
Towards a Portable and Mobile Scheme Interpreter

Adrien Piérard
Université Paris 6

adrien.pierard@etu.upmc.fr

Marc Feeley
Université de Montréal

feeley@iro.umontreal.ca

Abstract
The transfer of program data between the nodes of a distributed
system is a fundamental operation. It usually requires some form
of data serialization. For a functional language such as Scheme it is
clearly desirable to also allow the unrestricted transfer of functions
between nodes. With the goal of developing a portable implemen-
tation of the Termite system we have designed the Mobit Scheme
interpreter which supports unrestricted serialization of Scheme ob-
jects, including procedures and continuations. Mobit is derived
from an existing Scheme in Scheme fast interpreter. We demon-
strate how macros were valuable in transforming the interpreter
while preserving its structure and maintainability. Our performance
evaluation shows that the run time speed of Mobit is comparable to
existing Scheme interpreters.

1. Introduction
There is an increasing interest in the programming of distributed
systems using distributed functional languages (e.g. Erlang [2], Ter-
mite [11], mHaskell [14]). Termite is a first attempt to adapt the Er-
lang distributed programming model to Scheme. Because Termite
is implemented on top of Gambit and relies on system specific fea-
tures it is difficult to port to other implementations of Scheme. A
portable implementation would have the advantage that the nodes
of the distributed system can be running different implementations
of Scheme while still allowing unrestricted exchange of data (in-
cluding procedures and continuations) and process migration.
We have begun the development of such a distributed program-

ming system. Here we report on the design and implementation of
Mobit, the interpreter at the core of this system. Mobit is derived
from an existing Scheme in Scheme interpreter which achieves
reasonably good execution speed by using the fast interpretation
method. Because Mobit is a portable Snow [8] package it cur-
rently runs on a dozen popular Scheme systems. This approach
is more attractive than reimplementing a portable Scheme system
from scratch because of the lower implementation cost (i.e. reuse
of the host Scheme system’s runtime system and libraries) and it
has a low acceptance barrier for current Scheme users (i.e. they can
more easily integrate Mobit to their code base and practices).
The serialization of functions is a fundamental issue that must

be addressed by the implementers of any distributed functional lan-

Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

guage. Because Mobit implements R4RS Scheme [6], we must also
address the serialization of continuations. Our main contribution is
the demonstration of how this can be done while preserving the in-
terpreter’s maintainability and with local changes to the original in-
terpreter’s structure, mainly through the use of unhygienic macros.
We start by giving an overview of the pertinent features of the

Termite dialect of Scheme. In Section 3 we explain the structure
of the interpreter on which Mobit is based. Object serialization is
discussed in Section 4. Section 5 compares Mobit’s performance
with other interpreters. We conclude with related and future work.

2. Termite
Termite is a Scheme adaptation of the Erlang concurrency model.
A distributed system is composed of a set of nodes which host
concurrent processes. The nodes are identified by a socket (i.e. an
IP address and network port number). Processes may create new
processes on the same node or a different node using the spawn and
remote-spawn procedures respectively. These operations return a
pid, which is a reference to the new process.
Each process has a single mailbox, which is the only source

of data from other processes. The procedure call (! pid obj),
a.k.a. the send operation, adds obj to the mailbox of the process
which pid refers to. A process may retrieve the next message in
its mailbox with the procedure call (?). Messages can also be
selectively retrieved with the recv form using pattern matching.
Like Erlang, Termite disallows the mutation of variables and

data structures. This avoids the semantic problems associated with
data sharing. An implementation is thus free to copy objects when
they are sent to another process. This is how the remote send
operation is implemented. For local sends the object is shared by
simply adding a reference to the object to the destination mailbox.
The only form of sharing occurs for processes. When a remote

send operation encounters a pid in the object being sent it is only
a copy of the pid that is added to the target mailbox. The process
pid refers to is unchanged. Because a pid contains a reference to
the node that hosts the process it is easy for the send operation to
detect when an internode communication is occurring. Internode
communication requires the serialization of the object being sent.
All standard data types including procedures can be serialized.
Unlike Erlang, Termite allows code and continuations to be sent
between processes. This is very useful for implementing remote
code update and process migration with call/cc. For example,
a call to the procedure goto given below will cause the current
process to continue its execution in a new process on the given
node, and all of its messages to be forwarded to the new process:

