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Abstract. The Ribbit system is a compact Scheme implementation run-
ning on the Ribbit Virtual Machine (RVM) that has been ported to a
dozen host languages. It supports a simple Foreign Function Interface
(FFI) allowing extensions to the RVM directly from the program’s source
code. We have extended the system to offer conformance to the R4RS
standard while staying as compact as possible. This leads to a R4RS com-
pliant REPL that fits in an 7 KB Linux executable. This paper explains
the various issues encountered and our solutions to make, arguably, the
smallest R4RS conformant Scheme implementation of all time.
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1 Introduction

The Ribbit Scheme system [14, 9] is portable, extensible, and compact. It is based
on a Virtual Machine (VM) that is portable to a dozen host languages including:
JavaScript, C, Assembly (x86), Shell, Haskell, and Prolog. It is extensible, enabling
programmers to add their own host-level primitives in Scheme code or using
annotations within the VM’s code. It is compact by design, with an extremely
simple VM and with an AOT compiler that removes dead code from the program,
library, and VM itself.

This paper explains how Ribbit has been extended to maintain a small size
while adding conformance to the R4RS specification. The main enhancements to
the previous Ribbit system are:

1. Support for variadic procedures and rest parameters.
2. Implementation of all required file I/O procedures.
3. Various measures to better compact the generated code, including a new ap-

proach for encoding programs and a compact implementation of the standard
library.

These changes have allowed us to fit an interactive REPL fully conforming to
R4RS in a 7 KB Linux executable program with no external dependencies. We
chose to support the R4RS Scheme standard because it combines practicality and
small size. Also, there is lots of existing code that can run in an R4RS system
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including most of the SLIB Portable Scheme Library [8]. Subsequent standards
added features that would increase the size of the system substantially: hygienic
macros and multiple values are required starting at R5RS, and libraries and
Unicode support are required starting at R6RS. A more detailed reasoning for
our choice can be found in Section 4.

The paper is organized as follows: Section 2 provides an overview of the
Ribbit system. Section 3 explains the encoding optimizations. Section 4 describes
the implementation of the R4RS library to achieve compactness and portability
across host languages. Section 5 describes the x86 assembly host which is our
most compact and fast implementation of the RVM. Section 6 evaluates the
effectiveness of our approach through benchmarks that measure the space and
execution time using multiple compilation settings. Finally, the paper concludes
with related work.

2 Ribbit

Ribbit has three main components: the Ribbit VM (RVM) implemented in
multiple host languages, the Ribbit Scheme Compiler (RSC), and the standard
library. RSC, an Ahead Of Time (AOT) compiler, combines the source program
with the standard library to generate a standalone specialized RVM in the chosen
host language. Every RVM source program contains annotations that attach
meaning to portions of its code. This lets the compiler selectively include, exclude
or adapt sections of the code leading to a RVM uniquely tailored to the program.

The compiler will embed in the RVM source code the RVM code it has
generated for the program in an encoded form: the Ribbit Intermediate Byte
Notation (RIBN), pronounced ribbon. The RIBN has two parts: the symbol table
and the encoded sequence of RVM instructions. The symbol table is represented
as a list, where the position of a symbol in the list is its index. When encoding
the symbol table inside the RIBN, the list, as well as the string representation
of symbols, are encoded in reverse order for decoding simplicity. The encoded
program uses a specialized encoding discussed in Section 3.

2.1 Ribbit VM

The Ribbit VM was designed with simplicity in mind, to minimize the VM’s
code size and allow porting it to new host languages with low effort. It is a stack
machine with 6 available instructions loosely corresponding to the fundamental
Scheme constructs: jump (tail call), call (non-tail call), set (writing a variable),
get (reading a variable), const (literal data), and if (conditional execution).

To simplify memory management, the only data that is managed by the RVM
is the rib: a three field structure where each field can be an integer or a reference
to a rib. The code executed by the RVM, the Scheme data, and the stack are all
represented using ribs. When a rib represents Scheme data, the last field is an
integer indicating the type: 0 for pair, 1 for procedure, 2 for symbol, 3 for string,
etc. In the rest of the paper we will use the notation [a,b,c ] to mean a rib with
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the fields a , b , and c . This also happens to be the implementation of ribs in
the Python and JavaScript RVMs, among others. As an example, the Scheme
improper list (1 2 . 3) is represented using two ribs: [1, [2, 3, 0], 0].

Global variables are implemented by storing the variable’s value in the first
field of the symbol naming the variable. The second field of a symbol contains
the string representation of this symbol. If the symbol is anonymous, meaning
that its string representation is not needed, this field is empty. The RVM code is
stored in memory as a chain of ribs linked using the third field. The first field is
the opcode, an integer indicating the instruction type. The second field is the
operand. For jump, call, set, and get instructions it indicates the location of a
cell (either using a symbol if it refers to a global variable, or an integer if it is a
stack slot). For the const instruction the operand is the literal value. For the if
instruction the operand is the next instruction to execute if the value popped
from the stack is not #f. Figure 1 and Figure 2 gives an example of Scheme code
and the equivalent RVM code representation as ribs. Note that both jump and
call have the same opcode (0). They are distinguished by the third field which
is 0 in the case of a jump (i.e. there is no following instruction).

(lambda (n) ;; hypothetical definition of abs
(let ((sign (if (< n 0) -1 1)))

(* sign n)))

Fig. 1: Scheme implementation of the absolute function, represented as RVM
code (as ribs) in Fig 2.

Fig. 2: RVM code represented as ribs. The RVM code corresponds to the body of
the lambda-expression in Fig 1.

When the RVM is executed it decodes the RIBN to create the symbol table
and the RVM code represented as ribs, and then executes that code. The RIBN
decoding is discussed in further detail in Section 3.

