
Arborescent Garbage Collection: A Dynamic Graph
Approach to Immediate Cycle Collection

Frédéric Lahaie-Bertrand
frederic.lahaie-

bertrand@umontreal.ca
Université de Montréal

Montréal, Canada

Léonard Oest O’Leary
leonard.oest.oleary@umontreal.ca

Université de Montréal
Montréal, Canada

Olivier Melançon
olivier.melancon.1@umontreal.ca

Université de Montréal
Montréal, Canada

Marc Feeley
feeley@iro.umontreal.ca
Université de Montréal

Montréal, Canada

Stefan Monnier
monnier@iro.umontreal.ca
Université de Montréal

Montréal, Canada

Abstract
Reclaiming cyclic garbage has been a long-standing
challenge in automatic memory management. Common
approaches to this problem often involve extending
reference counting with an asynchronous background
task to reclaim cycles. While this ensures that cycles
are eventually collected, it also introduces unpredictable
behaviours, making these approaches unsuitable for
applications where deterministic collection is required.
This paper introduces Arborescent Garbage Collection,

a synchronous memory management algorithm that
immediately reclaims unreachable memory objects,
including cyclic structures. Inspired by single-source
reachability algorithms on dynamic graphs, it extends
the idea of embedding a spanning forest in a program’s
reference graph to track the reachability of any object from a
root. When a reference is removed, the algorithm efficiently
rebuilds the forest and immediately reclaims the memory of
objects that are no longer reachable. The result is a garbage
collection algorithm suitable for applications that require
immediate memory reclamation and predictable behaviour.

CCS Concepts: • Software and its engineering →
Garbage collection; • Theory of computation →
Dynamic graph algorithms.

Keywords: automatic memory management, reference
counting, cycles, synchronous garbage collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISMM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1610-2/25/06
https://doi.org/10.1145/3735950.3735953

ACM Reference Format:
Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon,
Marc Feeley, and Stefan Monnier. 2025. Arborescent Garbage
Collection: A Dynamic Graph Approach to Immediate Cycle
Collection. In Proceedings of the 2025 ACM SIGPLAN International
Symposium on Memory Management (ISMM ’25), June 17, 2025,
Seoul, Republic of Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3735950.3735953

1 Introduction
Fully automatic memory management techniques are
generally divided into two categories: tracing and reference
tracking. Tracing consists in finding all reachable objects
starting from roots, often stopping the program or needing
an additional background or asynchronous process.
Examples include Stop-and-Copy and Mark-and-Sweep.
On the other hand, reference tracking attaches runtime
information to objects and detects when objects become
unreachable. Historically, reference tracking has been
associated with reference counting [8], which only tracks
the number of objects pointing to an object, deallocating
objects when nothing points to them. However, other
information can be tracked, such as the path to root objects
or referrers of an object.
A recurring problem with reference tracking techniques

is their inability to collect cycles immediately. Performing a
systematic, full tracing from an object to a root has been
proposed [18], but it is prohibitively expensive. For this
reason, cycle collection is generally deferred to a concurrent
process [2], which delays collection. Other works proposed
embedding a spanning tree into objects [5–7, 22] to reliably
detect when a cycle becomes unreachable without full
tracing to a root. However, these techniques are too costly to
be used synchronously, thus requiring a concurrent process
to maintain the spanning tree [5, 12, 17, 26].
Synchronous and immediate collection reclamation is

needed in applications that require deterministic and reliable
behaviour. Situations where this can be desirable include:
• Object stores such as graph databases.

14

https://orcid.org/0009-0007-7463-8516
https://orcid.org/0009-0000-3912-9918
https://orcid.org/0009-0007-7688-3208
https://orcid.org/0009-0005-5237-8712
https://orcid.org/0000-0001-7597-5273
https://doi.org/10.1145/3735950.3735953
https://doi.org/10.1145/3735950.3735953

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon, Marc Feeley, and Stefan Monnier

• File-systems that allow hard links to directories.
• Reclamation of DOM objects in a browser.
• The interoperability of a garbage collector with non-
automatic memory management languages, such as
C++ or Rust.
• Precise detection of memory leaks in non-automatic
memory management systems.
• Precise measurement of the maximum amount of live
heap data during a program execution.
• Reliable execution of finalizers, since programmers are
frequently discouraged from using them due to their
unpredictable behaviour with asynchronous garbage
collection [3, 21, 23, 25].
• Management of control-flow graphs (CFGs) in
compilers where the CFG is modified incrementally
and were prompt reclamation of unreachable basic
blocks can enable further optimizations.

This paper presents the Arborescent garbage collector, a
reference tracking algorithm that collects cycles immediately
and synchronously. Inspired by Even and Shiloach’s single-
source reachability algorithms from dynamic graph
theory [10], the Arborescent GC encodes spanning trees
into objects to treat reachability as an on-line edge-deletion
reachability problem. The novelty of the Arborescent GC
is to relax the usual notion of rank used by Even-Shiloach
algorithm (distance from the root) to reduce the cost of
updating ranks when a reference is mutated while still
providing enough information to guide heuristics with
the efficient reparation of the spanning tree. This greatly
reduces the time spent in the collector in comparison to
previous synchronous techniques. This optimization allows
the Arborescent GC to synchronously reclaim all memory at
the cost of a 4.5× slowdown compared to Mark-and-Sweep.

The contributions in this paper are:
• A memory reclamation algorithm that synchronously
reclaims memory, including in the presence of cyclic
structures, without the prohibitive overhead of
previous techniques (Section 3);
• A detailed presentation of the algorithm’s
implementation and object model to ensure that no
memory allocation takes place during the collection
phase (Section 4);
• An implementation of that algorithm in the Ribbit
System [20] (Section 5).

2 Related Work
One of the first solutions to the cycles problem is from
Lins [18] who proposed an incremental mark-scan phase
that explores potential cycles and deallocates structures
for which no external reference was found. Bacon and
Rajan [2] later showed that efficient reference counting can
be implemented by deferring cycle collection to a concurrent
process, which minimizes mutator pauses. Incremental and

concurrent extensions to reference counters avoid long
pauses in program execution for collecting cycles, but do
not allow immediate cycle collection.

Brownbridge [7] and Piquer [22] introduced mechanisms
for maintaining a spanning tree in a reference graph. Any
deletion of a reference that is not in the spanning tree can
thus be safely ignored by the garbage collector. More recently
Brandt et al. [5, 6] described an algorithm for repairing
the spanning tree when a reference is deleted, reclaiming
unreachable objects in the process. Despite this progress,
the cost of tracing the reachability of objects detached from
the spanning tree is currently too prohibitive for a synchro-
nous garbage collector. Deletion of a reference potentially
induces the exploration of a significant part of the reference
graph, even when in reality no object was made unreachable.
Hence, in existing implementations, tracing is deferred to an
incremental or concurrent process [5, 12, 14, 17, 26].
In the graph theory community, Even and Shiloach

proposed a dynamic graph algorithm that efficiently detects
which subgraph becomes disconnected after the deletion of
an edge [10]. Their original algorithm tracks reachability by
maintaining the rank of each node in the graph. This is both
expensive and not necessary for memory management. Yet,
Even and Shiloach’s algorithm inspired the Arborescent GC
which incorporates a weaker notion of rank by loosening
the requirement that ranks increase by increments of one.
This reduces the cost of updating ranks on edge deletion
while still storing enough information to guide heuristics
when tracking reachability.