(define (goto node)
(call/cc (lambda (k)

(let ((pid (remote-spawn
node
(lambda () (k #f)))))

(let loop () (! pid (?)) (loop))))))

Scheme and Functional Programming 2007 59

(define (eval expr env)
(cond ((or (number? expr) ... (string? expr))

(cst expr env))
((symbol? expr)
(ref expr env))
((pair? expr)
(case (car expr)

((quote)
(cst (cadr expr) env))
((if)
(if3 (cadr expr)

(caddr expr)
(and (pair? (cdddr expr))

(cadddr expr))
env))

((lambda)
(lamb (cadr expr) (caddr expr) env))
...
(else
(call (car expr) (cdr expr) env))))

(else
(error "malformed expression" expr))))

(define (cst val env) val)

(define (ref var env) (cdr (assq var env)))

(define (if3 test yes no env)
(if (eval test env) (eval yes env) (eval no env)))

(define (lamb params body env)
(lambda args

(eval body
(append (map cons params args) env))))

(define (call proc args env)
(apply (eval proc env)

(map (lambda (arg) (eval arg env))
args)))

(define (prim proc) proc)

(define top-env
(list (cons ’+ (prim +))

(cons ’car (prim car))
...))

Figure 1. Traditional implementation of eval.

3. Interpreter structure
The Scheme metacircular evaluator is a classic textbook example.
Not only does it have pedagogical value, it can serve as the ba-
sis of a Scheme interpreter when it is compiled with a Scheme
compiler. Indeed many Scheme systems with an efficient compiler
use this approach to implement their interpreters, e.g. Bigloo [16],
Chicken [18], and Gambit [9].
The traditional formulation of the evaluator is as a two parame-

ter eval procedure, for example see [1]. The first parameter is the
S-expression representation of the expression to evaluate and the
second parameter is the evaluation environment represented as a
variable/value association list. As shown in Figure 1 the evaluator
first determines the type of expression being evaluated and destruc-
tures it into its subparts (the procedure eval) and then executes the
appropriate evaluation rule (the procedures cst, ref, if3, lamb,

(define (eval expr env)
((comp expr) env))

(define (comp expr)
(cond ((or (number? expr) ... (string? expr))

(cst expr))
((symbol? expr)
(ref expr))
((pair? expr)
(case (car expr)
((quote)
(cst (cadr expr)))

((if)
(if3 (comp (cadr expr))

(comp (caddr expr))
(comp (and (pair? (cdddr expr))

(cadddr expr)))))
((lambda)
(lamb (cadr expr) (comp (caddr expr))))

...
(else
(call (comp (car expr))

(map comp (cdr expr))))))
(else
(error "malformed expression" expr))))

(define (cst val) (lambda (env) val))

(define (ref var) (lambda (env) (cdr (assq var env))))

(define (if3 test yes no)
(lambda (env)

(if (test env) (yes env) (no env))))

(define (lamb params body)
(lambda (env)

(lambda args
(body (append (map cons params args) env)))))

(define (call proc args)
(lambda (env)

(apply (proc env)
(map (lambda (arg) (arg env))

args))))

Figure 2. “Fast interpretation” implementation of eval.

call, etc). Note that to simplify our exposition we have omitted
most error checking and the handling of rest parameters.
To evaluate an expression at top-level, the environment bound

to top-env is passed to eval. This environment contains the pre-
defined procedures.