2.2 Ribbit Scheme Compiler

Ribbit’s AOT compiler merges the standard library and the source program to
perform a whole-program analysis. A liveness analysis removes unused procedures
and primitives to optimize compactness. Annotations let the compiler remove,
reorder and add new primitives. If the liveness analysis detects that a certain
primitive is not used, then it is removed from the RVM source code.
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2.3 Annotations

Annotations live inside the RVM’s source code and give additional information
to the compiler to generate a specialized VM. They have a syntax similar
to s-expressions, but start and end with @@( and )@@ to easily embed them
unambiguously in host language comments. Annotations are composed of a name
and ≥ 0 arguments and refer to some section of the host code. If the annotation
starts and ends on the same line the annotation refers to the code on that line.
For example, in the C RVM, there is the following inline feature annotation
that refers to the #include line:

#include <stdio.h> // @@(feature stdio)@@

Fig. 3: Example of a feature annotation inside the C RVM

If the annotation spans multiple lines, then the annotation refers to the code
from the start line to the end line inclusively. Annotations can also be nested.
For instance, the primitives (plural) annotation includes multiple primitive
(singular) annotations. This lets the compiler know the set of primitives imple-
mented by the RVM and where each primitive is implemented. As an example,
here is a multiline primitive nested inside a primitives annotation, as is found
in the primitive procedure dispatch logic of the C RVM:

switch (prim_index) {
// @@(primitives (gen "case " index ":" body)
...

case 19: // @@(primitive (putchar c) (use stdio)
putchar(NUM(tos())); break; // print top of stack

// )@@
...
// )@@
}

Fig. 4: Example showcasing primitive and primitives annotations inside the
C RVM

feature annotations are used to control the inclusion of various parts of
the RVM, some of which may not be needed for a given source program. The
dependency of a feature on another feature is indicated by the use clause, as in
the above putchar primitive that depends on the stdio feature. This lets the
RSC compiler remove, add, and renumber the primitives inside the RVM. In
the previous example, the putchar primitive may get a different index if other
primitives are not needed or it may itself be removed from the specialized RVM.

The location where the RIBN needs to be injected into the RVM is indicated
with the replace annotation. For example, the following code tells the compiler
to replace "encoded RVM code" by the result of (encode 92), the RVM code
encoded as a string which is the plain base 92 RIBN encoding:
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// @@(replace "\"encoded RVM code\"" (encode 92)
ribn = "encoded RVM code"
// )@@

Fig. 5: Example of a replace annotation inside the Python RVM

2.4 Features

Features in Ribbit are compile time variables that enable the compiler to fine-
tune the RVM. They are defined in the RVM source code using the feature
annotation or in the Scheme source code using the define-feature form. Note
that primitives are also features, meaning that when a primitive is enabled, the
feature with the same name is enabled as well and vice-versa. Features and
primitives can be enabled or disabled in multiple ways:

By the programmer using RSC command line options. This is done with
the command line options
-f+ feature-to-enable or -f- feature-to-disable. This allows fine tun-
ing of the RVM, for example choosing whether the JavaScript RVM is to be
run on the web or on NodeJS.

With dependencies among the features. Features can define dependencies
with other features with the (use ...) clause. A fix-point algorithm is used
to determine the set of features to enable or disable.

By the compiler. If the compiler detects certain optimizations, it can enable
or disable features. For example, the arity-check and rest-param features
are enabled if the compiler detects that the source program has lambda
expressions with rest parameters (after dead code elimination).

Ribbit’s extensibility is mainly achieved using a simple Foreign Function
Interface (FFI) to the host language through the define-primitive form. It
defines a primitive with a name, a body and an optional use clause. The body is
a string containing host-language code and is injected inside the RVM source
code. The use clause indicates dependencies between features. For example, the
putchar primitive depends on the stdio feature as it needs C’s putchar function.
The use of the define-primitive form below is equivalent to the annotations
within the RVM shown in Figure 4.

(define-primitive (putchar c)
(use stdio)
"putchar(NUM(tos())); break;")

Fig. 6: Example showcasing the definition of a primitive in Scheme code.

In a similar way, a define-feature form exists and lets programmers add
functionality to the RVM through code embedded inside the RVM. This embedded
code can be enabled or disabled depending on the state of the feature. When
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using define-feature, one needs to specify the location where the code must
go. These locations are identified using @@(location name)@@ annotation. For
instance, the following feature definition, created using the define-feature
form, is equivalent to the one in Figure 3 . Here decl is a named location present
at the beginning of the C RVM file.

(define-feature (stdio)
(decl "#include <stdio.h>"))

Fig. 7: Example showcasing the definition of a feature in Scheme code.

2.5 Extension of the Replace Annotation
As will be discussed in Section 3, Ribbit now supports a base 256 RIBN encod-
ing. For compiled hosts such as C and x86 assembly, encoding the RIBN as a
constant array of bytes is the most compact approach. The replace annotation
has been extended to support the embedding of a literal array through the
(encode-as-bytes RIBN-base prefix separator suffix) procedure. For example,
the C RVM embeds the base 256 RIBN in this way:

// @@(replace "literal-array" (encode-as-bytes 256 "{" "," "}")
unsigned char compressed_ribn[] = literal-array;
// )@@

The corresponding line of the generated RVM will look like this:

unsigned char compressed_ribn[] = { 41, 59, 39, 117, 63, ... };

More broadly, the replace annotation has been extended to embed informa-
tion known at compile time and needed by the RVM at run time. For example,
this is used during the compression (see Section 3.5) and the specialized encod-
ing (see Section 3.4). To embed such information inside the RVM, features
can now contain values, such as lists, numbers, and other Scheme values. This
information is accessible through the replace annotation. Combined with the
use of procedures that convert the feature-values into strings, this information
can be embedded inside RVMs easily. For example, this mechanism is used by
the C RVM to create an uninitialized array of the exact size of the decompressed
RIBN:
// @@(replace "RIBN_SIZE" compression/lzss/2b/ribn-size
unsigned char ribn[RIBN_SIZE];
// )@@

Here, the feature compression/lzss/2b/ribn-size contains the uncompressed
size of the RIBN. Without an information sharing mechanism between the
compiler and the RVM, one would have to resort to dynamically allocated
vectors, complicating the logic and increasing the footprint of the RVM.
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2.6 if-feature Form
There are instances where Scheme code must behave differently based on features
being enabled or disabled. This is the case for the eval procedure of the standard
library that depends on the arity-check feature. The arity-check feature tells
the compiler to add support for argument count verification: pushing the number
of arguments onto the stack just before a call or jump (which is otherwise not
needed). This enables the RVM to check that the number of arguments matches
the arity of the procedure. In other words, the arity-check feature impacts the
calling protocol chosen by the compiler and eval needs to be aware of it.