More recently, Sotoudeh [27] used a similar approach by
designing a garbage collector that maintains a spanning
forest of the reachable objects on the heap but using Euler
tour trees instead of Even-Shiloach trees. Although their
motivation is to prove a theoretical lower bounds of the cost
of garbage collection, they also built a garbage collector that
can immediately collect garbage.

3 Reachability Algorithm for Synchronous
Garbage Collection

This section presents an algorithm for garbage collection
that supports immediate cycle collection. At its core, the
algorithm establishes objects liveness by maintaining a
path from each object to a root, such as a global or stack
variable. This is achieved by embedding a spanning forest
within a program’s reference graph. When a reference in
the spanning forest is removed, the algorithm efficiently
rebuilds the forest and immediately deallocates any objects
that are no longer reachable. Section 3.1 provides some
definitions and Section 3.2 details the algorithm.

3.1 Definitions
3.1.1 Reference Graph. The relationships between
objects in memory can be modelled by a reference graph,

15

Arborescent Garbage Collection: A Dynamic Graph Approach to Immediate Cycle Collection ISMM ’25, June 17, 2025, Seoul, Republic of Korea

Figure 1. A reference graph with two uncollectable nodes (A
and C, in yellow). Bold edges are part of spanning trees and
dashed edges are coparent-cochild relations that are not part
of the trees. The node B has parent A, and children E and F.
Its coparents are C and D, and its cochildren are A and G.

which is a directed, possibly disjoint, graph whose nodes
represent objects and edges represent pointers between
objects. In this paper, an object refers to any address in
memory containing data, including memory locations
containing pointers to stack and global variables. Self
references are not included in the graph as they do not affect
reachability.
A reference graph possesses a set of uncollectable nodes,

which act as the roots for the garbage collector. These nodes
typically correspond to global variables and stack variables.
An object is reachable if there exists a path from an

uncollectable object to this object. Objects’ reachability is
tracked by inscribing a disjoint collection of spanning trees,
with uncollectable objects as roots, in the reference graph.
This creates two classes of relations in the graph: edges that
are part of a spanning tree (called parent-child edges) and
edges that are not.

Definition 3.1 (Coparent and cochild). If an edge from 𝐴 to
𝐵 is not part of one of the current inscribed spanning trees
in the reference graph, then 𝐴 is said to be a coparent of 𝐵,
and 𝐵 is said to be a cochild of 𝐴.

Figure 1 shows an example of reference graph, including
coparent-cochild relations and two inscribed spanning trees,
forming a spanning forest.
Section 4 describes an object encoding to embed the

reference graph within objects, and efficiently access and
distinguish between an object’s parent, children, coparents,
and cochildren.

3.1.2 Ranks. Each object in the reference graph is
assigned a rank. This notion of rank is less strict than the
usual definition, which is the distance from a root.

Definition 3.2 (Rank). The rank of an object is an integer
that must be strictly greater than the rank of the object’s

1 function removeEdge(from: Node, to: Node):
2 delete reference from→ to
3 if to.parent is from then
4 to.parent← null
5 if not adopt(to) then
6 drop(to)

Algorithm 1: Remove an edge from the reference graph.

parent. If the object is uncollectable, in which case it has no
parent, then it can have any integer as its rank.

The ranks of objects along each branch of the spanning
forest are always in strictly increasing order. This is used to
locally verify the absence of cycles in the parent-child edges.
This often allows to rapidly assert that an object cannot be
the descendant of another in the spanning forest. Since ranks
do not have to increase by increments of one along a branch,
an object can have more than one valid rank. This flexibility
can reduce the time spent updating ranks in response to
mutations in the spanning forest.

3.2 Maintaining the Spanning Forest
A garbage collector can be implemented by ensuring that,
given a reference graph with only reachable nodes, all
operations on the reference graph maintain a spanning
forest. To achieve this, the runtime system only manipulates
references by calling atomic operations handled by the
garbage collector. These include adding and removing a
reference, making an object collectable or uncollectable, and
allocating a new object.
Adding a reference, making an object uncollectable and

allocating an object are operations that cannot cause objects
to become unreachable. On the other hand, removing a
reference and making an object collectable can make objects
unreachable, requiring that they be collected. The next
sections detail how to implement each operation such that
a spanning forest is always maintained on the reference
graph and unreachable objects are immediately collected.

3.2.1 Adding an Edge. Contrary to Even and Shiloach’s
algorithm [10], a GC cares only about reachability and not
distance, so the addition of a reference in the graph never
needs to modify the spanning forest: the algorithm simply
always labels the new edge as a coparent-cochild relation.

3.2.2 Removing an Edge. When a reference is removed,
the garbage collector checks whether this reference forms a
parent-child edge in the reference graph. If it does not, then
removing the edge is guaranteed to preserve reachability,
and the reference can safely be deleted while keeping the
spanning forest unchanged.
On the other hand, if the removed edge is part of the

spanning forest, a subtree of the spanning forest was
disconnected and its nodes need to be either collected

16

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon, Marc Feeley, and Stefan Monnier

1 function drop(node: Node):
2 anchors← new Queue
3 todo← new Queue
4 node.loose← true
5 todo.enqueue(node)
6 while node← todo.dequeue() do
7 foreach child of node do
8 if not adopt(child) then
9 child.loose← true

10 todo.enqueue(child)

11 foreach coparent of node do

12 if not
(coparent.loose or
coparent in anchors

)
then

13 anchors.enqueue(coparent)

14 catch(anchors)
15 collect(node)
Algorithm 2: Traverse spanning tree to find potentially
unreachable nodes.

or reconnected to the forest. This forms the core of the
algorithm. The nodes of this subtree are now said to be
loose and all the external references to them are called
anchors, i.e. nodes that are not loose but that have a loose
node as cochild. The algorithm proceeds by finding all the
anchors and reattaching all the loose nodes that it can
before collecting the left overs.
The entry point is the removeEdge procedure

(Algorithm 1). If the edge is a parent-child edge, the
deletion of the reference causes the child object to lose
its parent. To try and avoid traversing the whole subtree
of loose objects, the garbage collector first attempts to
find, among its coparents, a node which could be used
immediately as a new parent, i.e. a coparent whose rank is
smaller. This is done by the adopt procedure, which will
be detailed in Section 3.2.3. If adoption fails, the garbage
collector calls the drop procedure to repair the spanning
forest, collecting any unreachable objects in the process.
The drop procedure (Algorithm 2) is given a collectable

object that lost its parent after the deletion of a reference.
This object is marked as loose, meaning it may potentially
have become unreachable.
Any child whose parent is loose must become loose as

well. The spanning tree is thus traversed in a breadth-first
order to recursively mark descendants as loose and, at every
step, the adopt procedure attempts to stop the recursion
early.
Additionally, drop adds all the loose object’s coparents

that are not loose themselves to a queue called the anchors
queue, which will later be used to reattach loose (but
reachable) objects to the spanning forest. Since coparents
can have more than one loose cochild, the coparent is

1 function catch(anchors: Queue):
2 while anchor ← anchors.dequeue() do
3 if not anchor.loose then
4 foreach cochild of anchor do
5 if cochild.loose then
6 cochild.loose← false
7 cochild.parent← anchor
8 cochild.rank← anchor.rank + 1
9 anchors.enqueue(cochild)

Algorithm 3: Repair the spanning with a traversal from
anchor nodes.

