
Genetic Instruction Scheduling and Register Allocation

Fernanda Kri
Universidad de Santiago

Departamento de Ingenierı́a Informática
Av. Ecuador 3659

Santiago, Chile
fdakri@diinf.usach.cl

Marc Feeley
Univerisité de Montréal

Département d’Informatique et Recherche Opérationnelle
2920 Chemin de la Tour

Montréal, Canada
feeley@iro.umontreal.ca

Abstract

The construction of efficient compilers is very complex,
since it has to contend with various optimization problems
and depends on the characteristics of the architecture of
the machine for which they generate code. Many of these
problems are NP-hard. The genetics algorithms have been
shown to be effective in the resolution of difficult prob-
lems, however, their use in compilation is practically non-
existent. In this paper we propose a solution to the prob-
lems of register allocation and instruction scheduling. We
carry out an analysis of performance by comparing with the
more traditional approaches for these problems and we ob-
tain profits on the speed of the generated code varying be-
tween -2% and 26%.

Keywords:: optimizing compiler, genetics algorithms,
instruction scheduling, register allocation.

1. Introduction

In the compilation process it is necessary to solve several
NP-hard optimization problems [1]. Generally, these prob-
lems are simplified and resolved using heuristics, which
produces approximate solutions in a reasonable time. For
example, the register allocation problem is often solved lo-
cally within each procedure or even within each basic block.
A total solution using traditional heuristics is too complex,
either because of the memory required, the length of ex-

ecution time, or the poor solution quality for large prob-
lems [2, 3].

To define the heuristics, compiler designers base their
work on the machine characteristics and the assumptions of
the source programs. This results in the heuristics function-
ing well in some cases and badly in others, according to
whether the assumptions are true or false. The use of genet-
ics algorithms (GA) could make it possible to solve the op-
timization problems related to compilation in a more gen-
eral way than the heuristics currently used.

The genetics algorithms are methods of research that are
based on natural evolution [4, 5, 6]. In order to solve a prob-
lem with GA, it is necessary to find a representation for the
(individual) solutions so that it is capable of encoding all of
the possible solutions with the problem. Each solution has
an associated numerical value, which is a measurement of
its quality (fitness function). The GA starts with a set of ran-
dom solutions (population) and forces them to evolve (from
one generation to another) in the hope that at the end of
the evolution process the quality of the population has im-
proved. The evolution is carried out by using genetics oper-
ators (selection, crossover and mutation). We use a nontra-
ditional fitness function: real execution time of the gener-
ated code. This choice is based on the importance of using
a precise fitness function to ensure the GA produces posi-
tive performances. If the criterion of optimization is the ex-
ecution time of the generated code, then the most exact fit-
ness function is the real execution time.

This article is organized as follows. Section 2 introduces
the problems of register allocation and instruction schedul-
ing and shows the main techniques used for their resolu-

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

tion. Section 3 shows the design of the GA in order to solve
the problems of register allocation and instruction schedul-
ing. Section 4 presents the performance evaluation. Finally,
Section 6 presents our conclusions and describes some fu-
ture work.

2. Related work

2.1. Register allocation problem

Typically, the compiler front-end generates an intermedi-
ate representation comprising a great number of variables.
At code generation time, these variables must be assigned to
either a register or the memory. On modern processors, the
register instructions are executed more quickly than those
implying memory access. Judicious use of the registers is
very important at code generation time. It is essential to de-
termine which variables are stored in the registers and to
identify the registers to which they are assigned at each
point of the program. This assignment must respect the con-
flicts in variables. The problem in determining the assigna-
tion of variables to the registers by keeping account of these
conflicts is known as the register allocation problem [1].

The most important approaches to resolving register al-
location problems are the graph coloring allocators and the
on-the-fly allocators. Chaitin et al. [7] were the first to de-
sign a graph coloring allocator. This register allocator was
useful as a basis for a large number of allocators (Chaitin
style allocators). Briggs et al. [8, 9, 10] propose some mod-
ifications, which result in a major reduction of the number
of variables which are spilled (conservative coalescing, op-
timistic coloring, rematerialization). Other works, like those
of Bernstein [11] et al and Lueh [12], use the different
heuristics to choose the nodes to spill.