The special form if-feature was added to test the use of specific fea-
tures. This special form is processed after the liveness analysis. This timing
is essential because determining the liveness of a feature is dependent on the
define-primitive and define-feature forms, which use use clauses to indicate
dependencies.

3 Encoding

The explicit chaining in the RVM code’s rib representation allows representing
loops (cycles) and join points (sharing) without additional instructions. Although
the compiler does not take advantage of this for loops, it does use sharing for
the join points of non-tail if forms, as in Figure 2. So the rib representation of
the RVM code is a Fork-Join Directed Acyclic Graph (DAG) with optional joins
that we will call the code graph.

The RIBN is an encoding of the code graph generated by the compiler that
is decoded by the RVM to create the code graph that the RVM interpreter uses.
The RIBN is conceptually a list of integer codes whose values are in the range 0
to rb − 1, where rb is the RIBN base. The goal is to encode the code graph such
that the least space is taken by the sum of the RIBN and the implementation of
the decoder that is part of the RVM. In the previous Ribbit system the chosen
encoding was suboptimal:

1. The RIBN was a string of characters with a RIBN base equal to 92, the set
of characters that don’t require escaping in most host languages. In host
languages that are compiled, where the system’s footprint is the size of the
executable, it is more space efficient to use an array of bytes and a RIBN
base of 256. We solve this by allowing each host language to define the RIBN
base and how the RIBN is stored in memory. The compiler will transform
the generated RIBN to comply with the defined encoding and map the RIBN
codes appropriately, for example, between the 92 codes and the printable
ASCII characters.

2. The RIBN could only express a tree structure. A tail duplication transforma-
tion was applied to the code to remove any shared structure. For example,
the code graph in Figure 2 was encoded in a RIBN that was decoded into
the code graph in Figure 8. This duplication causes an exponential growth of
the code when multiple non-tail if forms are in sequence. This is solved by
the new encoding approach which can express sharing.
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Fig. 8: Code graph of Figure 2 after tail duplication transformation.

3. There was only one RIBN encoding supported. Now, different encoding
mechanisms exist. The optimal encoding empowers the compiler to decide
on the optimal ranges to assign each decoding instruction. The corresponding
decoder is used by the RVM generated by the compiler.

4. No compression was applied to the RIBN before embedding it into the RVM.
Now, LZSS compression is applied on compatible hosts

3.1 Decoding Instructions

The decoding of the RIBN into the code graph is done using a stack. The RIBN
is a sequence of decoding instructions executed by the decoder that have an
effect on the stack. The stack is initially empty and at the end of the decoding it
contains a single value that is the code graph. The decoding instructions should
not be confused with the RVM instructions that are contained in the code graph
and executed by the RVM’s interpreter.

Because of the linked nature of the code graph, it is easier to construct the
code graph starting with the tail, for example starting with the jump instruction
of Figure 2 and then adding the previous instructions in front one by one. Note
also that all code sequences must end in a jump, so a RIBN always starts off with
a decoding instruction for a jump.

Decoding instructions have a type and an argument (with one exception for
decoding if). The argument is always a nonnegative integer that either stands
for itself (the int case), or is used to index the symbol table to refer to a specific
symbol (the sym case). To avoid arbitrarily limiting the number of symbols
and global variables of the source program, the argument has no upper limit.
Consequently each decoding instruction is a sequence of one or more RIBN codes,
using a variant of Variable-Length Quantity [1] (VLQ). VLQ uses fewer RIBN
codes for the smaller argument values. The variant we use combines in a single
RIBN code the decoding instruction type and the argument value when it is
small. When a decoding instruction is a single RIBN code it is called the short
form, otherwise it is the long form. To enhance compactness, the RSC compiler
analyzes the program to assign small symbol table indexes for the most frequently
referenced global variables, so as to minimize the frequency and length of the
long form.

Ideally the set of decoding instructions would allow handling any code graph.
However, it simplifies the decoder to restrict the code graph and this may reduce
the size of the decoder in the generated RVM.
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Firstly, the operand of const instructions is restricted to be a symbol, a
nonnegative integer, or a constant procedure (meaning with no free variables,
which is useful for the frequent case of top-level procedure definitions). The RSC
compiler ensures that this is the case by doing a rewriting of the code graph
before the RIBN is created. Any const instruction with an operand that is not
an acceptable constant is turned into a get instruction that refers to a freshly
created global variable that contains the constant. The compiler also adds to the
beginning of the program the RVM instructions that constructs the constant and
store it in the global variable. This is done in a way that shares common parts of
constants, in particular when the same constant appears in several places in the
source code a single global variable is used.

3.2 SHARE Decoding Instruction

The previous Ribbit had a second restriction on the code graph, namely that it
had to be a tree. Ribbit now supports DAGs thanks to a decoding instruction
called SHARE that was not available previously.