3.1 Fast interpretation
The evaluator’s run time speed can be improved substantially by
using the technique of fast interpretation [10]. Fast interpretation
separates the decoding of the expression from the execution of
the evaluation rules so that the decoding is done exactly once. As
shown in Figure 2, this is done by Currying the eval procedure
and moving the (lambda (env) ...) part to the procedures im-
plementing the evaluation rules. Because the resulting evaluator be-
haves similarly to a compiler we will use compilation terminology
to explain it. Like a compiler there is a compile time phase, im-
plemented by the comp procedure which decodes the expression

60 Scheme and Functional Programming 2007

(define (call proc args)
(case (length args)

((0) (lambda (env) ((proc env))))
((1) (let ((a (car args)))

(lambda (env)
((proc env) (a env)))))

((2) (let ((a (car args)) (b (cadr args)))
(lambda (env)
((proc env) (a env) (b env)))))

(else
(lambda (env)

(apply (proc env)
(map (lambda (arg) (arg env))

args))))))

Figure 3. Code specialization of the call code generator.

and generates executable code. The executable code is represented
with closures whose only parameter is the evaluation environment.
These closures are created by the code generation procedures cst,
ref, etc.
Code specialization can be applied to the code generator to fur-

ther improve execution speed and reduce the size of the closures
representing the code (by reducing or eliminating the free vari-
ables). Figure 3 shows how the call code generation procedure
can be modified to avoid using list operations and apply at run
time for the frequent kinds of calls (with two arguments or less).
Another important improvement consists in separating the com-

pile time and run time parts of the environment. The run time envi-
ronment is a chain of lexical frames (vectors) containing the values
of the variables and the compile time environment maps variable
names to the relative location of the value in the run time environ-
ment (i.e. position of the frame in the chain and position of the vari-
able in the frame). The procedure comp thus takes two parameters,
the expression expr and the compile time environment cte. Be-
cause of this separation, the lamb code generator no longer needs
the list of parameter names.

3.2 Continuation passing style
Such a fast interpreter was developed for portably implementing
the unhygienic macro expander of an early version of the Gambit
compiler. It was later added to the Gambit benchmark suite to
compare the performance of various R4RS Scheme systems.
The preservation of the interpreter’s structure was viewed as an

important goal to simplify maintenance of the system and to allow
the interpreter to be easily adapted to purposes beyond the scope of
the Termite project. The most important structural change needed
for Termite, which is also useful to increase the flexibility of the in-
terpreter in general, is the adoption of a continuation-passing style
(CPS) in the code execution part. Making the run time continuation
explicit this way is useful for serializing continuations, as is shown
in the next section. Consequently the procedures which represent
the code take two parameters: rtk is the run time continuation and
rte is the run time environment. The procedures created by lamb
and prim, which represent source procedures, are also extended to
take an extra rtk parameter. Note that the compile time phase re-
mains in direct style. Figure 4 illustrates the changes needed for
CPS on the procedures if3, (unspecialized) lamb, and prim pro-
cedures.

4. Serialization
Serialization is the process of encoding an object as a sequence of
symbols (characters, bytes, etc) so that an indistinguishable copy
of the object can subsequently be re-created by the process of

(define (if3 test yes no)
(lambda (rtk rte)

(test (lambda (r)
(if r

(yes rtk rte)
(no rtk rte)))

rte)))

(define (lamb body)
(lambda (rtk rte)

(rtk (lambda (rtk . args)
(body rtk

(list->vector
(cons rte args)))))))

(define (prim proc)
(lambda (rtk . args)

(rtk (apply proc args))))

Figure 4. CPS transformation applied to the if3, lamb, and prim
procedures.

deserialization. These are fundamental operations in internode data
transfer.
Scheme’s write and read procedures implement a kind of

serialization/deserialization with a textual representation. These
procedures have the advantage of being standard but they cannot
be used in the context of Termite for three reasons.
Firstly, data with shared structure and cycles are not adequately

handled. The interpreter depends on sharing to minimize memory
consumption, in particular the sharing of environment frames by
source closures. The sharing of continuations is also a concern
when the source program uses call/cc, for example to imple-
ment exception handling. Although Termite forbids mutation of
variables and data structures it is still possible to create cycles with
letrec forms binding lambda-expressions (or internal definitions
or named-lets) such as:

(define fact
(letrec ((f (lambda (x)

(if (= x 0) 1 (* x (f (- x 1)))))))
f))