1 function collect(node: Node):
2 if node.loose then
3 foreach child of node do
4 collect(child)
5 dealloc node

Algorithm 4: Deallocate unreachable (loose) nodes.

checked to ensure they aren’t already in the anchors queue
before enqueuing (Section 4 explains how to efficiently
implement this).

When the drop traversal terminates, the anchors queue is
passed to the catch procedure (Algorithm 3). This procedure
traverses the spanning forest starting from the anchors and
reattaches the referenced loose objects. Since some objects
may have been added to the anchors queue prior to having
been marked as loose, all dequeued object must be checked
and skipped if loose. If a dequeued object is not loose, then
the garbage collector looks for its loose cochildren. Such
cochildren are unmarked as loose, adopted by the object,
and queued in the anchors queue for traversal. The objects
contained in the anchor queue will generally have a bigger
rank than their adoptees, since otherwise adopt would have
succeeded. So as to maintain a strictly increasing order of
ranks along the spanning tree, the rank of these adopted
objects is set to one more than the rank of their new parents.

When the catch phase is over, a final traversal takes place
starting from the object that was targeted by the initial call to
removeEdge and visiting only objects that are still marked as
loose. These objects are unreachable and can be deallocated
(Algorithm 4), which includes removing them from the set
of coparents of their cochildren. Figure 2 illustrates the state
of the reference graph after the drop, catch and collect
phases of an edge removal.

3.2.3 Adoption. The drop procedure traverses whole
spanning trees, which becomes prohibitively expensive
as the reference graph grows. This section describes an
optimization called adoption that attempts to quickly find a

17

Arborescent Garbage Collection: A Dynamic Graph Approach to Immediate Cycle Collection ISMM ’25, June 17, 2025, Seoul, Republic of Korea

(a) Before (b) After drop

(c) After catch (d) After collect

Figure 2. State of the reference graph after each phase of a
parent-child reference removal. Each object is labelled with
its rank, uncollectable objects are highlighted (in yellow).
(a) is the initial graph with the edge to be removed (bold
red). (b) is the graph after the drop phase with loose nodes
(in pink) and anchors (in green). Note how the bottom-left
node is not loose due to being successfully adopted. (c) is
the state of the graph after the catch phase with previously
loose node that were caught (in blue). (d) is the final graph
after deallocation of the unreachable node.

more suitable parent for objects whose parent is loose or
was removed.

To pick a new parent (called an adopter) for the object
(called the adoptee), the adopt procedure (Algorithm 5) first
looks for a coparent that has a rank smaller than that of
its potential adoptee. This ensures that the adopter is not a
descendant of the adoptee, since descendants have greater
ranks. If such an adopter is found, it is set as the new parent
of the adoptee, which interrupts the traversal of the adoptee
in the drop phase.
If no adopter is found, the garbage collector attempts to

rerank a coparent such that it becomes a valid adopter. Given
an object of rank 𝑅𝑜𝑏 𝑗 and a coparent of rank 𝑅𝑐𝑜 ⩾ 𝑅𝑜𝑏 𝑗 ,
decrementing the rank of the coparent to 𝑅𝑜𝑏 𝑗 − 1 would
turn it into a valid adopter.

1 function adopt(node: Node):
2 foreach coparent of node do

3 if
(not coparent.loose and
coparent.rank < node.rank

)
then

4 node.parent← coparent
5 return true

6 foreach coparent of node do
7 if heuristic(coparent) then
8 if rerank(coparent, node, node.rank - 1)

then
9 node.parent = coparent

10 return true

11 return false
Algorithm 5: Attempt to pick a valid parent for a node.

1 function rerank(node: Node, origin: Node, to: int):
2 if node.loose or node == origin then
3 return false

4 else if ©­«
node.uncollectable or
node.parent.rank < to or
rerank(node.parent, origin, to - 1)

ª®¬ then
5 node.rank = to
6 return true
7 return false
Algorithm 6: Attempt to rerank ancestors to allow
adoption.

There are two situations where ranks can be decremented
without breaking the increasing order of ranks in the
spanning forest. First, since uncollectable objects have no
parent, their rank can be decremented (but not incremented)
freely. Second, whenever the rank of an object is not exactly
one more than that of its parent, it can be decremented by
up to 𝑅𝑐ℎ − 𝑅𝑝𝑎 − 1, where 𝑅𝑐ℎ is the rank of the child and
𝑅𝑝𝑎 is the rank of its parent.
The procedure rerank (Algorithm 6) implements the

attempt to rerank a coparent to make it a valid adopter. It
recursively explores the ancestors of the given coparent,
looking for opportunities to decrement ranks. If sufficient
gaps between ranks are found or an uncollectable object is
reached, then reranking takes place, as illustrated in Figure 3.
If the original adoptee is found among ancestors, then the
coparent has been found to be a descendant of the adoptee
and cannot be reranked. For each coparent, a heuristic
determines whether the reranking should be attempted.
In the experiment presented in Section 5, reranking is

only attempted for the first five objects traversed by the
drop phase. While extremely simple, this heuristic yields
decent performance. A better heuristic could consider

18

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon, Marc Feeley, and Stefan Monnier

(a) Before rerank (b) After rerank

Figure 3. State of the reference graph before and after a
successful reranking by the adopt phase. Each object is
labelled with its rank, the uppermost object (in yellow)
is uncollectable. (a) is the initial graph with the edge to
be removed (bold red). (b) is the graph after a successful
reranking. The rerank procedure explores the dropped
object’s coparent (bottom left) with the request that its rank
be decremented to 1. The rank of the root is decremented
by one, which in turn permits decrementing the rank of its
descendants (in blue) by three, thus allowing the bottom
right object to be adopted.

parameters such as objects ranks, types, or information
from static program analysis.
Note that an adoption does not prevent an adoptee from

later being marked as loose. This can happen when the drop
procedure later reaches the adopter. For this reason drop is
careful to traverse the subtree in breadth-first order, which
tends to traverse objects in increasing order of their rank
and thus reduces the risk of this occurring. While it is still
possible that an object’s adoption only defers the moment
when it is marked loose, in practice this heuristic frequently
prevents the traversal of a significant part of the reference
graph.

3.2.4 Making Uncollectable. An object can be made
uncollectable, for instance if the runtime system needs
to acquire it and ensure that it is kept alive. When an
object is labelled as uncollectable, its parent is relabelled
as a coparent, replacing the corresponding edge from the
spanning tree to form a coparent-cochild edge and making
it the root of a new spanning tree in the reference graph.

3.2.5 Making Collectable. When an uncollectable object
is made collectable, it stops being the root of a spanning
tree. This causes the object to become a collectable object
with no parent. To repair the spanning forest and find newly
unreachable objects, the drop procedure (Algorithm 2) is
called on this object, as in the case where a parent-child edge
is removed.

(a) (b) (c)

Figure 4. (a) Object C is allocated and initialized as
uncollectable (denoted by yellow). (b) A reference to C is
added to object B. (c) Object C is finally made collectable,
making it part of the spanning tree rooted at object A (for
instance the stack) and setting its rank to that of B plus one.