Decoding
instruction

type

Argument
(arg)

RVM
instruction
generated

Effect on decoding stack state using the notation
⟨current-stack-state⟩ → ⟨next-stack-state⟩

PUSH0 int or sym jump stack. . . → [0, arg, 0] stack. . .
LINK0 int or sym call x stack. . . → [0, arg, x] stack. . .
LINK1 int or sym set x stack. . . → [1, arg, x] stack. . .
LINK2 int or sym get x stack. . . → [2, arg, x] stack. . .
LINK3 int or sym const x stack. . . → [3, arg, x] stack. . .
MERGE3 int const y x stack. . . → [3, [[arg, 0, y], 0, 1], x] stack. . .
MERGE4 none if y x stack. . . → [4, y, x] stack. . .
SHARE int none x stack. . . → list-tail(x, arg) x stack. . .

Table 1: The decoding instructions and their effect on the decoding stack.

Table 1 shows the decoding instructions now supported. On the right side is
the effect of the decoding instruction on the decoding stack state. The top of stack
is always a rib and is a sequence of RVM instructions under construction. The
LINK instructions add an RVM instruction to the sequence (with no change to
the stack size). The RVM instruction added is either a call, set, get, or const
with an int or sym operand. The MERGE instructions pop one RVM code
sequence from the stack and add either a const or if RVM instruction to the
now current topmost code sequence (thus reducing the stack size by one). This
allows constructing a const RVM instruction referring to a constant procedure
whose arity is the argument of the MERGE3 instruction (this is often combined
with a set RVM instruction to implement top-level procedure definitions). The
PUSH0 decoding instruction pushes to the stack a new sequence containing



10 Léonard Oest O’Leary, Mathis Laroche, and Marc Feeley

a single jump instruction with an int or sym operand. The SHARE decoding
instruction is the only other way to start the construction of a code sequence.
It extracts the tail of the sequence currently under construction to start a new
code sequence. It is used for each control flow join point in the code graph. The
argument is the number of RVM instructions to skip. For example, when the code
graph of Figure 2 is converted to a RIBN a SHARE decoding instruction with
an argument of 1 is used after the false branch of the if has been constructed.
Then the true branch is added and a MERGE4 decoding instruction is used to
create the if.

To determine what part of the code graph has sharing, a hash-consing algo-
rithm is used by the RSC compiler to construct the code graph. Hash-consing can
determine if two nodes, including all of their children, are equal. Equal code graph
tails will automatically be shared in the constructed code graph. Other benefits
also emerge from hash-consing such as the ability to optimize certain forms of
duplication in the source code. For example, the two following expressions will
compile to the same code graph:

(if (< x y) (f x) (f y))
(f (if (< x y) x y)))

3.3 Encoding of the Decoding Instructions

RVM Decoding
instruction Range Size instruction Argument Form
jump 0-19 20 PUSH0 sym short
jump 20-20 1 PUSH0 int long
jump 21-22 2 PUSH0 sym long
call 23-52 30 LINK0 sym short
call 53-53 1 LINK0 int long
call 54-55 2 LINK0 sym long
set 56-56 1 LINK1 int long
set 57-59 2 LINK1 sym long

RVM Decoding
instruction Range Size instruction Argument Form
get 59-68 10 LINK2 int short
get 69-69 1 LINK2 int long
get 70-71 2 LINK2 sym long
const 72-82 11 LINK3 int short
const 83-83 1 LINK3 int long
const 84-85 2 LINK3 sym long
const 86-89 4 MERGE3 int short
const 90-90 1 MERGE3 sym long
if 91-91 1 MERGE4

Table 2: Encoding of decoding instructions used in the previous Ribbit system.

The encoding of each decoding instruction contains its type, its argument’s
type, and its argument’s value. The argument’s value can be encoded either
with a single RIBN code (short) or across multiple ones (long). For each type of
decoding instruction and argument, a range of codes is assigned. For the short
encoding, the argument will be the difference between the code and the lower
boundary of the range. For the long encoding, the argument will utilize the VLQ
encoding, with a starting value in the accumulator equal to the difference between
the code and the lower boundary of the range. For instance, if a range is assigned
to the codes 50..55 for the long encoding, then the two RIBN codes 53 4 will
give the argument 3 × rb/2 + 4.

In the previous Ribbit system, which utilized a fixed RIBN base of 92, the
ranges were as indicated in Table 2. These ranges were determined by minimizing
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the RIBN size through a trial and error process on the source code of the REPL.
They are accessible to the decoder through a table indicating the size of the short
form of each decoding instruction. For example, a RIBN code of 42 encodes a
LINK0 decoding instruction with an argument of 19 = 42 − 23. This generates a
call RVM instruction with a reference to the symbol at index 19 in the symbol
table.

3.4 Encoding Specialization

Ribbit still uses the same encoding strategy but adapted to the RIBN base of
the RVM implementation and specialized to the code graph produced by the
compiler.

At compile time, the programmer can choose the encoding mechanism. The
original encoding represents the encoding in Table 2. It has the advantages of
being backward compatible and fast to generate. The optimal encoding is a new
approach that searches for the best ranges for each decoding instruction for the
code graph generated. It starts off with a range size of 1 for each long encoding
and a range size of 0 for the others. Then, greedily, it picks the best range to
increase. The best range is the one that has the best ratio between the number
of bits needed to encode the range and the number of bits saved by encoding
this range with a single RIBN code. Although it is not optimal in the theoretical
sense it gives good results in practice.

As the optimal encoding calculates, at compile time, a specialized encoding
for the code graph, the annotation system (see Section 2.3) has been extended
to allow the replacement of information known by the compiler. To do this, the
replace annotation has been extended, as explained in 2.4. Here is an example
taken from the JavaScript RVM:

// @@(feature encoding/optimal
while (1) {

x = get_code();
...
// @@(replace "[0,1,2]" (list->host encoding/optimal/start "[" "," "]")
while((d=[0,1,2][++op]) <= n) n-=d
// )@@
...

