very important and perhaps less known feature of arith-
metic expansion is that it can be nested. In appearance, this
is not any more useful than using 1 level of expansion, but
because of the order of expansion, it can be used to define
variables with dynamic names, as in this example:

a_6 =42 a_7=5 i=7
: $(( a_$i += 1 )) # Increment a_7
echo $(( a_$((a_$i)) )) # Output a_6 , i.e. 42

This level of indirection is essential to implement arrays
in POSIX shell as it does not support arrays natively. This
avoids having to use a more general evaluation method such
as eval which is considered bad practice as it can execute
any shell command. However, using arithmetic expansion to
implement arrays limits the array elements to integer values.

A.3 Variables and Functions
Shell functions can be declared and called like so:

foo() {
...

}

foo 1 2 3 # Call foo with arguments 1, 2 and 3

The shell does have a return statement to immediately
return from a function, but unlike C and other languages it
does not allow specifying a value. Instead, it is customary
to write the return value in a variable and have the caller
access this variable to retrieve the value.
Shell functions do not declare their parameters. This is

because functions can take any number of arguments which
are received in the function using positional parameters –
the first argument is in $1, the second in $2 and so on. The
syntax $# expands to the number of arguments passed to
the function. It is also possible to refer to all parameters at
once using the syntax "$@" which expands to the function
parameters separated with whitespace.

2We infer this from the POSIX standard specification “Only signed long
integer arithmetic is required.”

The following commands interact with the parameters:
• set replaces the positional parameters with the argu-
ments it receives.

• shift drops the first parameter of the function and
shifts the positional parameters by 1 to the left. This
can be used to iterate over a function’s arguments:

concat () {
string=
while [ $# -ge 1 ]; do # Iterate over params

string="$string$1" # Concat string and $1
shift # Drop the first param

done
}

concat "abc" "def" "ghi" "jkl" "mno"
printf "The alphabet begins with $string"

The positional parameters of a function and $@ are locally
scoped. As we will see, this is very convenient as all other
shell variables are global.

A.4 Input and Output
The POSIX shell’s standard ways to do I/O include:

• echo: Outputs its arguments to the standard output
with a newline at the end.

• printf format arg1 arg2. . . : Formats a string and
outputs it to the standard output. Supports %s, %d, %o,
and \octal_num in the format string like C’s printf.

• read var1 var2. . . : Reads a line from the standard
input, splits it on the delimiters specified by the IFS
(Internal Field Separator) shell variable and stores the
words in the variables passed as arguments. The -r
option disables “backslash escaping”.

A noteworthy limitation of the read command is that it
can’t read null bytes, so it isn’t possible for the shell to read
binary files. However, printf can output any byte, so it can
create binary files.
The output of commands can also be redirected to other

file descriptors, such as standard error or a file. Files can be
opened for reading and writing using the exec command
and the < (read from), > (write to) and >> (append to) redi-
rection operators, and file descriptors can be referred by
their number prefixed with &. To close a file descriptor, the
exec command with the <&- operator can be used. A text
file a.txt can be copied to the file b.txt like this:
exec 3< a.txt # Open a.txt in read mode as fd 3
exec 4> b.txt # Open b.txt in write mode as fd 4

IFS= # Don 't split line
while read -r line <&3; do # Read line from a.txt

printf "%s\n" "$line" >&4 # Write line to b.txt
done;

exec 3<&- # Close files a.txt and b.txt
exec 4<&-
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B Compilation Example
In this appendix we give a code generation example to illus-
trate some of the features of pnut. It shows the compilation
to POSIX shell code of the accum_digit function found in
the pnut.c file, and thus this shell code is part of pnut.sh.
The compilation was done while activating the option to
include the C source code as comments in the shell code, so
the C source code is readily accessible to any party interested
in understanding and auditing the code (as well as you the
reader of this paper).

accum_digit is part of the tokenizer for integers and
string escapes. It looks at the current character, in the C
global variable ch, and checks that it is a valid digit in the
given base, and if so accumulates it in the C global vari-
able val. It advances to the next character by calling get_ch
before returning whether a digit was accumulated.
It is noteworthy that the shell code and C source code

have the same structure, and are of a similar complexity to
understand. The shell code uses variables to refer to specific
characters, so the meaning is clear. The uses of let, endlet
and the undescore prefix on the variables helps clarify the
scope of the variables (base and digit are local, and _ch
and _val are global).
####################### C code ########################
# int accum_digit(int base) {
# int digit = 99;
# if ('0' <= ch && ch <= '9') {
# digit = ch - '0';
# } else if ('A' <= ch && ch <= 'Z') {
# digit = ch - 'A' + 10;
# } else if ('a' <= ch && ch <= 'z') {
# digit = ch - 'a' + 10;
# }
# if (digit >= base) {
# return 0; /* char is not a digit in that base */
# } else {
# val = val * base - digit;
# get_ch ();
# return 1;
# }
# }
#################### End of C code ####################
: $((digit = base = 0))
_accum_digit () { let base $2

let digit
digit =99
if [ $__0__ -le $_ch ] && [ $_ch -le $__9__ ] ; then

digit=$((_ch - __0__))
elif [ $__A__ -le $_ch ] && [ $_ch -le $__Z__ ] ; then

digit=$(((_ch - __A__) + 10))
elif [ $__a__ -le $_ch ] && [ $_ch -le $__z__ ] ; then

digit=$(((_ch - __a__) + 10))
fi
if [ $digit -ge $base ] ; then

: $(($1 = 0))
else

_val=$((( _val * base) - digit))
_get_ch __
: $(($1 = 1))

fi
endlet $1 digit base

}
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