(a) (b) (c)

Figure 5. Creation of a linked-list with recursive consing.
A global counter is used to assign ranks to newly allocated
objects. The counter is decremented after each allocation to
ensure that the head (in yellow) has the smallest rank among
all objects and can thus adopt the tail of the list.

3.2.6 Object Allocation. A newly allocated object is
initialized as uncollectable. This ensures that all objects,
even newborn ones, are reachable from a root. In most cases,
this uncollectable state is temporary. The runtime system
typically acquires the object, adds a reference to it (on the
stack for instance), then makes it collectable. This calls the
drop procedure (Algorithm 2), which adjusts its rank to one
more than that of its new parent, as illustrated in Figure 4.
This works well for structures built from top to bottom,

such as iteratively appending objects to a linked-list.
However, for objects built from bottom to top, for instance
creating a linked-list with recursive consing, the rank of
the allocated object matters. The initial rank of the object
dictates whether it will be a valid adopter or need reranking.
To address this issue, a global counter, initialized at 0, is

kept for ranking new objects. The rank of allocated object

19

Arborescent Garbage Collection: A Dynamic Graph Approach to Immediate Cycle Collection ISMM ’25, June 17, 2025, Seoul, Republic of Korea

(a) Before (b) Protecting

(c) Replace edge (d) Unprotecting

Figure 6. Replacing an edge requires (b) protecting the old
referee (C) by making it uncollectable, (c) updating the new
reference, (d) and finally unprotecting the old referee. In
the above example, failing to protect C would lead to the
premature deallocation of D.

is set to the counter’s current value. After each allocation,
the counter is decremented (negative ranks are allowed).
Consequently, right after its allocation, an object always has
a lower rank than objects allocated before it. This ensures
that objects created from bottom to top, such as in Figure 5,
are allocated in linear time.

With this initialization scheme, the initial rank of an object
is a proxy for its age. This means that in the absence of object
mutation, since an object can point only to objects older than
itself, adopt will always succeed immediately without the
need for rerank. In other words, drop only needs to be used
when removing a reference that was added by mutation.1

3.2.7 Updating References. Overwritting a pointer can
be implemented as the addition of a new edge followed by the
removal of an old one. In practice, however, objects have a
fixed number of fields to store outgoing edges and coparents
(more on that in Section 4), which requires that the removal
of the old edge takes place first. Yet, removing the old edge
may cause objects to be immediately deallocated, including
objects that would be reachable after adding the new edge.
To solve this issue, when an edge is replaced, the old referee
must first be protected by making it uncollectable. Only
after the new edge has been added is the old referee made
1Of course, when catch reattaches the objects, it may cause immutable
fields to point to objects with a lower rank.

f1 ... fn m1 ... mn Re P Ra Q

mirror fields referrers
parent
rank

fields

queue

metadatareferences/values

Figure 7. Layout of an object’s garbage collection metadata.
The first 𝑛 fields (𝑓1 to 𝑓𝑛) contains actual references to
objects. The following fields contain metadata. Fields 𝑚1
to𝑚𝑛 are mirror fields used to chain the object’s referrers.
Field 𝑅𝑒 points to the first object in its chain of referrers.
Field 𝑃 points to the parent of the object. Field 𝑅𝑎 contains
the rank of the object. Field 𝑄 is used to chain values in the
queue and anchor queue during the drop and catch phases.

collectable again. As illustrated in Figure 6, this has the effect
of delaying the drop phase until the edge has been replaced.

4 Implementation
This section describes a memory representation that embeds
the necessary metadata within objects to efficiently execute
the algorithm from Section 3 and ensure that the garbage
collector does not allocate memory during collection. This
includes extra space for back references, queues, ranks, and
tags for loose objects.

4.1 Encoding the Reference Graph
In addition to its actual fields (simply called fields in this
section), which contains data such as references, objects are
augmented with metadata to inscribe the reference graph
and spanning forest. The referrers of an object (parent and
coparents) are chained together with the use of special
fields, called mirror fields. Given an object with 𝑛 fields,
it is extended with 𝑛 mirror fields and one referrers field,
which stores its first coparent. Each object also has a parent
field, which points to its parent. Uncollectable objects are
denoted by a NULL parent field. Additionally, each object
has a rank field to store its rank, an integer. However, in
practice, a full 64-bit is not required to store the rank. It is
thus convenient to use a 63-bit rank and reserve one bit
for marking loose objects. Finally, a queue field is used for
implementing queues (discussed in Section 4.3). Figure 7
illustrates the layout of an object’s metadata.

Figure 8 illustrates how referrers are chained with mirror
fields. Given an object 𝐴 whose 𝑖th field contains a reference
to a child (or cochild) 𝐶 , then the 𝑖th mirror field of 𝐴 is
reserved for chaining the referrers of 𝐶 . Iterating over
referrers is done by recursively following the corresponding
mirror fields of each referrer, starting from the first one and
ending when the referrer’s mirror field contains NULL. In the

20

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon, Marc Feeley, and Stefan Monnier

NULL

A
B

C

Figure 8. Memory layout of the chaining of referrers for
objects containing two fields. Solid edges represent pointers
from objects’ fields (first two slots of objects). Dashed edges
represent edges from objects’ mirror fields (next two slots of
objects, in grey). Object C has two referrers, A and B. The
referrers field (next slot after mirror fields) of C points to
its first referrer (A). Since A points to C with its first field,
then its first mirror field points to B, the next referrer to
C. Object B points to C with its second field and is the last
referrer of C, thus its second mirror field contains NULL.

case where the object 𝐴 contains more than one reference
to 𝐶 , the corresponding mirror fields are all made to point
to the same successor in the referrers chain.
An offset is added to pointers in mirror fields to make

them point directly to the next mirror field in the chain. For
this to work, objets need to be aligned in memory. Figure 8
illustrates an example of referrers chaining with 64-byte
aligned objects. In this example, the object𝐴 refers to𝐶 from
its first field. Hence, an offset is added to the referrers field of
𝐶 to point to the first mirror field of 𝐴. Since 𝐴, 𝐵 and 𝐶 are
64-byte aligned, masking the low bits of mirror fields allows
recovering an object’s address. In cases where this solution
is not applicable, an implementation can add extra fields to
each object to store offsets. Alternatively, for objects with
few fields, it may be sufficient to scan references to compute
the offset instead of storing it.

Iterating over an object’s children or cochildren is done by
visiting its referees, which are canonically stored in its fields.
Children are such referees whose parent is the object itself
while cochildren are referees that are either uncollectable or
whose parent field points to some other object.

4.2 Removing Referrers
Removing a reference from object 𝐴 to object 𝐵 requires
removing 𝐴 from 𝐵’s chain of referrers. While costly when
an object has many referrers, in practice, most objects have
few referrers. Moreover, there are cases where the traversal
of the chain of referrers can be skipped altogether.