In the original Chaitin allocator, the STORE instruc-
tions are placed after each definition of the variable and
the LOAD instructions before each use. Bergner et al. [13],
Cooper and Simpson [14] and Lueh et al. [15] developed the
heuristic versions for better placing of these instructions, in
order to decrease the spill and avoid limiting the instruc-
tion level parallelism. Callahan and Koblenz [16] propose a
graph coloring allocator that executes the program for col-
oring of segments considering its flow structure. This allo-
cator places the spills in the least used parts of the program.
Chow and Hennessy [17] introduce a graph coloring allo-
cator that assigns the registers in function of the number
of times that the variable is referred and the execution fre-
quency of the basic block.

The on-the-fly allocators [18], [19] seek a compromise
between allocation quality and compiler time. They are in-
teresting when the compile time is an important factor (for
example, in systems of dynamic compilation).

2.2. Instruction scheduling problem

1

2

3 6

7

5
4

(a)

(1) r1 = mem[10]
(2) r2 = mem[r1]
(3) r3 = r1 + r2
(4) r4 = r3 + 5
(5) r5 = mem[20]
(6) r6 = r2 * 10
(7) r7 = r6 + r4

(1) r1 = mem[10]
(2) r2 = mem[r1]
(3) r3 = r1 + r2
(6) r6 = r2 * 10
(4) r4 = r3 + 5
(5) r5 = mem[20]
(7) r7 = r6 + r4

(c)

(b)

Figure 1. (a) Program example. (b) Depen-
dence graph. (c) Scheduler program.

The modern processors have several functional units that
can work in parallel. This characteristic allows the pro-
gram’s implicit parallelism (instruction level parallelism, or
ILP) to taken advantage of. So that two programs’ instruc-
tions can be executed at the same time, they must be in-
dependent. For example, in the figure 1(a) instructions 1, 2
and 3 are dependent because they possess data dependence.
They must therefore be executed in this order because if
not, the result obtained will not be that desired. On the other
hand, instruction 3 is independent of instruction 6, so these
can be executed in any order, even in parallel. These depen-
dences can be represented by a graph, as shown in figure
1(b).

To take advantage of ILP, the code must be rewritten so
that the instructions are generated in the appropriate order.
In our example, if we want instructions 3 and 6 to be exe-
cuted in parallel, the code must be rewritten as figure 1(c)
shows. This problem is called instruction scheduling [20].
The instruction scheduling problem is NP-hard [2]. Two
main approaches exist to tackle the problem: loop schedul-
ing and basic block scheduling. The loop scheduling orders
instructions into the loop body. The Modulo Scheduling al-
gorithm proposed by Rau [21] is most frequently used to
solve this problem. Several modifications were presented
in [22] and [23]. In [24], a comparison of several mod-
ulo scheduling techniques is presented.

Basic block scheduling consists of reordering the in-
structions in each basic block of the program. Since there
are no loops, the dependences of the variables can be rep-

2

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

resented by a DAG (Directed Acyclic Graph). The algo-
rithm most often used to solve this problem is List Schedul-
ing, which was proposed by Gibbons and Muchnick [25]. In
Cooper et al. [26], Wilken et al. [27] we found different im-
plementations of this algorithm.

The register allocation and the instruction schedul-
ing problems are strongly interdependent [28]. Zalamea
et al. [23], Eichenberger et al. [29], Ning and Gao [30],
Gopal and Govindrajan [31] define different heuris-
tics to solve both problems simultaneously.