// )@@

In this code, an internal procedure of the compiler that is available in anno-
tations is used to replace the source code [0,1,2]. The procedure list->host
takes a Scheme list, a prefix, a separator and a suffix. It generates a string that
concatenates the values of the list, separated by the separator and surrounded
by the prefix and suffix. This is useful because this kind of syntax for a se-
quence of codes is almost universal among programming languages. The feature
encoding/optimal/start contains a list of the start of the short ranges for the
optimal encoding. The order of the decoding instructions is always the same for
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the optimal encoding, and thus known by the RVM. To automatically choose the
right decoder implementation in the RVM, the compiler uses the feature system
described in Section 3. The compiler will activate the feature encoding/optimal
when the optimal encoding is used and the feature encoding/original when
the original encoding is used. This lets the RVM adjust its code to the encoding
used.

3.5 LZSS Compression

LZSS [3] is a general-purpose compression algorithm heavily inspired by LZ77 [15]
that replaces recurring slices of text with back-pointers to previous occurrences.

The relative simplicity of LZSS makes it an interesting compression algorithm
as the implementation of the decoder contributes to the total code size of the
RVM. Fancier algorithms like Zip or Bzip2 are much more complex and, unless
the source program is very large, their implementation will take more space
than the space saved by the compression of the RIBN. A LZSS decompressor
is particularly compact; it has been implemented in less than 50 lines of x86
assembly code and still offers effective compression of the RIBN.

The LZSS algorithm works on units of information that we will call bytes
since in practice they correspond to 8 bits even though in theory it could be
different. The byte-base (bb) is the number of codes in a byte, i.e. bb = 256 in
practice. The decompressor takes a stream of bytes and outputs a sequence of
RIBN codes.

One of the key issues in applying the LZSS algorithm to compress the RIBN
is the encoding of back-pointers, which are composed of an offset and a size.
The offset is the backward distance in number of RIBN codes to the end of the
section that is repeated and size is the length of the section.

To achieve good compression rates it is important to encode back-pointers in as
few bytes as possible. We chose to always use two bytes. When the decompressor
encounters a byte whose value is lower than the RIBN base (rb), it represents a
RIBN code that is output as is. Otherwise the byte is in the compression-range
and it is the first of the two bytes that encode a back-pointer BP. The two bytes
are combined with the formula BP = (byte1 - rb) × bb + byte2. The size and
offset are then extracted using the size base (sb):

size = BP mod sb + 3
offset = BP div sb

where div and mod are the integer division and modulo operators. There is no
gain in using back-pointers to encode repeated sequences of size 1 or 2, so the
minimum size is 3 and the maximum size is sb + 2. The maximum offset is ((bb
- rb + 1) × bb - 1) div sb.

The value chosen for size base determines the balance between the range
of sizes and the range of offsets that can be encoded by a 2 byte back-pointer.
Given that the optimal size base depends on the source program it is RSC that
determines the value. RSC will iterate over a small reasonable range of values for
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size base (7 to 13) and picks the one that produces the best compression. When
using LZSS, a RIBN base of 186 is used, as this gives the best compression for
the REPL.

4 The R4RS Library

Ribbit needs to adhere to an official Scheme standard as to properly compare its
implementation to other Scheme interpreters and compilers. In order to stay tuned
with Ribbit’s minimalism, the chosen standard needs to offer a good balance
between expressiveness and a relatively small number of essential features. The
R4RS standard is a good fit for Ribbit as it possesses such qualities.

The two standards that were considered were R4RS and R5RS, as the others
are simply too big (R6RS and R7RS) or too outdated (R3RS and below). After
analyzing the two, it becomes clear that the R4RS standard is a more sound
choice for Ribbit compared to the R5RS standard for three primary reasons.
First, R4RS is almost a subset of R5RS in terms of essential procedures and
syntax (the only exception is the load procedure essential in R4RS but optional
in R5RS). Second, the R4RS standard defines 164 essential procedures and 18
essential syntaxes while the R5RS standard defines 207 essential procedures and
26 essential syntaxes. When size matters, this difference becomes significant.
Third, hygienic macros, which are a key feature of R5RS, require a considerable
amount of space to implement. Incorporating support for this into the eval
procedure of the library would increase its complexity and size beyond necessity.

4.1 Design Choices and Tradeoffs

Ribbit’s instruction graph is composed of ribs that can either contain signed
integers or a reference to a rib. This has a number of consequences on the
implementation of the R4RS standard, especially when it comes to the definitions
of the various data types, as each type needs to adhere to this structure.

One of the first constraints is that Ribbit only supports exact signed integers
inside the Scheme source code. The biggest challenge to support floating point
numbers is the variety of RVMs that Ribbit runs on. Ribbit could not rely on
the host’s implementation as the behavior would not be consistent across RVMs.
For example, the floating point arithmetic of an RVM written in POSIX Shell
will behave differently than its counterpart in Python, making this behavior
unreliable, which defeats the whole point of supporting multiple host languages.
This means that Ribbit would need to implement its own floating point arithmetic,
which increases the overall footprint size of the RVMs. To limit the efficiency loss,
Ribbit could use the host’s floating point in some cases and its own in others.
However, this requires a lot of work for a feature that is optional in the R4RS
standard.

In the previous Ribbit system, individual characters were simply represented
as their integer code. However, the R4RS standard requires the adherence to the
Disjointedness of types principle, meaning the type for characters must now be
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distinct from other types. For this reason, Ribbit now supports, behind a compiler
feature named chars, the representation of characters using a rib. The character
rib has the character code (an integer) in the first field and the type code 6 in the
third field. The second field is an implementation dependent value and is currently
unused by Ribbit’s implementation of R4RS. This change makes the creation of
character constants require significantly more instructions than previously. This
explains a common optimization done in procedures dealing with characters, like
char>? and char-whitespace?, where characters are unboxed and the logic is
done with their integer representation. To alleviate the problem of size and avoid
frequent character allocation, the use of a table of previously created characters
was considered. This would also make characters comparison for equality quick
using a eq? test. However, in the interest of a simpler implementation, characters
are always allocated when needed, for example by the integer->char, read-char,
and string-ref procedures. This also means that the procedure eqv? needs to
handle this case in the Scheme code, as the ##eqv? primitive only guarantees
arithmetic equality, as with the = procedure, for numbers and a reference equality,
as with the eq? procedure, for ribs.

