
CPar: A Parallel Language for Divide and ConquerParallelismEri Methot, Mar Feeley, Bernard GendronCentre de reherhe sur les transportsDpt. d'informatique et de reherhe oprationnelleUniversit�e de Montr�ealMontr�eal, QC, CanadaAbstrat Although reent advanes in omputerlanguages have made parallel programming an easi-er task, their use has been limited to oarse grainedparallelism largely due to the overhead inurred byexposing parallelism. CPar is a language tailored totake advantage of a divide and onquer style of par-allelism and provides an e�etive way to implementit on a shared memory multiproessors. The obje-tives of CPar are twofold: limit proessor ommu-niation and redue the overhead of exposing par-allelism. To ahieve these goals, CPar implements\Lazy Remote Proedure Calls" and \Task Steal-ing" in an innovative way. Our tests have shownthat even for �ne grained appliations, CPar anattain a total overhead of less than 45% on a 64proessor Sun Enterprise 10000 and 5% on a fourproessor Intel mahine when ompared to equiv-alent sequential programs. The present paper dis-usses the implementation of the CPar systems andalso ompares it to the Cilk system.Keywords:parallel, language, par1 IntrodutionMany languages designed to express ontrolparallelism do a �ne job at failitating the taskof programming ertain styles of parallel algo-rithms. In partiular, extensions to C suh asCilk [4℄ are well suited to express parallel algo-rithms in a divide an onquer fashion. Cilk pro-grams have relatively low overheads and pro-vide automati load balaning.In this paper we present CPar, also an exten-

sion to C that exploits this type of parallelism.Using an innovative implementation of \LazyRemote Proedure Calls" and \Task Stealing"CPar ahieves low total overhead. Althoughlaking the synhronization onstruts and de-bugging tools found in Cilk, CPar does o�er asubstantial improvement in performane at a�ne granularity.We start by outlining the run-time and pro-gramming models of CPar programs and go onto desribe two important aspets of the CParsystem: \Lazy Remote Proedure Calls" and\Task Stealing". The following setion disuss-es ode transformations. Through experimentswe study the run-time behavior of CPar pro-grams. We measure the overhead of exposingparallelism as well as ommuniation overhead.We also ompare our system to Cilk. Our pri-mary onern is speed. Our tests show thatfrom a raw performane perspetive, CPar's to-tal overhead is up to two orders of magnitudesmaller than Cilk's.2 The Run-Time ModelA desription of the run-time behavior of CP-ar programs helps put into perspetive the dif-ferent tehniques used to obtain a low run-time overhead. At start-up, a �xed numberof worker OS threads are launhed and eah ofthem implements the following strategy: whena thread has no work to do or is waiting for an-other task to end, it �nds an unexeuted taskand starts exeuting it. All threads start with-



out any work to do exept the main threadwhih exeutes the main funtion. During theexeution of a task, a worker might enountera \fork" onstrut. At this point, a task is re-ated and made available to the other workersthus enabling the parallel exeution of the pro-gram.3 The Programming ModelCPar is an extension to C and requires onlya single keyword to express parallelism. Thekeyword par extends the syntax of a funtionall in the following manner:funtion(arg1,...,argN) par f...g;The par keyword is a fork onstrut for whihthe semantis are to exeute the funtion allonurrently with the instrutions in the om-pound statement. The result of this parallelall is the result of the funtion all itself. Tasksynhronization is impliit and takes plae atthe end of the ompound statement. Althoughslightly less expressive than the expliit syn-hronization mehanism found in the Cilk sys-tem it does require onsiderably less e�ort tomanage beause it does not employ loks onthe ritial path.4 Lazy Remote Pro. CallsAs the run-time model suggests, a new threadis not reated every time a fork onstrut isenountered in the exeution ow. Instead, weuse a data struture that we make available toall worker threads to enable parallelism. A lazyremote proedure alls (LRPC) as desribed byFeeley [3℄ is simply a way to tell the systemthat the reation of a new task whih performsa funtion all has been requested without a-tually reating an independent thread of exe-ution for it. In CPar, the reation of a LRPCis done in three steps: the alloation, initial-ization and the publiation of a data struturealled a task desriptor.The task desriptor must ontain suÆientinformation to reonstrut the original fun-tion all. The publiation of this desriptor