Although the metaheuristic methods were largely used to
solve NP-hard problems, their use in compilation is rare. We
find some work on multiprocessor scheduling in [32, 33],
but they tackle the problem in an abstract way. Very few
works have really managed to use these methods in com-
pilation. Williams [34] and Nisbet [35] use GA to carry
out the automatic loop parallelization in a parallel language
compiler. Beaty [36, 37] deals with the instruction schedul-
ing problem using an algorithm of list scheduling, where
the priority of each instruction is found by metaheuristics
(GA and research taboo [36]). Beaty proposes an approach
to carry out scheduling using a genetic algorithm but it does
not produce results. In [37], he evaluates various genetics
operators and vicinity generation functions. These results
show that the two methods make it possible to find good so-
lutions to the problem of instruction scheduling, but they
do not show performance results. Finally, Stephenson et
al. [38, 39] propose the use of genetic programming and ma-
chine learning to calculate the priorities for the traditional
compiler heuristics.

3. The Genetic Algorithms

3.1. The fitness function

One of the determining factors in obtaining a good per-
formance from GA is the accuracy of the fitness function.
The more precise the fitness function, the more likely a GA
is to converge towards higher quality solutions. For exam-
ple, if we want to obtain the smallest object code possible,
the instruction number of the object code is a suitable fit-
ness function. However, if our objective is to generate the
object code with the shortest execution time, finding an ad-
equate fitness function is not simple since this depends on
a great number of hardware characteristics (memory speed,
pipeline depth, structure of calculating unit, etc).

The use of the real execution time as a fitness function of-
fers some interesting advantages. Firstly, since our objective
consists of minimizing the execution time of the generated
code, the real execution time is the most precise measure-
ment we can have. Moreover, by using this fitness function,
we need only very little information on target machine ar-
chitecture, since we do not need to draw up estimates of the

behavior of the machine. Another advantage of the use of
the execution time is that we measure the real effect of op-
timizations of the target machine. This includes the indirect
effects of optimizations that are very difficult to estimate,
for example, the fault pages or the proprietary characteris-
tics of the architecture.

In order to measure the quality of each individual, we
must generate the object program described by the individ-
ual (allocation and scheduling), in order to carry it out and
measure the real execution time. We measure the execution
time by making an operating system call that determines the
time used by the program.

3.2. The representation

We define an individual as the concatenation of 2 sub-
individuals, one for each problem (figure 2).

Register allocation Instructions scheduling

Figure 2. Individual representation

In order to choose a representation for each problem, it
is necessary to take into account the interdependence of
the problems. It is possible that, because of the interde-
pendence between the problems, the instruction scheduling
is not compatible with the register allocation, and yet the
individual trained by the concatenation of these two sub-
individuals is non-feasible. The design of sub-individuals
must consider this dependency, with the objective always
being to generate feasible individuals.

(1)
(2)
(101)
(3)

r1=mem[10]
t1=mem[20]
B=store t1
t2=r1+2

(1)
(100)
(2)

(102)
(3)

(101)

t1=mem10]
A=store t1
t1=mem[20]
B=store t1
t1=load A
t2=t1+2

1 1012 3

1 100 2 101 102 3

Figure 3. Instructions scheduling individual

Our aim is to train an individual (concatenation of the
sub-individuals for each problem) that is always feasible.
Thus, all the individuals in the population can be evaluated.

3

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

For the register allocation problem, we chose the fol-
lowing representation (based on a graph coloring prob-
lem [40]): the individual is a chain of length � of positive
or negative numbers. Each element of the individual repre-
sents a variable. The variables represented by negative val-
ues are directly assigned to the memory. GA uses a greedy
function, which assigns the variables represented by posi-
tive values to the registers.

The function treats the variables sequentially in the or-
der in which they appear in the individual, and when inter-
ferences between the variables allow, available registers are
assigned to them. If not, the variable is assigned to the mem-
ory.

For the instruction scheduling, we use long fix � indi-
viduals, where � is the number of instructions, by assign-
ing all the variables to the memory, i.e. � is the maximum
length. The instructions are numbered with two distinct se-
quences. The first represents (using the numbers 0 to �) in-
structions that do not depend on the allocation and must be
present regardless of the allocation. The second represents
(using numbers larger than � , where � � �) the instruc-
tions that depend on the allocation (move instructions, stor-
age and loading). Thus, without difficulty we can eliminate
the instructions that are no longer necessary after a modi-
fication of the allocation without changing the order of the
preserved instructions. Therefore, the evolution process is
not disturbed since the relative order of the instructions in
the individual is preserved. Figure 3 shows an example of
an individual developed according to the above method.