In this case the cell for variable f in the letrec’s environment
frame contains a reference to the closure created for (lambda (x)
...) which contains a reference back to the environment frame.
Regardless, to broaden the applications of Mobit, for serialization
we assume that the source language supports mutation of strings,
pairs and vectors. Consequently cycles are also possible in source
data.
The second problem is that some Scheme objects do not have

a standard external representation, for example the value returned
by read-char at end-of-file, characters that don’t have a graphical
representation, the string returned by (string #\x #\newline),
and the symbol returned by (string->symbol "a B"). If these
objects are serialized with write with one implementation of
Scheme, they may not be deserialized properly with read on an-
other implementation of Scheme.
Finally, write and read are unable to serialize procedures. This

is an important issue because the interpreter uses procedures at run
time to represent code, continuations and source procedures.
The first problem can be addressed with a notation that ex-

presses sharing, such as SRFI 38 (External Representation for Data
With Shared Structure). A reimplementation of the write and
read procedures can integrate this functionality and also solve the

Scheme and Functional Programming 2007 61

second problem by adopting a standardized format for objects not
having an external representation specified by the Scheme standard.
The details of our serialization algorithm are given in Section 4.1.
The solution to the third problem is the subject of Sections 4.2 to
4.5.

4.1 Serialization algorithm
The input to the serialization algorithm is the Scheme object to
be serialized and the output is a textual encoding. Because of the
possibility of cycles, the input is considered to be a directed graph.
Each node of the graph is a sub-object of the input Scheme object.
All nodes are reachable from the graph’s root.
The algorithm performs a depth-first traversal of the graph start-

ing at the root. Each node is visited exactly once. When a node is
visited it is given an integer serial number indicating the order in
which it was encountered in the traversal (with 0 for the root), and
then the node’s children are recursively serialized. The serial num-
bers are allocated by incrementing a serial number counter (snc).
The serial number table has a dual purpose. It is used to determine
when a node has already been visited. It also indicates the order in
which the deserialization algorithm will encounter the node in the
object’s encoding. When a node contains a reference to a previously
visited node i, the serialization algorithm places a back reference of
value snc − i in the output instead of the recursive serialization of
node i. Using a relative back reference helps make its encoding
compact.
As it scans the serialized encoding, the deserialization algorithm

builds a table mapping serial numbers to reconstructed nodes. Here
too serial numbers are allocated by incrementing snc which starts
at 0. When a back reference k is encountered during deserialization
the serial number i = snc − k is looked up in the table. When the
back reference to node i forms a cycle it means that the encoding of
node i has not been completely scanned by the deserialization al-
gorithm and that node i has not completely been reconstructed yet.
To handle this case when the encoding of an object is encountered
the deserialization algorithm immediately allocates the node with
dummy content, puts it into the table of nodes, and then proceeds
to mutate the fields of the node with the recursive deserialization of
the children.
To improve the readability of the encoding we use an external

representation similar to the one used by write. The following
three extensions are used:

- #k when not followed by “(” – back reference (k is a non-
negative integer)

- #n(elem0 ...) – vector of length n (the length must be
known before the elements are scanned)

- #p(id fv1 ...) – procedure (the format is explained in Sec-
tion 4.2)

For example, the object created by this Scheme code:

(let* ((s (string #\a)) (v (vector s #f s)))
(vector-set! v 1 v)
(cons s (cons v s)))

contains 4 nodes and is serialized into:

("a" #3(#2 #0 #2) . #1)

The performance of the serialization algorithm is highly depen-
dent on the implementation of the serial number table. To preserve
the graph’s shape (sharing and cycles), the nodes are looked up
using an eq? test. The use of an association list and the assq pro-
cedure is thus a correct and portable implementation. In this case
serialization has a time complexity ofO(n2)where n is the number
of nodes. With the use of “eq?” hash tables the time complexity can

be lowered toO(n). Such hash tables are specified in SRFI 69 (Ba-
sic hash tables) and they exist in many implementations of Scheme
including Gambit.
The serialization/deserialization algorithms are optimized to

avoid giving a serial number to atomic objects for which eq?-ness
is either not guaranteed by the Scheme language (such as charac-
ters and numbers) or is implicit (because there is only one instance
of the object, such as booleans and the the empty list).