The change to the representation of characters doesn’t impact the internal
representation of strings however, as they were already differentiable from the
other types. Therefore, strings are still represented as a rib containing a list of
integer character codes in the first field, the length of the string in the second
field, and the string type tag in the third field. While this representation must be
accounted for in the implementation of some R4RS procedures, like string-ref
and string->list, it also enables some optimizations elsewhere, like in string
comparisons with string<?, string>?, etc.

4.2 A Portable I/O System

The way of interfacing with I/O varies greatly between languages. To solve this
problem, Ribbit reduces the responsibilities of each RVM to a minimum by
implementing most of the logic in Scheme code directly. This allows Ribbit to
present a unified API that can adapt to all RVMs while complying with the
behaviors expected by R4RS.

Ribbit separates input-port and output-port into two distinct data types,
as required by R4RS.

An input-port is a rib with this layout: [fd, peeked-char/open?, 8]. The fd
field is reserved by the RVM for implementation dependent file descriptors. Each
host language has its own way of communicating with the file system, and this
object bridges the gap between the host language and the RVM. For example,
the x86 assembly implementation uses an integer representing the Linux file
descriptor, while the Python implementation keeps a reference to a Python File
object.

The peeked-char/open? field has two purposes as to avoid using an extra rib.
Its first role is for caching the last read character after a peek. It is used in the
implementation of peek-char and read-char. It is needed because the RVM’s
file interface does not necessarily conform to the R4RS standard. This field is
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the empty list by default, meaning there is no character peeked. The second role
of the field is to indicate if the port is open or closed. To do so, the field is set to
#f when the port is closed and checking the state of a port becomes a simple
not test. It is necessary to provide this information as R4RS mandates that a
port may be closed any number of times without causing an error, a guarantee
not shared by all languages. For example, NodeJS will throw an exception while
attempting to close an already closed port.

An output-port is a rib with this layout: [fd, open?, 9]. The fd field and
the open? field have the same meaning as those fields in input-port.

To support I/O the following primitive procedures must be defined by
an RVM: (##stdin-fd), (##stdout-fd), (##get-fd-input-file filename),
(##get-fd-output-file filename), (##read-char-fd fd), (##write-char-fd
ch-code fd), (##close-input-fd fd), (##close-output-fd fd).

##stdin-fd and ##stdout-fd return the fd host-dependent value used in the
standard input and output port. ##get-fd-input-file and ##get-fd-output-file
take a filename and return the fd host-dependent value used in the input and
output port for that file. ##read-char-fd takes a fd and reads a character code
(as an integer) from the file, while ##write-char-fd takes a character code (as an
integer) and a fd and writes the character to the file. Finally, ##close-input-fd
and ##close-output-fd take a fd and close the corresponding port. All those
procedures either take or return the implementation dependent object fd that is
used to retrieve or write data to the file system using the host language.

Scheme procedures are defined on top of these primitives, and they take care
of caching the peeked character, checking if the port is open, closing the port
when necessary, returning the end-of-file object, and converting the character
code (integer) read into a Scheme character.

4.3 Strategies Used for Making a Compact R4RS Library

The Ribbit implementation of the R4RS library is optimized for size at the cost
of execution speed. This approach can be seen in the implementation of +, *, and
-, which are all defined using the fold procedure, as a call to fold takes less
space than an explicit loop to compute the sum or product. The fold procedure,
even if absent from the R4RS standard and, therefore, not required, is used often
enough to make up for the space its implementation needs. The pattern of using
higher order procedures to generalize a behavior is used frequently in the R4RS
implementation, as it often avoids code repetition.

Another trick is to define procedures in terms of other procedures. For example,
(char>? c1 c2) is defined as (char<? c2 c1) instead of the faster, but larger
(> (char->integer c1) (char->integer c2)).

Another common technique is to define a few internal procedures of a general
nature and to call them in many different places. This makes the AOT compiler
rank those procedures at low indexes in the symbol-table, reducing the cost of
accessing them to, in the best case, as little as one byte.
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4.4 Expander Macros

The Ribbit AOT compiler supports the define-expander special form for defin-
ing expander macros that are responsible for handling their own recursive expan-
sion [10]. This is used in the R4RS implementation to optimize certain common
patterns. For example, a call to the procedure + with two arguments will be
expanded to a call of the ##+ primitive, which avoids a call to fold. Expander
macros are used extensively by the implementation of R4RS to improve execution
speed without compromising space.

4.5 Testing the R4RS Compliance of the Compiler and REPL

Compliance to R4RS was verified using a series of tests inspired by, or taken from,
the R4RS test file of Chicken [7, 4], which includes many examples from the R4RS
document. The use of multiple test files provides modular compliance testing.
Each test file starts with the code tested followed by comments containing the
expected output. These were run on the JavaScript, Python, and x86 assembly
RVM.

To test the Ribbit compiler, the makefile iterates over the test files and for
each one:

1. Compiles the test file to the target host using the Ribbit compiler;
2. Runs the generated RVM using the host interpreter or compiler;
3. Compares the values written to the standard output to the expected output.

To test the Ribbit R4RS REPL, the makefile:

1. Compiles the REPL to the target host using the Ribbit compiler;
2. Runs the generated RVM using the host interpreter or compiler;
3. For each test file, evaluates (load "path/to/the/test.scm") and compares

the values written to the standard output to the expected output.