With the selected representations for the two problems,
all the individuals (concatenation of register allocation and
instruction scheduling individuals) allow the generation of
the correct object code and thus, the joint solutions of the
problems.

3.3. The Genetic Operators

The crossover and mutation operators depend on the rep-
resentation of the problem and they must be defined by tak-
ing into account the characteristics of each problem. Conse-
quently, they will act independently on each sub-individual.
On the other hand, the selection operator acts on the com-
plete individual, because what interests us is measuring the
quality of a complete individual, namely that made up of so-
lutions to all the sub-problems. Then, we use the traditional
selection operator, the roulette-wheel selection.

We empirically considered and evaluated operators of
classic crossover and mutation that have been used suc-
cessfully in similar problems. For the crossover we evalu-
ated OBX and PBX and both showed a similar performance.
However, as far as the quality of the solution, OBX allowed
a faster convergence. For the mutation we used a random
change in a portion of the individual.

����������
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������

��������
��������
��������
��������

��������
��������
��������
��������

����������

�����
�����
�����
�����

Selection

Genetics operatorsPopulation
Allocation Scheduling

Genetics operators
Scheduling

Allocation

Code
generation

Program
execution

Fitness Function

Figure 4. GA structure for the register alloca-
tion and instruction scheduling problems

Figure 4 shows the operation of the GA. The popula-
tion is formed by individuals, where each individual is com-
posed of solutions to the problems to be solved. With each
generation, the selection operator chooses individuals ac-
cording to their quality. Then, each individual is subdivided
so that each sub-individual is processed by the correspond-
ing operators. Finally, the individual is rebuilt and evaluated
by the fitness function.

4. Results

The machine used for the experiments described below
is an Ultra-1 SPARC, with an UltraSparc-I 167 MHz pro-
cessor and 768 MB memory. We use the function of the op-
erating system ���� to measure the execution time. We add
user and system times. All the results presented are aver-
ages of five executions. In all cases, the standard deviation
is smaller than 0.005 seconds.

Name Description

bj Program that plays black-jack
in order to measure the machine performance

bubble GNU bubble sort
dhr Dhrystone
fft FFT implantation
fib Calculate of fibonacci number
flow Exhaustive algorithm implemantation

to calculate the maximum flow of a network
fulk Ford-Fulkerson implantation

to calculate the maximum flow of a network
hanoi Hanoi towers program
heap GNU heapsort
heapsort Program which carries out several times a heapsort

in order to measure the machine performance
insertion GNU insertion sort
merge GNU merge sort
arithm Program that executes aritmeticas operations in a cycle
queens n queens program
quick GNU quick sort
selection GNU selection sort
shuffle Checking of a generator of random random numbers
tfftdp Another FFT implantation
whet Whetstone simple precision

Table 1. Benchmark descriptions

The benchmarks used are described in the table 1. The
table 2 indicates the number of procedures (NP), the num-
ber of variables used in each procedure (VpP), the num-
ber of basic blocks (NBB) and the size of the largest basic
blocks (GBB) for each benchmark.

4

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

Name NP VpP NBB GBB

arithm 1 19 12 139
bj 5 32-6-2-2-6 562 119
bubble 2 3-1 16 8
dhr 13 7-2-2-2-2 138 23

1-1-1-0-0-0-0-0
fft 5 3-14-3-3-3 119 154
fib 3 2-0-0 18 18
flow 10 4-4-3-3-3-3 150 25

2-1-0-0
fulk 10 4-4-4-4-3-3 168 35

3-2-1-0
hanoi 3 2-1-0 26 23
heap 3 3-2-1 28 10
heapsort 2 21-5 70 94
insertion 2 3-1 16 5
merge 4 4-1-1-0 31 9
queens 1 18 93 171
quick 3 3-1-0 26 6
selection 2 4-1 17 8
shuffle 3 8-6-6 68 112
tfftdp 2 16-10 83 130
whet 7 14-9-1-0-0-0-0 248 51

Table 2. Benchmark characteristiques

We incorporated the GA into the ��� compiler [41]. ���
is a very simple � compiler that does not perform many op-
timizations.