One such case is objects that are known to be permanently
uncollectable, for instance singletons such as true, false
and none that are heap-allocated by some implementations.
The referrers of these objects do not need to be tracked since
they will never need to be adopted. By creating two classes

of uncollectable objects, temporary and permanent, tracking
these objects’ referrers can be avoided. This is especially
convenient since these are likely to have numerous referrers.
Another optimization to referrer removal happens at

object deallocation. An unreachable object is no longer a
valid coparent and has to be removed as a referrer. Implicit
in the dealloc operation of Algorithm 4 is the traversal of
cochildren of loose objects to remove any loose objects in
their referrers. However, any cochild that is itself loose can
be skipped as it will also be deallocated.

4.3 Queues and Traversal
Queues are implemented by using the queue field for chaining
objects, and keeping pointers to both extremities of each
queue. This allows efficient enqueue, dequeue, and checks
that an object is not already in the queue by checking that
the object is neither the tail of the queue nor does it have
a successor stored in the corresponding queue field (done
before enqueuing in anchors in Algorithm 2).

The drop phase of the algorithm requires two queues (todo
and anchors in Algorithm 2). However, the todo queue only
contains loose objects, whose rank will never be read before
being updated in the catch phase. Consequently, the rank
field can be used to implement the todo and only one field
must be added for the anchors.

4.4 Full Graph Reranking
Since objects’ ranks are limited to fixed size integers,
overflows are possible. Furthermore, as described in
Section 3.2.6, the garbage collector maintains a decremented
counter for the rank of newly allocated objects, which
introduces the possibility of underflows. This requires the
garbage collector to check for overflows and underflows
when ranks are updated and the counter is decremented
respectively.

In case of an overflow, or underflow, the garbage collector
is interrupted to balance the whole reference graph.
This entails resetting the global counter (possibly, but
not necessarily, to zero), choosing a new rank for each
uncollectable object, reranking the graph from its roots, and
recursively reassigning ranks. If the interruption occurred
in an edge removal, objects that were loose are unmarked
and the drop phase restarts from the beginning after the
reranking.

On 64-bit architectures, these occurrences are expected to
be very rare. In fact, they never occur in any benchmarks
from Section 5, but could happen on long-running programs.

5 Evaluation and Benchmarks
This section evaluates the runtime performance of
Arborescent garbage collection in comparison to Mark-
and-Sweep, a well-established memory management
technique. It demonstrates that while Arborescent GC

21

Arborescent Garbage Collection: A Dynamic Graph Approach to Immediate Cycle Collection ISMM ’25, June 17, 2025, Seoul, Republic of Korea

incurs an overhead for immediate cycle collection, it yields
performance that can make it suitable in domain-specific
applications that require immediate reclamation.
The Arborescent GC presented in this section is

implemented in Ribbit Scheme. Ribbit has an extensible
memory model that allows the efficient implementation
of new garbage collectors [19]. It already has a Mark-and-
Sweep GC, which is commonly used as a comparison for
new garbage collection algorithms as it has been widely
studied and is known to be efficient.
Section 5.1 describes Ribbit in more details, Section 5.2

shows experimental execution time results and Section 5.3
presents profiling data of the Arborescent GC.

5.1 The Ribbit System
Ribbit is an ahead-of-time compiler for the Scheme
programming language, which supports the R4RS standard.
It compiles programs to Ribbit Virtual Machine (RVM)
instructions that can then be interpreted by a RVM
implementation. RVM’s have been written in more than 25
different programming languages, but the experiment in
this section was done using the more performant C RVM.

The RVM interpreter has an unusual design in which both
the stack and code and all Scheme objects are implemented
as linked structures called ribs, objects consisting of
three fields. As a result, most of the interpreter’s memory
management activity is not directly driven by the source
program, but by the interpreter’s own execution mechanics.
For instance, the source-level creation of a rib with the
expression (##rib 1 2 3) actually allocates a total of 5
ribs because 4 ribs are used to store the arguments and
result on the stack. Ribs are also accessed to push and pop
the values from the stack and advance the program counter
in the course of execution (each RVM instruction is itself
stored in a rib containing a link to the next instruction rib).

In essence, the Ribbit interpreter behaves like a compiled
program where the majority of execution time is spent on
operations that affect the heap, i.e. memory allocations
and mutations to heap objects and root pointers, rather
than on data-level operations. This makes it a good GC
torture-test from a performance standpoint: it exhibits a
high ratio of memory management overhead relative to
actual computation.

5.2 Experimental Results
Arborescent garbage collection was implemented in
the C RVM and compared to the Mark-and-Sweep GC
already available in Ribbit. Performance was evaluated by
comparing execution time with the R7RS Scheme benchmark
suite [1]. Since Ribbit only supports the R4RS Scheme
specification, benchmarks that extensively use features
from later specifications were excluded. In total, 34 out of
the 57 benchmarks from the R7RS suite could be executed.
Benchmarks were run on a machine with an Intel Xeon

Benchmark Heap (kB) Benchmark Heap (kB)
ack 574 array1 472
boyer 5,795 browse 1,247
cpstak 241 ctak 260
deriv 287 destruc 328
diviter 247 divrec 245
earley 1,899 equal 19,570
fibc 243 fib 220
gcbench 9,057 graphs 11,495
lattice 349 matrix 611
mazefun 496 maze 1,097
mperm 39,923 nboyer 19,520
nqueens 300 ntakl 280
paraffins 43,901 peval 1,303
primes 69,337 puzzle 1,125
quicksort 538 sboyer 5,240
scheme 1,654 string 1,920
sum 229 tak 224

Figure 9. Minimum heap size required for each benchmark.

Phi CPU 7210, 112 GB of RAM, and under CentOS 7 with
Linux kernel version 3.10.0-1160.119.1.el7.x86_64
SMP. Each benchmark was parameterized so that executions
lasted at least 30 seconds and each execution was repeated
five times for both garbage collectors. Execution times
presented in this section are the average of these five runs.
The Arborescent and Mark-and-Sweep implementations

allocate objects from a freelist whose size is parameterized
but fixed at runtime. An interesting capability of the
Arborescent garbage collector is to seamlessly compute
the maximum number of objects that are alive at any
given time. This is achieved by profiling a separate run
of each benchmark and incrementing/decrementing a
counter whenever an object is allocated/deallocated. Since
objects are deallocated immediately when unreachable, the
maximum value reached by that counter corresponds to
the minimum required size of the freelist. Multiplying by
the size of an object (11 machine words in Ribbit with the
Arborescent GC2) then yields the minimum required heap
size in bytes, which is shown in Figure 9.

Each benchmark is executed with the minimum heap size
required by the Arborescent GC for this benchmark (from
Figure 9). The same heap size is used for theMark-and-Sweep
GC execution. Since objects with Mark-and-Sweep take 3
machine words (11 with the Arborescent GC), this ensures
that at most 3/11 of the heap contains live data at any point.
Figure 10 shows the relative execution time between

benchmarks executed with each GC. Arborescent garbage

2Figure 7 shows that only 10 fields could be used by sharing the same field
for rank and the todo queue. However, Ribbit does not use this optimization.