5 X86 Assembly Host

Choosing the right host is critical for implementing the R4RS standard within a
7 KB limit. While the library is designed to work on any host, achieving the goal
of a 7 KB footprint requires optimization efforts focused specifically on the host.

High-level languages like Python or JavaScript could serve as intriguing host
options. The footprint of these hosts is determined by the size of the source
code for the resulting RVM. Since users are likely to have the host language
pre-installed, only the source code is required to run the RVM. The challenge
here lies in balancing the verbosity of the source code against the availability of
built-in language features.

The C language is an appealing host option due to its compactness and ease
of optimization to meet the 7 KB size constraint. However, executables generated
through gcc often include unnecessary boilerplate code, like the main function
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startup code. While the generated code can be trimmed-down with C compiler
options, using C as a host still limits our low-level control [2].

A stripped down ELF file containing x86 code is our host of choice. It is very
compact and optimizable to meet our objectives. However, everything needs to
be implemented from scratch, including a GC, the I/O primitives (using Linux
syscalls) and the specialized encoding. Fortunately, the RVM is sufficiently simple
to allow for the implementation of this kind of low-level host within a reasonable
time frame.

6 Evaluation

We are interested in measuring the footprint of our R4RS implementation as a
standalone executable as well as the execution speed. The footprint of the REPL,
including the generated RVM for the x86 assembly host, is shown in Table 3.
Each column represents a different compilation setting. The first column is the
baseline, which is the size of the generated code without any optimizations. The
available compilation settings are:

Baseline. The original encoding is used.
Prim-no-arity. The procedure call argument count is normally pushed to the

stack, costing one byte per encoded call. If rest parameters are not used with
primitives, this can be skipped for primitives. The space saving is appreciable
as all calls to primitives are encoded with one fewer byte and the argument
count check in the RVM can be removed if rest parameters are not used in
the source program.

Optimal (92). The optimal encoding with 92 codes per byte is used, as de-
scribed in Section 3.4.

Optimal (256). The optimal encoding with 256 codes per byte is used, as
described in Section 3.4.

LZSS. LZSS compression is applied to the generated code before writing it to
the RVM as described in Section 3.5. Note that LZSS compression works
only with optimal (256) encoding.

The most compact executable for the REPL is obtained, unsurprisingly, with
the combination of Prim-no-arity, Optimal (256), and LZSS: a footprint of 6.5
KB. Not using Prim-no-arity has a minor 2% impact on footprint when using
LZSS.

Baseline Prim-no-arity Optimal (92) Optimal (256) Prim-no-arity
Optimal (92)

Prim-no-arity
Optimal (256)

No LZSS 14 KB 13 KB 9.8 KB 9.2 KB 9.0 KB 8.4 KB
LZSS - - - 6.6 KB - 6.5 KB

Table 3: Footprint of the REPL compiled to the x86 assembly host with different
compilation settings.
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To test the footprint and execution speed for specific source programs, the x86
assembly and the JavaScript host have been benchmarked, as well as the Gambit
Scheme Interpreter [6]. Tests are taken from the Gambit benchmarking suite [6].
The test machine is a 4.5 GHz Intel i7-9750H with 16 GB of RAM running Linux.
The NodeJS version is v10.24.1. The Gambit version is v4.9.5. In the Tables 4
and 5, different settings were used to compile/execute the benchmark:

gsi. Gambit Scheme Interpreter used as a reference for execution speed compari-
son.

pna. Refers to the Prim-no-arity compilation option. This is the same as in
Table 3. Note that we use the label pa to indicate not using that option
(i.e. the primitives do check arity).

tc. The R4RS library comes in two forms: with and without type checking. The
tc option means that the type checking version is used. Note that type
checking is not required for conformance with R4RS.

x86 REPL. Execution using the REPL compiled for the x86 assembly host. It
was compiled with Prim-no-arity, Optimal (256), LZSS, and the non type
checking R4RS library (footprint of 6.5 KB).

gsi tc tc x86
(secs) pna pa pna pa REPL

ctak 0.2 s 0.9× 2.1 KB 1.0× 2.2 KB 1.5× 8.8 KB 1.8× 9.3 KB 2.8×
fib 26.2 s 0.3× 2.0 KB 0.4× 2.0 KB 1.9× 8.6 KB 2.2× 9.1 KB 4.9×
ack 2.2 s 0.4× 2.0 KB 0.4× 2.0 KB 1.6× 8.6 KB 1.9× 9.1 KB 5.7×
tak 2.3 s 0.6× 2.0 KB 0.6× 2.0 KB 1.5× 8.6 KB 1.7× 9.1 KB 3.5×
takl 2.5 s 0.9× 2.2 KB 1.0× 2.2 KB 0.8× 8.7 KB 1.0× 9.2 KB 1.0×
primes 1.4 s 0.8× 2.3 KB 1.0× 2.3 KB 1.5× 8.8 KB 1.8× 9.3 KB 2.6×
deriv 0.7 s 6.8× 2.7 KB 8.2× 2.7 KB 26.3× 9.2 KB 32.6× 9.8 KB 7.3×
mazefun 1.4 s 0.7× 4.0 KB 0.8× 4.1 KB 1.7× 9.9 KB 2.0× 11 KB N/A
nqueens 2.0 s 0.8× 3.4 KB 0.9× 3.5 KB 1.7× 8.8 KB 2.0× 9.2 KB N/A
sum 19.4 s 0.3× 2.0 KB 0.4× 2.0 KB 2.1× 8.6 KB 2.5× 9.1 KB N/A

Table 4: Execution time when using the Gambit Scheme Interpreter and for
Ribbit the relative execution time and footprint of the x86 assembly host on
different benchmarks.