Our system performance is compared with those of the
existing approaches for the register allocation and instruc-
tion scheduling problems. For the register allocation, we use
the ��� allocator (assigns the variables most used to the reg-
isters) [42] and a graph coloring allocator as described by
Appel [2]. The heuristics used by this allocator, in order to
decide which node must be spilled to the memory, are based
on the number of times that the variable is used and on the
number of node edges. Thus, the allocator favors spilling
the variables which interfere with many others and that are
seldom used.

For the instruction scheduling problem we have estab-
lished a list scheduling using the node which maximizes
parallelism as a heuristic, i.e. the node which maximizes
the number of nodes that will then be ready to be carried
out.

We modified ��� to control the number of registers avail-
able. We compile the benchmarks by assuming the presence
of 4, 8 and 12 registers. This enables us to analyze the sen-
sitivity of the various approaches to the number of registers
available.

The curves of the figures 5 and 6 illustrate the conver-
gence of GA for the benchmarks �� and �����	 with 8 reg-
isters.

We present the best solution of GA and we fix as a point
of reference the constant curves representing the execution
times while using:

� the lcc allocator and a list scheduling (����
��);

� a coloring graph register allocator and a list scheduling
(���� �
��).

� the execution time in the worst case occurs with all the
variables in memory and without instruction schedul-
ing.

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

 4.55

 4.6

 4.65

 0 20 40 60 80 100 120 140 160 180

C
os

t (
s)

Number of individuals

GA−Op convergence for bj8

AG−OP
worst

lcc+sch
color+sch

Figure 5. GA convergence for bj

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 0 10 20 30 40 50 60

C
os

t (
s)

Number of individuals

GA−Op convergence for tffdp8

AG−Op
worst

lcc+sch
color+sch

Figure 6. GA convergence for fftdp

According to the graphs of the figures 5 and 6, GA con-
verges quickly with values close to those obtained by tra-
ditional approaches. This behavior is similar for all of the
benchmarks. On the other hand, GA takes much more time
to compile than ���, therefore, the use of GA is viable only
for users who can allow themselves an increase in compil-
ing time in exchange for a gain in code execution time. Now,
we pay attention to the analysis of the performance of our
GA according to the speed of the generated code.

Table 3 presents the execution times for the benchmarks
compiled with all of the approaches; we also have the results
obtained using the worst case scenario, i.e., all the variables
spilled to the memory and without instruction scheduling.
For the benchmarks not included in this table, all the ap-
proaches obtained equivalent results.

To help us analyze the results, the figure 7 shows the per-
centage improvement with each approach compared to the
worst case for each benchmark. We observe that the gains
are significant in all cases, reaching up to 50% for ���	
��
with 8 registers, whereas the differences between the meth-
ods of optimization are not very significant, except in the

5

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

Benchmark worst (s) lcc+sch (s) color+sch (s) AG-Op (s)

arithm4 13.4 12.7 12.7 10.6
arithm8 13.4 12.7 12.7 9.3
arithm12 13.4 12.8 12.8 10.6

bj4 4.6 4.4 4.3 4.2
bj8 4.6 4.3 4.3 4.2
bj12 4.6 4.3 4.3 4.2

dhr4 3.3 2.6 2.6 2.6

fft4 4.4 3.8 3.9 3.8
fft8 4.4 3.8 3.7 3.8
fft12 4.4 3.8 3.8 3.7

heapsort4 25.9 15.3 15.0 14.5
heapsort8 25.9 12.5 13.2 12.3
heapsort12 25.9 13.1 12.9 12.2