22

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon, Marc Feeley, and Stefan Monnier

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ack
array1

boyer

brow
se

cpstak

ctak
deriv

destruc

diviter

divrec

earley

equal

fibc
fib gcbench

graphs

lattice

m
atrix

m
azefun

m
aze

m
perm

nboyer

nqueens

ntakl

paraffi
ns

peval

prim
es

puzzle

quicksort

sboyer

schem
e

string

sum
tak

R
e
la

tiv
e

 E
xe

c
u

tio
n

 T
im

e

Benchmark

4
.6

1

4
.5

8

4
.0

5

3
.1

3

4
.4

0

4
.5

3

4
.7

9

4
.7

6 5
.2

5

5
.0

4

3
.9

0

4
.1

4 4
.6

6

4
.2

7

4
.1

9

3
.7

6 4
.3

4

4
.1

8

4
.3

2

4
.4

0

3
.4

9

8
.4

9

4
.5

3 5
.1

0

8
.5

8

3
.9

2

4
.0

9

3
.5

0

5
.4

5

4
.2

9

3
.7

8

4
.7

7

4
.4

0

4
.3

2

Figure 10. Execution time with Arborescent garbage collection relative to Mark-and-Sweep measured with R7RS benchmarks.
The heap size used for each benchmark is found in Figure 9 and is the same for both garbage collectors for a given benchmark.
A ratio of 1 (dashed line) indicates an execution time equal to that of the Mark-and-Sweep implementation. Lower is faster.

collections makes for an execution that is at most 8.6× slower
(paraffins, discussed in Section 5.3) than Mark-and-Sweep,
with a median of about 4.5× slower.

These results demonstrate that while an Arborescent
GC is generally slower than other memory management
techniques, it is not prohibitively expensive like previous
synchronous techniques: even in Ribbit where every
instruction of the VM incurs a minimum of one mutation to
the heap, the slowdown is less than a factor 10. This makes
it usable in applications that require immediate memory
reclamation or a predictable GC behaviour.

5.3 Profiling the Overhead
This section breaks down the overhead in the Arborescent
GC by profiling in which collection phase (drop, catch,
collect or adopt) the execution of each benchmark is spent.

Since Arborescent garbage collection frequently executes
short collections, profiling time spent in each phase would
be noisy due to the significant overhead of the timer itself.
Consequently, CPU cycles are measured as a proxy for
time spent in each phase. Profiling CPU cycles is achieved
by calling the rdtsc x86 instruction, which returns the
processor’s time-stamp counter [9]. The time-stamp is read
at the start and end of each phase and the difference is taken
to obtain the CPU cycles spent in that phase. The total CPU
cycles spent in each benchmark is also measured.

This profiling is first applied to benchmarks with Mark-
and-Sweep to recover the proportion of CPU cycles spent
in the mutator and the collector. Total CPU cycles of the
mutator correspond to CPU cycles spent to execute the
benchmark barring any memory management. This count
is used as the threshold above which cycles are considered
memory management overhead in both implementations.
The same profiling is done with the Arborescent GC

to profile total CPU cycles and cycles spent in the drop
(excludes adopt), catch, collect, and adopt (includes
rerank) phases.
Figure 11 presents the memory management overhead

of both garbage collectors (the coloured part of each bar
correspond to overhead). In the case of the Arborescent GC,
the drop, catch, collect and adopt phases do not account
for the whole overhead. The difference, which accounts for
about 30% of the overhead on average, (pink and labelled
other) corresponds to the overhead of managing the lists
of coparents outside drop, catch, collect and adopt, for
instance when adding a reference or removing a reference
that is not a parent-child relation.
Another significant portion of cycles (about 25% of the

overhead) is spent in the collect phase (green). This is
because the collect phase needs to remove all coparent-
cochild relations when an object is deallocated.
Hence, a large part of the overhead of the Arborescent

collector comes from managing coparents, either in the

23

Arborescent Garbage Collection: A Dynamic Graph Approach to Immediate Cycle Collection ISMM ’25, June 17, 2025, Seoul, Republic of Korea

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

ack
array1

boyer

brow
se

cpstak

ctak
deriv

destruc

diviter

divrec

earley

equal

fibc
fib gcbench

graphs

lattice

m
atrix

m
azefun

m
aze

m
perm

nboyer

nqueens

ntakl

paraffi
ns

peval

prim
es

puzzle

quicksort

sboyer

schem
e

string

sum
tak

Mark-and-SweepArborescent

R
e
la

tiv
e

 C
P

U
 C

yc
le

s

drop

mutator

collect

catch

other

adopt

collector

mutator

Figure 11. CPU cycles relative to the total CPU cycles count of Mark-and-Sweep measured on R7RS benchmarks. Each
benchmark has two bars that correspond to the profiling of each GC. The left bar shows the proportion of CPU cycles spent in
each phase of the Arborescent collector (from bottom to top: mutator, drop, catch, collect, adopt, and other). The right bar
shows the proportion of CPU cycles spent in the mutator (bottom segment) and collector (top segment) of Mark-and-Sweep.
The bottom segment (grey) of each bar corresponds to CPU cycles spent in the mutator, everything above is the overhead of
the corresponding GC.

collect phase or when mutating an object in a way
that does not affect reachability. This stems from the
need to traverse an object’s linked-list of referrers when
removing one of its coparent. While this list is usually small,
this removal operation is ubiquitous, making it a good
optimization candidate to improve performance.

The drop and adopt phases also accounts for a significant
part of the overhead (both about 20% on average). The
catch phase accounts for a considerably smaller part of the
overhead (about 5%).
Two outliers stand out in Figure 11, nboyer and

paraffins, providing an opportunity to discuss possible
improvements to the Arborescent GC.
The execution of nboyer is dominated by the collect

phase. This is presumed to be largely caused by nboyer
allocating many short-lived objects with children/cochildren
that have many referrers (even with Mark-and-Sweep, about
45% of nboyer’s execution is spent in the collector). These
objects must be removed from their children/cochildren’s
list of referrers when deallocated, which is a linear operation.
Otherwise, these lists of referrers would contain dangling
pointers.
The second outlier, paraffins, spends a larger portion

of execution in the adopt phase. To reduce the overhead of

adoption, objects’ referrers could be kept in order of rank,
either by using a priority queue or keeping the linked-list
sorted. This could accelerate adoption (only the first coparent
would have to be considered in Algorithm 5), but at the risk
of introducing further overhead when managing referrers.
Furthermore, paraffins suggests that, while the simple
reranking heuristic used in this implementation works well
in many cases, there are programs that could benefit from a
fine-tuned heuristic, such as using runtime type information
or program analysis to guide the decision of which objects
should be explored by rerank.

6 Limitations and Future Work
This section discusses some limitations of the algorithm and
its implementation, as well as possible future directions to
address them.

6.1 Multithreading Support
The Arborescent garbage collector presented in this paper
assumes that a program’s execution is entirely single-
threaded. Recent developments in adapting similar graph
data structures to their concurrent equivalents, particularly
in the context of dynamic connectivity [11], suggest that
adapting the algorithm to support multithreaded programs

24

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Frédéric Lahaie-Bertrand, Léonard Oest O’Leary, Olivier Melançon, Marc Feeley, and Stefan Monnier

is feasible although the additional cost of doing so in the
context of garbage collection remains unclear.