allows other workers to see it and exeute it onbehalf of its reator. Desriptors are alloatedon the run-time stak and their publiation isdone by pushing a pointer to their desriptoronto a distributed deque of LRPC.When the underlying arhiteture use reg-isters to pass arguments to a funtion, LRPCarguments will need to be opied when the al-l is made. The is a portable tehnique but itrequires one or two extra memory referenesper funtion argument. When arguments to afuntion are passed using the run-time stakwe an use the ontext of the funtion all asour task desriptor. With this approah, weonly need to add an extra spae for the resultin ase the task is stolen. Another �eld is al-so needed for the address of a proxy funtion.We note that using this optimization may notalways be bene�ial.5 Task StealingTask stealing is the tehnique used by CParto provide automati load balaning. When-ever a worker thread is idle, its starts lookingfor work in the deques of other worker thread-s. A worker also looks for work while wait-ing at a synhronization point. Task stealingrequires a distributed task deque and aom-panying aess ontrol protool to guaranteemutually exlusive aess to individual task de-sriptors. Beause task stealing is expensive itis wise to limit its frequeny at whih it o-urs. The aess ontrol protool is relativelystraightforward. We will refer the reader toFeeley [2℄ for the details and proof of orret-ness.The frequeny at whih stealing ours anbe redued by transferring large hunks of workat eah task steal. For this reason, CPar work-ers steal tasks from the bottom of the task d-eque. When using a divide and onquer ap-proah, older tasks will typially ontain morework than newer ones [2, 5℄. One interestingaspet of task stealing is that it requires littleextra ode in the heavily exeuted areas of theparallel program. The proess of stealing takes



plae in the same funtion that handles work-er synhronization. Sine synhronization onlyours when a worker is atually waiting foranother to omplete a stolen task, task steal-ing should not aount for muh of the totaloverhead.6 Code GenerationThe CPar ompiler targets the C dialet under-stood by the GNU C Compiler. To allow theGNU C ompiler to do a good job optimizingthe soure ode, it is important to minimize theextent of ode transformations. Thus, CParonly transforms the soure ode loally whereparallel onstruts are found. We note that leafalls arry no overhead as their exeution ownever reahes the parallel ode segments.EÆient aess to the loal deque of task de-sriptors is important for overall performane.We use a data struture aligned on a 4K byteboundary that ontains the head pointer andthe entries of the deque in an array. The d-eque tail pointer is kept in a mahine register.With a simple mask operation we an reover apointer to the 4K byte area and thus to out da-ta struture. On the SPARC proessor wherethere are more registers available, a seond ma-hine register is dediated for this purpose.For the Intel proessor, a total of 11 extra in-strutions inluding only 4 memory referenesare neessary to reate, initialize and publish atask desriptor. This is the key to the perfor-mane obtained by CPar and disussed furtherin our experimental results. Similar, althoughless impressive results are found for the SPAR-C arhiteture even though we annot take ad-vantage of the run-time stak as we do on Intelproessors. Consequently, the number of in-strutions is greater and the number of mem-ory referenes depends on the number of argu-ments to the parallel funtion all.7 Experimental ResultsIn this setion we explore the run-time be-havior of CPar programs. We are interest-

ed in measuring the ommuniation overheadbetween proessors and omparing the perfor-mane of CPar programs to their Cilk oun-terparts. Tests where onduted on two plat-forms: An Intel omputer with four Pentiumproessors running at 150MHz and a Sun En-terprise 10K with 64 proessors running at400MHz eah. Our tests used up to 58 pro-essors and all measurements where done usingthe average times of 10 exeutions.7.1 Communiation OverheadFrom a parallel proessing standpoint, a lowommuniation frequeny is usually preferable.As suh we have put muh e�ort into limitingthis overhead. In CPar, ommuniation ourswhen a worker attempts to steal work fromanother and also when they synhronize. C-Par inorporates features that limit both type-s of ommuniations. One of these is to stealwork from the bottom of the deque and theother is to hek for task ompletion beforealling the synhronization proedure.We mea-sured the normalized ommuniation overheadas follow: B = n�Tn�T1Ts where n = 58. Table1 shows the ommuniation overhead obtainedon a set of test programs. The overhead is typ-ially under 5%. Considering the high degreeof parallelism found in these programs, we �ndthe level of ommuniation to be relatively low.7.2 A Comparison to CilkTo verify the ompetitiveness of our implemen-tation we proeeded to ompare CPar to ver-sion 5.2 of the Cilk system. The results of thisbenhmark an be found in Table 1.Curiously, some of our parallel programs arefaster than their sequential equivalents. Thisunusual irumstane is probably aused byahe e�ets and/or better instrutions order-ing. Thus, they are not representative of a nor-mal overhead measurement. The Cilk equiva-lent program on the other hand all have animportant total overhead when the granularityof the task is �ne.CPar outperforms Cilk in speed for these