queens4 0.6 0.4 0.4 0.4
queens8 0.6 0.4 0.4 0.4
queens12 0.6 0.4 0.4 0.4

shuffe4 40.6 38.6 37.1 37.5

tfftdp4 8.2 7.7 7.7 7.6
tfftdp8 8.2 7.6 7.4 7.4
tfftdp12 8.2 7.4 7.3 7.2

whet4 22.8 20.4 21.5 20.5
whet8 22.8 20.4 21.4 20.4
whet12 22.6 19.1 19.1 19.1

Table 3. Execution time with every approach

Figure 7. Improvement

case of ������.
Note that GA performs better for ������ than for the

other benchmarks. Additionally, the traditional approaches
(������� and �	�	�����) show performances close to the
worst case. This behavior is due to the fact that this bench-
mark has a structure that misleads the traditional heuristics.
In ������, there are variables which are much referred to
and others very seldom. The traditional heuristics for the
register allocation give priority to the variables according
to the number of times to which they are referred. These
approaches normally function well. However, in the execu-
tion, variables of ������ that are seldom referred to are
used more often than the others. Consequently, the tradi-
tional heuristic approaches give priority to the bad variables.
By using the real execution time as a fitness function, GA
converges easily towards the most suitable solution.

Table 4 shows the improvements obtained by GA com-
pared to the worst case. The results are ordered according
to percentage improvement.

If we consider the gains with respect to the worse case,

Benchmark worst(s) AG-Op (s) AG/worst (%)

tfftdp4 8.2 7.6 7.3
shuffe4 40.6 37.5 7.6
bj8 4.6 4.2 8.7
bj4 4.6 4.2 8.7
bj12 4.6 4.2 8.7
tfftdp8 8.2 7.4 9.8
whet4 22.8 20.5 10.1
whet8 22.8 20.4 10.5
tfftdp12 8.2 7.2 12.2
fft4 4.4 3.8 13.6
fft8 4.4 3.8 13.6
fft12 4.4 3.7 15.9
whet12 22.6 19.1 15.5
dhr4 3.3 2.6 21.2
arithm4 13.4 10.6 20.9
arithm8 13.4 9.3 30.6
arithm12 13.4 10.6 20.9
queens4 0.6 0.4 33.3
queens12 0.6 0.4 33.3
queens8 0.6 0.4 33.3
heapsort4 25.9 14.5 44.0
heapsort8 25.9 12.3 52.5
heapsort12 25.9 12.2 52.9

Table 4. Improvements obtained by GA com-
pared to the worst case

we see that the best performances are obtained for the
�
���	�� and �

�� benchmarks. These benchmarks have
the characteristic that they include a very small number of
procedures (1 and 2, respectively) and a large number of
variables. Therefore, the register allocation is able to cause
a more significant impact than in the more modular pro-
grams, which have many functions but few variables. This
behavior is observed in all our benchmarks. The best perfor-
mances of the GA are obtained on the benchmarks with few
procedures and that use many variables. For the same rea-
son, the fact that the basic block is larger allows instruction
scheduling to make more significant improvements.

5. Conclusions

Our research establishes that the use of GA in compila-
tion is viable, advantageous and also offers interesting ad-
vantages.

Even if at present the programs are increasingly modular,
the behavior of GA is still very interesting because the com-
piler always has the option to create large basic blocks and
extensive procedures by carrying out certain optimizations
before the register allocation and the instruction schedul-
ing. For example, loop unrolling and inlining of functions.
These optimizations can be included with GA or carried out
in advance. Moreover, certain programs generated by other
programs (for example the Gambit-C compiler for Scheme)
tend to have large functions.

In comparison to the traditional approaches, the GA
demonstrates a positive performance when solving the
problems of register allocation and instruction schedul-
ing:

� compared to the worst case (all variables are in mem-

6

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

ory and without instruction scheduling), the increases
in speed vary between 7% and 53%.

� compared to the register allocation by graph coloring
and instruction list scheduling, the increases in speed
vary between -2.7% and 26%.

� compared to the register allocation of ��� and instruc-
tion list scheduling, the increases in speed vary be-
tween -0.5% and 26%.