6.2 Optimizations
The results shown in Figure 10 present performance baseline,
as the implementation closely mirrors the algorithm
described in Section 3 for tracking object reachability. This
leaves room for performance improvements through further
optimization.
For instance, in most programming languages, some

objects are known to never contain cycles. Examples in
Scheme include booleans, numbers, numeric vectors, and
symbols. This allows using runtime type information and
static analysis to detect some acyclic objects. For these, a
reference count is sufficient to track reachability. Similarly,
immutable data might deserve some special treatment
since any cycle needs to go through at least one mutable
object. This points toward a hybrid implementation of
the algorithm where some objects have a reference count
instead of a full set of referrers.
Because the Arborescent garbage collector tracks

more information than a reference counting collector,
it is always possible to compute the reference count of
an object by counting its referrers. As such, reference
counting optimizations such as coalescing [15], reuse
of unreachable objects [24, 28] and subsumption [13]
should also be applicable in this context. Even deferred
collection [2] should be applicable, although it would defeat
the immediacy benefit.

As discussed in Section 5, the choice of reranking heuristic
(Algorithm 6) has a significant impact on performance. This
is because, along with the adoption heuristic (Algorithm 5),
it allows for the edge removal procedure to avoid the
worst-case scenario where a large portion of the heap
must be scanned to reconnect two spanning trees. This
paper presented a relatively simple reranking heuristic,
showing that decent performance is attainable without
excessive fine-tuning. In practice, fine-tuning heuristics to
the semantics of a programming language may be beneficial.
Moreover, the adoption heuristic presented in this paper
always chooses the first found valid adopter, which might
not be optimal. Drawing inspiration from generational
garbage collection [16], a potentially better heuristic may
attempt to find a long-lived adopter, which is less likely to
be itself deallocated.

6.3 Finalizers and Interoperability with C++ and
Rust

The Arborescent GC could be extended with finalizers that
get called immediately when an object becomes unreachable.
Doing so for languages with automatic memory

management can introduce delicate issues linked to a
lack of clarity around the semantics of reachability, which
is often not fully specified by the language. This can

leave execution of finalizers unpredictable even with the
algorithm presented in this paper, since it can depend on
optimization choices in the compiler. See [4] for an in-depth
discussion of the problems linked to when a finalizer can
be called and what is allowed to run inside of it. Research
that clarifies these semantics could leverage the potential of
immediate finalizers such as the instant release of resources
(file handles, network sockets, and locks).

For languages with semi-managed memory, the
Arborescent garbage collector’s perfect information about
objects’ reachability could enable effective interoperability
with their memory management system. For example, C++
and Rust clearly define when destructors (or finalizers) are
called: often at the end of scopes for C++, or when their
lifetime ends for Rust. At those points, the Arborescent GC
knows which objects are unreachable, allowing for their
reclamation and finalization by the garbage collector. This
could enable the creation of libraries like the Rc type for
Rust or smart pointers for C++ that can seamlessly handle
cycles. Here again, some delicate issues of semantics might
need to be addressed, such as ordering of finalizers within
cycles.

7 Conclusion
This paper described a reachability algorithm for garbage
collection that supports synchronous memory reclamation,
including cyclic structures. At its core, the algorithm
inscribes a spanning forest in the reference graph of a
program and explores the reference graph to repair the
spanning forest whenever an edge is deleted. This approach
is not new, but previous implementations have proven to be
prohibitively expensive unless cycle reclamation is deferred
to an asynchronous task. This issue is fixed by introducing a
weak notion of rank in the reference graph. This additional
information allows a more efficient exploration of the graph
on an edge deletion.
The resulting garbage collector was implemented in

the Ribbit Scheme compiler. While still slower than other
state-of-the-art tracing garbage collectors, it offers decent
performance without the need to defer cycle collection to an
asynchronous process, making it suitable for applications
that require a reliable, deterministic behaviour.

Acknowledgment
This work was supported by the Natural Sciences and
Engineering Research Council of Canada and the Fonds de
recherche du Québec3.

References
[1] 2025. R7RS Benchmarks. https://github.com/ecraven/r7rs-

benchmarks.

3https://doi.org/10.69777/366699 & https://doi.org/10.69777/352044

25

https://github.com/ecraven/r7rs-benchmarks
https://github.com/ecraven/r7rs-benchmarks
https://doi.org/10.69777/366699
https://doi.org/10.69777/352044

Arborescent Garbage Collection: A Dynamic Graph Approach to Immediate Cycle Collection ISMM ’25, June 17, 2025, Seoul, Republic of Korea

[2] David F. Bacon and V. T. Rajan. 2001. Concurrent Cycle Collection
in Reference Counted Systems. In ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Budapest, Hungary, June 18-
22, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2072),
Jørgen Lindskov Knudsen (Ed.). Springer, 207–235. https://doi.org/10.
1007/3-540-45337-7_12

[3] Joshua Bloch. 2008. Creating and Destroying Objects (2nd ed.). Addison-
Wesley Professional, Chapter 2.

[4] Hans-J. Boehm. 2003. Destructors, finalizers, and synchronization.
SIGPLAN Not. 38, 1 (Jan. 2003), 262–272. https://doi.org/10.1145/
640128.604153

[5] Steven R. Brandt, Hari Krishnan, Costas Busch, and Gokarna Sharma.
2018. Distributed garbage collection for general graphs. In Proceedings
of the 2018 ACM SIGPLAN International Symposium on Memory
Management, ISMM 2018, Philadelphia, PA, USA, June 18, 2018, Hannes
Payer and Jennifer B. Sartor (Eds.). ACM, 29–44. https://doi.org/10.
1145/3210563.3210572

[6] Steven R. Brandt, Hari Krishnan, Gokarna Sharma, and Costas
Busch. 2014. Concurrent, parallel garbage collection in linear time.
In International Symposium on Memory Management, ISMM ’14,
Edinburgh, United Kingdom, June 12, 2014, David Grove and Samuel Z.
Guyer (Eds.). ACM, 47–58. https://doi.org/10.1145/2602988.2602990

[7] David R. Brownbridge. 1985. Cyclic Reference Counting for
Combinator Machines. In Functional Programming Languages and
Computer Architecture, FPCA 1985, Nancy, France, September 16-19,
1985, Proceedings (Lecture Notes in Computer Science, Vol. 201), Jean-
Pierre Jouannaud (Ed.). Springer, 273–288. https://doi.org/10.1007/3-
540-15975-4_42

[8] George E. Collins. 1960. A method for overlapping and erasure of lists.
Commun. ACM 3, 12 (Dec. 1960), 655–657. https://doi.org/10.1145/
367487.367501

[9] Intel Corporation. 2025. Intel® 64 and IA-32 Architectures Software
Developer’sManual - Volume 3. Chapter 19.17: Time-StampCounter, 19–
42 to 19–44. https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html

[10] Shimon Even and Yossi Shiloach. 1981. An On-Line Edge-Deletion
Problem. J. ACM 28, 1 (1981), 1–4. https://doi.org/10.1145/322234.
322235

[11] Alexander Fedorov, Nikita Koval, and Dan Alistarh. 2021. A Scalable
Concurrent Algorithm for Dynamic Connectivity. In Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures
(Virtual Event, USA) (SPAA ’21). Association for ComputingMachinery,
New York, NY, USA, 208–220. https://doi.org/10.1145/3409964.3461810

[12] Saverio Giallorenzo and Francesco Goretti. 2025. Breadth-first Cycle
Collection Reference Counting: Theory and a Rust Smart Pointer
Implementation. In ACM digital library. Catania (IT), Italy. https:
//doi.org/10.1145/3672608.3707785

[13] Pramod G. Joisha. 2006. Compiler optimizations for nondeferred
reference: counting garbage collection. In Proceedings of the 5th
International Symposium on Memory Management (Ottawa, Ontario,
Canada) (ISMM ’06). Association for Computing Machinery, New York,
NY, USA, 150–161. https://doi.org/10.1145/1133956.1133976

[14] Jaehwang Jung, Jeonghyeon Kim, Matthew J. Parkinson, and Jeehoon
Kang. 2024. Concurrent Immediate Reference Counting. Proc. ACM
Program. Lang. 8, PLDI, Article 153 (June 2024), 24 pages. https:
//doi.org/10.1145/3656383

[15] Yossi Levanoni and Erez Petrank. 2006. An on-the-fly reference-
counting garbage collector for java. ACM Trans. Program. Lang. Syst.