Note that a few entries are missing from the tables. Some of the benchmarks
use named-let and internal define which are not supported by the REPL
because they are not required by R4RS. This is indicated with N/A in Table 4.
In Table 5, a few tests with the type checked version timed-out. The limit was 5
minutes for the compilation and the execution of the benchmark.

The results for the x86 assembly host demonstrate good space and execution
speed characteristics when the programs are compiled with the AOT compiler.
These relatively small benchmark programs (15-200 LOC) compile to executables
in the 2-4 KB range when the non type checking R4RS library is used. It
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gsi tc tc
(secs) pna pa pna pa

ctak 0.2 s 10.6× 2.7 KB 13.2× 2.7 KB 18.3× 11 KB 22.0× 11 KB
fib 26.2 s 4.0× 2.4 KB 5.1× 2.5 KB FAIL 11 KB FAIL 11 KB
ack 2.2 s 4.8× 2.4 KB 5.3× 2.5 KB 21.5× 11 KB 22.9× 11 KB
tak 2.3 s 7.0× 2.4 KB 8.3× 2.5 KB 20.4× 11 KB 23.1× 11 KB
takl 2.5 s 11.5× 2.7 KB 13.5× 2.7 KB 12.5× 11 KB 13.7× 11 KB
primes 1.4 s 10.6× 2.8 KB 12.3× 2.9 KB 19.7× 11 KB 25.0× 11 KB
deriv 0.7 s 94.2× 3.3 KB 108.0× 3.4 KB FAIL 11 KB FAIL 12 KB
mazefun 1.4 s 8.5× 5.0 KB 10.5× 5.2 KB 23.8× 12 KB 28.0× 13 KB
nqueens 2.0 s 10.2× 4.2 KB 11.8× 4.4 KB 24.7× 11 KB 27.6× 11 KB
sum 19.4 s 4.2× 2.4 KB 5.3× 2.5 KB FAIL 11 KB FAIL 11 KB

Table 5: Execution time when using the Gambit Scheme Interpreter and for
Ribbit the relative execution time and footprint of the NodeJS host on different
benchmarks.

demonstrates the effectiveness of the AOT compiler to remove unused parts of
the R4RS library and RVM source code. In terms of execution speed. When the
type checking R4RS library is used the footprint grows considerably to the 9-11
KB range. This is due to the frequent use of set! to redefine the predefined
procedures with type checking variants which interferes with the effectiveness of
the dead code elimination.

Execution speed compares well with the Gambit Scheme Interpreter. All
programs except deriv are faster when compiled with the Ribbit AOT compiler
and non type checking library is used. The AOT compiler does not optimize
deriv well due to the presence of higher-order procedures and rest parameters.
The x86 REPL fares reasonably well in terms of execution speed with a factor of
no more than 7.3× slower than the Gambit Scheme Interpreter.

The results for the JavaScript host show that the footprint is consistently
about 0.5 KB larger than with the x86 assembly host. On the other hand, the
execution time is about one order of magnitude larger, which can be explained
by the use of a higher level host language without low level control.

7 Related Work

Bit [5] is a compact Scheme implementation based on an AOT compiler. It
supports call/cc, and most constructs from R4RS. However, it doesn’t support
the full R4RS standard, excluding all port based textual I/O procedures. It
claims to fit this implementation within 22 KB. In contrast, Ribbit is a factor of
3× smaller while providing a REPL and a fully compliant R4RS library.

Picobit [12] is a Scheme implementation also based on an AOT compiler that
targets embedded systems. It supports a broad subset of R5RS and includes
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a macro system, however, important features are missing: file I/O, eval, and
string-to-symbol conversion. They claim to fit the VM without the standard
library and without bignums in 11.6 KB on PIC18 microcontrollers which are
8-bit microprocessors. Moreover the heap size is constrained by the use of a 16
bit address space. Ribbit has a substantially smaller VM (˜2 KB for the x86
RVM which has a 32 bit address space) and the AOT compiler supports macros.
Additionally, Ribbit offers a full REPL compliant with R4RS, including support
for string-to-symbol conversion, eval, and I/O procedures, all within 6.5 KB
which is considerably smaller than the bare Picobit VM.

Bigloo [11] is a Scheme implementation with a macro system that is very
similar to the one used by Ribbit, as they both define a define-expander special
form with a similar semantics. For example, in Bigloo, as well as in Ribbit, the
form define-macro is expanded into a define-expander. A notable difference
is that Ribbit only supports the use of expanders in the Ribbit AOT compiler,
while Bigloo supports this in its compiler and interpreter.

SectorLISP [13] serves as a unique Lisp implementation that runs directly
as an operating system with a GC and impressively fits within the constraints
of a 512-byte boot sector. While this compactness is noteworthy, it comes with
limitations in terms of features when compared to Ribbit. Specifically, SectorLISP
does not include a built-in eval procedure - though users can manually enter
one through the REPL - and its Lisp version falls short of the comprehensive
feature set found in the R4RS standard.

8 Conclusion
In this paper, we have described how the Ribbit system has been improved with
a new, more efficient, and more flexible way of encoding Scheme programs. We
also have described how a R4RS compliant REPL was implemented for Ribbit in
a footprint of only 6.5 KB. The REPL is capable of running on a wide variety
of host languages with no extra dependencies. Our approach to minimize the
generated encoded program by the Ribbit AOT compiler is to use a multistep
process. First, we do a liveness analysis on the Scheme code to remove any unused
procedures and variables. The liveness analysis is also used to determine which
parts of the generated Ribbit VM need to be removed, using our feature system.
Then, the compiler finds the optimal way of encoding the program. After being
encoded, the LZSS algorithm is used to compress it to reduce its size even more.
Finally, the compiler injects the encoded program into the Ribbit VM.

It would be interesting to see how the system needs to be extended to support
Scheme standards beyond R4RS. While we can only speculate on the compactness,
we believe it is likely that a complete R7RS compliant REPL can be implemented
in a 15-30 KB footprint.
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