The most important increases noted were for bench-
marks that use a large number of variables, few procedures
and larger basic blocks. This is due to the fact that in these
programs optimizations have a greater total impact.

Thanks to the use of real time as fitness function, GA
shows more homogeneous behavior than the heuristics for
the entirety of the benchmarks. We observe that for a bench-
mark which deviates from the normal, the traditional heuris-
tics do not manage to find a good solution; whereas, GA per-
forms very well.

Finally, by using real execution times, fitness function
GA needs very little information about the machine. Con-
sidering the increasing complexity of current architectures,
this characteristic is very interesting because the compiler
construction becomes much more simple. Likewise, the
compiler will be able to adapt easily to the architectural
changes.

The use of the real execution time also makes it possible
to measure the side effects of various optimizations, which
is not possible with the traditional heuristics.

References

[1] A. V. Aho and J. D. Ullman. Principles of Compiler Design.
Addison-Wesley, 1978.

[2] Andrew W. Appel. Modern Compiler Implementation in ML:
Basic Techniques. Cambridge University Press, 1997.

[3] Steven S. Muchnick. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann Publishers, 1997.

[4] John H. Holland. Adaptation in Natural Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, Mass.,
1989.

[6] Lawrence Davis. Handbook of Genetic Algorithms. Van
Nostrand Reinhold, New York, 1991.

[7] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein. Register Allocation
Via Coloring. Computer Languages, pages 47–57, 1982.

[8] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rema-
terialization. ACM SIGPLAN Notices, pages 311–321, 1992.

[9] Preston Briggs, Keith D. Cooper, and Linda Torczon. Im-
provements to Graph Coloring Register Allocation. ACM
Transactions on Programming Languages and Systems,
pages 428–455, 1994.

[10] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda
Torczon. Coloring Heuristics for Register Allocation. ACM
SIGPLAN Notices, pages 275–284, 1989.

[11] D. Bernstein, D. Q. Goldin, M. C. Golumbici,
H. Krawczykand Y. Mansour, I. Nahshon, and R. Y.
Pinter. Spill Code Minimization Techniques for Optimiz-
ing Compilers. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 258–263,
1989.

[12] Guei-Yuan Lueh. Issues in Register Allocation by Graph
Coloring. Technical Report CMU-CS-96-171, School of
Computer Science, 1996.

[13] Peter Bergner, Peter Dahl, David Engebretsen, and
Matthew T. O’Keefe. Spill Code Minimization Via Inter-
ference Region Spilling. SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 287–295,
1997.

[14] K. D. Cooper and L. T. Simpson. Live Range Splitting in a
Graph Coloring Register Allocator. Lecture Notes in Com-
puter Science, pages 174–187, 1998.

[15] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-
Tabatabai. Global Register Allocation Based on Graph Fu-
sion. Languages and Compilers for Parallel Computing,
pages 246–265, 1996.

[16] David Callahan and Brian Koblenz. Register Allocation
Via Hierarchical Graph Coloring. Conference on Program-
ming Language Design and Implementation, pages 192–203,
1991.

[17] F. C. Chow and J. L. Hennessy. The Priority-based Coloring
Approach to Register Allocation. ACM Transactions on Pro-
gramming Languages and Systems, pages 501–536, 1990.

[18] Omri Traub, Glenn Holloway, and Michael D. Smith. Qual-
ity and Speed in Linear-Scan Register Allocation. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 142–151, 1998.

[19] Massimiliano Poletto and Vivek Sarkar. Linear Scan Reg-
ister Allocation. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), pages 895–913, 1999.

[20] John L. Hennessy and David A. Patterson. Computer Archi-
tecture a Quantitative Approach. Morgan Kaufmann Pub-
lishers, second edition, 1996.

[21] B. Ramakrishna Rau. Iterative Modulo Scheduling: an Algo-
rithm for Software Pipelining Loops. 27th Annual Interna-
tional Symposium on Microarchitecture, pages 63–74, 1994.

[22] Richard A. Huff. Lifetime-Sensitive Modulo Scheduling.
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 258–267, 1993.