28, 1 (Jan. 2006), 1–69. https://doi.org/10.1145/1111596.1111597
[16] Henry Lieberman and Carl Hewitt. 1983. A real-time garbage collector

based on the lifetimes of objects. Commun. ACM 26, 6 (June 1983),
419–429. https://doi.org/10.1145/358141.358147

[17] Chin-Yang Lin and Ting-Wei Hou. 2007. A simple and efficient
algorithm for cycle collection. ACM SIGPLAN Notices 42, 3 (2007),
7–13. https://doi.org/10.1145/1273039.1273041

[18] Rafael Dueire Lins. 1992. Cyclic Reference Counting with Lazy Mark-
Scan. Inf. Process. Lett. 44, 4 (1992), 215–220. https://doi.org/10.1016/
0020-0190(92)90088-D

[19] Léonard Oest O’Leary and Marc Feeley. 2023. A Compact and
Extensible Portable Scheme VM. In Companion Proceedings of the
7th International Conference on the Art, Science, and Engineering
of Programming (Tokyo, Japan) (Programming ’23). Association for
Computing Machinery, New York, NY, USA, 3–6. https://doi.org/10.
1145/3594671.3594672

[20] Léonard Oest O’Leary, Mathis Laroche, and Marc Feeley. 2023. A
R4RS Compliant REPL in 7 KB. CoRR abs/2310.13589 (2023). https:
//doi.org/10.48550/ARXIV.2310.13589

[21] Oracle Corporation. 2025. Object (Java SE 17 & JDK 17).
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/
java/lang/Object.html#finalize()

[22] José M. Piquer. 1991. Indirect Reference Counting: A Distributed
Garbage Collection Algorithm. In PARLE ’91: Parallel Architectures
and Languages Europe, Volume I: Parallel Architectures and Algorithms,
Eindhoven, The Netherlands, June 10-13, 1991, Proceedings (Lecture Notes
in Computer Science, Vol. 505), Emile H. L. Aarts, Jan van Leeuwen,
and Martin Rem (Eds.). Springer, 150–165. https://doi.org/10.1007/
BFB0035102

[23] Python Software Foundation. 2025. Data Model - Python 3.13. https:
//docs.python.org/3/reference/datamodel.html#object.__del__

[24] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.
2021. Perceus: garbage free reference counting with reuse. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada)
(PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 96–111. https://doi.org/10.1145/3453483.3454032

[25] Ruby Core Team. 2025. module ObjectSpace - Documentation for Ruby
3.5. https://docs.ruby-lang.org/en/master/ObjectSpace.html#method-
c-define_finalizer

[26] Michael Schöttner, Ralph Göckelmann, Stefan Frenz, Markus Fakler,
and Peter Schulthess. 2006. Incremental Distributed Garbage
Collection Using Reverse Reference Tracking. In Euro-Par 2006, Parallel
Processing, 12th International Euro-Par Conference, Dresden, Germany,
August 28 - September 1, 2006, Proceedings (Lecture Notes in Computer
Science, Vol. 4128), Wolfgang E. Nagel, Wolfgang V. Walter, and
Wolfgang Lehner (Eds.). Springer, 571–581. https://doi.org/10.1007/
11823285_59

[27] Matthew Sotoudeh. 2025. Pathological Cases for a Class of Reachability-
Based Garbage Collectors. Proc. ACM Program. Lang. 9, OOPSLA1,
Article 96 (April 2025), 28 pages. https://doi.org/10.1145/3720430

[28] Sebastian Ullrich and Leonardo de Moura. 2021. Counting
immutable beans: reference counting optimized for purely functional
programming. In Proceedings of the 31st Symposium on Implementation
and Application of Functional Languages (Singapore, Singapore) (IFL
’19). Association for Computing Machinery, New York, NY, USA,
Article 3, 12 pages. https://doi.org/10.1145/3412932.3412935

Received 2025-03-19; accepted 2025-05-03

26

https://doi.org/10.1007/3-540-45337-7_12
https://doi.org/10.1007/3-540-45337-7_12
https://doi.org/10.1145/640128.604153
https://doi.org/10.1145/640128.604153
https://doi.org/10.1145/3210563.3210572
https://doi.org/10.1145/3210563.3210572
https://doi.org/10.1145/2602988.2602990
https://doi.org/10.1007/3-540-15975-4_42
https://doi.org/10.1007/3-540-15975-4_42
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/3409964.3461810
https://doi.org/10.1145/3672608.3707785
https://doi.org/10.1145/3672608.3707785
https://doi.org/10.1145/1133956.1133976
https://doi.org/10.1145/3656383
https://doi.org/10.1145/3656383
https://doi.org/10.1145/1111596.1111597
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/1273039.1273041
https://doi.org/10.1016/0020-0190(92)90088-D
https://doi.org/10.1016/0020-0190(92)90088-D
https://doi.org/10.1145/3594671.3594672
https://doi.org/10.1145/3594671.3594672
https://doi.org/10.48550/ARXIV.2310.13589
https://doi.org/10.48550/ARXIV.2310.13589
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#finalize()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#finalize()
https://doi.org/10.1007/BFB0035102
https://doi.org/10.1007/BFB0035102
https://docs.python.org/3/reference/datamodel.html#object.__del__
https://docs.python.org/3/reference/datamodel.html#object.__del__
https://doi.org/10.1145/3453483.3454032
https://docs.ruby-lang.org/en/master/ObjectSpace.html#method-c-define_finalizer
https://docs.ruby-lang.org/en/master/ObjectSpace.html#method-c-define_finalizer
https://doi.org/10.1007/11823285_59
https://doi.org/10.1007/11823285_59
https://doi.org/10.1145/3720430
https://doi.org/10.1145/3412932.3412935

	Abstract
	1 Introduction
	2 Related Work
	3 Reachability Algorithm for Synchronous Garbage Collection
	3.1 Definitions
	3.2 Maintaining the Spanning Forest

	4 Implementation
	4.1 Encoding the Reference Graph
	4.2 Removing Referrers
	4.3 Queues and Traversal
	4.4 Full Graph Reranking

	5 Evaluation and Benchmarks
	5.1 The Ribbit System
	5.2 Experimental Results
	5.3 Profiling the Overhead

	6 Limitations and Future Work
	6.1 Multithreading Support
	6.2 Optimizations
	6.3 Finalizers and Interoperability with C++ and Rust

	7 Conclusion
	References