Prog. Ts T1 T58 T1Ts B�b 257.7 345.2 6.1 34.0% 3.4%sum 116.5 165.8 2.46 42.3% -19.8%queens 221.6 265.1 4.74 19.6% 4.4%knap 556.8 558.0 10.0 0.0% 4.0%san 111.3 125.2 2.5 12.5% 2.3%mmul 795.6 787.8 13.5 -1.0% -0.5%poly 94.6 107.2 2.06 13.3% 13.0%Table 1: Overheads on the Sun E-10K.programs. We note however that as the gran-ularity of the tasks grows, the di�erenes inperformane between CPar and Cilk tends todiminish.8 ConlusionWe have introdued the CPar language de-signed for parallel programming in a divide andonquer style. Although the tehniques usedby CPar are not entirely new, their implemen-tation as a soure to soure transformation aswell as their integration and evaluation in ahigh quality C ompiler are. We have seen thatfew instrutions are neessary at eah parallelall site for implementing parallelism and auto-mati load balaning whih results in low totaloverhead. Our preliminary tests show that C-Par has good potential and ompares favorablyto the Cilk system from a performane perspe-tive when exeuting �ne grained programs.Simple and elegant, CPar o�ers the pro-grammer the ability to express parallel algo-rithms without worrying about the run-timeoverhead assoiated by exposing parallelism.Yet CPar is still in an early stage and shouldinlude in the near future some interesting fea-tures found in the Cilk system suh as synhro-nization onstruts and debugging tools.Referenes[1℄ Gendron B. and Chabini I. Parallel Perfor-mane Measures Revisited. In High Per-formane Computing Symposium'95, pages381{392, Montreal, Canada, jul 1995.

CPar Prog. Ts T1 T4 T1Ts T4Ts�b(34) 1.88 1.88 0.47 0.0% 4.0sum(4e6) 1.48 1.16 0.30 -21% 4.9queens(13) 2.76 2.84 0.71 2.9% 3.9knap(34) 1.63 1.66 0.42 1.8% 3.9san(4e6) 2.70 2.82 0.76 4.4% 3.6mmul(384) 1.56 1.60 0.41 2.6% 3.8poly(8e3) 2.89 2.78 0.70 -3.8% 4.1Cilk Prog. Ts T1 T4 T1Ts T4Ts�b(34) 1.88 8.27 2.12 331% 0.88sum(4e6) 1.40 4.24 1.11 203% 1.26queens(13) 2.76 5.94 1.52 115% 1.82knap(34) 1.63 2.61 0.703 60% 2.33san(4e6) 2.70 9.17 2.42 240% 1.12mmul(384) 1.56 2.09 0.56 34% 2.78poly(8e3) 2.89 2.90 0.772 0.1% 3.74Table 2: CPar vs Cilk on Intel mahine.[2℄ Mar Feeley. An EÆient and GeneralImplementation of Futures on Large SaleShared-Memory Multiproessors. Tehni-al Report IRO-869, Dept. d'Informatiqueet de Reherhe Op�erationnelle, Universit�ede Montr�eal, 1993.[3℄ Mar Feeley. Lazy Remote Proedure Callsand its Implementation in a Parallel Vari-ant of C. In Queinne C. Ito T., Hal-stead R., editor, Parallel Symboli Lan-guages and Systems 95, Sprigner-VerlagLeture Notes in Computer Siene 1068,pp. 3{21, 1995.[4℄ Matteo Frigo, Charles E. Leiserson, andKeith H. Randall. The Implementationof the Cilk-5 Multithreaded Language. InPro. of the 1998 ACM SIGPLAN Sym-posium on Programming Language Designand Implementation, jun 1998. MIT.[5℄ Franis L'Euyer. Coneption et r�ealisationd'une variante parall�ele de C bas�ee surla r�eation paresseuse de tâhes. Mas-ter's thesis, Dept. d'Informatique et deReherhe Op�erationnelle, Universit�e deMontr�eal, de 1997.