[23] J. Zalamea, J. Llosa, E. Ayguad’e, and M. Valero. Modulo
Scheduling with Integrated Register Spilling for Clustered
VLIW Architectures. 34th International Symposium on Mi-
croarchitecture (MICRO-34), pages 160–169, 2001.

[24] Josep M. Codina, Josep Llosa, and Antonio Gonzlez. A
Comparative Study of Modulo Scheduling Techniques. 16th
International Conference on Supercomputing, pages 97–106,
2002.

[25] Philip B. Gibbons and Steven S. Muchnick. Efficient Instruc-
tion Scheduling for a Pipelined Architecture. SIGPLAN Sym-
posium on Compiler Contruction, pages 11–16, 1986.

7

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

[26] Keith Cooper, Philip Schielke, and Devika Subramanian. An
Experimental Evaluation of List Scheduling. Technical Re-
port TR98-326, Rice University, 1998.

[27] Kent Wilken, Jack Liu, and Mark Heffernan. Optimal In-
struction Scheduling Using Integer Programming. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 121–133, 2000.

[28] J. R. Goodman and W.-C. Hsu. Code Scheduling and Regis-
ter Allocation in Large Basic Blocks. 2nd International Con-
ference on Supercomputing, pages 442–452, 1988.

[29] Alexandre E. Eichenberger, Edward S. Davidson, and San-
tosh G. Abraham. Minimizing Register Requirements of a
Modulo Schedule Via Optimum Stage Scheduling. Inter-
national Journal of Parallel Programming, pages 103–132,
1996.

[30] Qi Ning and Guang R. Gao. A Novel Framework of Register
Allocation for Software Pipelining. 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 29–42, 1993.

[31] Madhavi Gopal Valluri and R. Govindarajan. Evaluating
Register Allocation and Instruction Scheduling Techniques
in Out-of-Order Issue Processors. International Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT’99), pages 78–83, 1999.

[32] Arthur L. Corcoran and Roger L. Wainwright. A Paral-
lel Island Model Genetic Algorithm for the Multiprocessor
Scheduling Problem. Selected Areas in Cryptography, pages
483–487, 1994.

[33] A. Schoneveld, J.F. de Ronde, and P.M.A. Sloot. Task Allo-
cation by Parallel Evolutionary Computing. Journal of Par-
allel and Distributed Computing, pages 91–97, 1997.

[34] K. Williams and S. William. Genetic Compilers: A New
Technique for Automatic Parallelisation. 2nd European
School of Parallel Programming Environments (ESPPE 96),
pages 27–30, 1996.

[35] Andy P. Nisbet. GAPS: Genetic Algorithm Optimised Paral-
lelisation. 7th Workshop on Compilers for Parallel Comput-
ing, pages 172–183, 1998.

[36] Steven J. Beaty. Genetic Algorithms and Instruction
Scheduling. 24th Annual International Symposium on Mi-
croarchitecture, pages 206–211, 1991.

[37] S. J. Beaty. Genetic Algorithms Versus Tabu Search for In-
struction Scheduling. International Conference on Neural
Network and Genetic Algorithms, pages 496–501, 1993.

[38] M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly.
Meta-optimization: Improving compiler heuristics with ma-
chine learning. Technical report, Technical Report MIT-
LCS-TM-634, 2002.

[39] Mark Stephenson, Una-May O’Reilly, Martin C. Martin, and
Saman Amarasinghe. Genetic programming applied to com-
piler heuristic optimization. Genetic Programming, Proceed-
ings of EuroGP’2003, 2003.

[40] C. Fleurent and J. A. Ferland. Genetic and Hybrid Algo-
rithms for Graph Coloring. Annals of Operations Research,
pages 437–461, 1997.

[41] Chris W. Fraser and David R. Hanson. A Retar-
getable C Compiler: Design and Implementation. Ben-
jamin/Cummings Pub. Co., 1995.

[42] Christopher W. Fraser and David R. Hanson. Simple Regis-
ter Spilling in a Retargetable Compiler. Software - Practice
and Experience, pages 85–99, 1992.

8

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