4.2 Serializing closures
In the CPS version of the fast interpreter, closures are used to
represent three distinct run time entities:

1. Code (e.g. the (lambda (rtk rte) ...) at the top of if3)
2. Continuations (e.g. the (lambda (r) ...) in if3)
3. Procedure objects (e.g. the (lambda (rtk . args) ...)
in lamb and prim)

To serialize these closures it is necessary to extract their content,
that is their associated code and the value of their free variables.
Deserialization does the inverse, that is it constructs an indistin-
guishable closure from the extracted information. Note that there is
a finite number of lambda-expressions in the interpreter so we can
simply use an integer label to identify the associated source code.
In the external representation for procedures given above, id repre-
sents the integer label and fvi is the value of its i

th free variable.
For primitive procedures there are no free variables and id is a sym-
bol giving the name of the primitive procedure (i.e. #p(car) is the
serialization of the primitive procedure car).
For example, the closure returned by the call (cst 100) is

a closure whose only free variable val has the value 100 and
whose integer label is 1 (let’s say). It is serialized into #p(1 100).
Deserialization will use the integer label to find the appropriate
constructor in a table, in this case the procedure (lambda (val)
(lambda (rtk rte) (rtk val))) which unsurprisingly is the
procedure cst, and will call it with the value 100 to reconstruct an
equivalent closure.
This closure reconstruction process works fine for closures that

don’t contain cycles. This is the case for all closures created by
lambda-c, the code closures. The continuation closures created by
lambda-k can contain cycles, because of the combined presence
of call/cc and mutation operations (set! and data mutators).
This is impossible in Termite. Procedure object closures created by
lambda-p can contain cycles, even in Termite, due to the presence
of letrec.
The deserialization of closures which might contain cycles

(those created by lambda-p and possibly those created by lambda-k)
is more complex because, like pairs and vectors, the closures must
be reconstructed in two phases. First the closure is created with
dummy values for its free variables. Subsequently the free vari-
ables are mutated when the children are deserialized. This issue is
discussed in the next section.

4.3 Non-opaque closures
Closures are opaque objects in Scheme and there is no standard
way to extract their content. In order to experiment with various
calling protocols and non-opaque representations for closures while
preserving the structure of the interpreter we opted to use macros
to abstract closure creation and calling. The calling protocol and
closure representation can easily be changed by redefining these
macros.
The macros lambda-c, lambda-k, and lambda-p abstract the

creation of the code, continuation and procedure object closures
respectively. The parameters for these macros are in order:

1. a symbolic name (used for debugging only),

62 Scheme and Functional Programming 2007

(define (if3 test yes no)
(lambda-c if3-c (test yes no) (rtk rte)

(call-c test
(lambda-k if3-k (yes no rtk rte) (r)
(if r

(call-c yes rtk rte)
(call-c no rtk rte)))

rte)))

(define (lamb body)
(lambda-c lamb-c (body) (rtk rte)

(call-k rtk
(lambda-p lamb-p (rte body) (rtk . args)
(call-c body

rtk
(list->vector
(cons rte args)))))))

Figure 5. Changes for easily experimenting with closure represen-
tation applied to the if3 and lamb procedures.

2. the list of free variables,
3. the closure’s parameters,
4. the closure’s body.

Closure calling is abstracted by the macros call-c, call-k,
call-p, and apply-p. The changes to the interpreter are fairly
straightforward and systematic. The CPS structure is preserved and
the -c, -k, and -p suffixes on the macros are helpful to understand
the interpreter. Figure 5 shows uses of most of these macros in the
procedures if3 and lamb.
We considered two concrete representations for non-opaque

closures: a flat closure representation implemented with vectors
and closures of the host Scheme implementation.
The flat closure representation using vectors is naturally non-

opaque so serialization and deserialization become trivial to im-
plement. However it causes other problems, notably it hinders the
debugging and maintenance of the interpreter. Source vectors can-
not be encoded directly with host vectors. Some form of tagging
is needed to distinguish them from closures (to implement the
procedure? and vector? procedures). Using the host Scheme
system’s write procedure (possibly the one hidden in its REPL)
to display source vectors and procedures will give an external rep-
resentation that is confusing to the user. In fact when the procedure
contains a cycle most Scheme systems will enter an infinite recur-
sion. This is a case where procedure opacity is convenient.
Using closures of the host Scheme implementation to represent

the interpreter’s closures has some distinct advantages. It maps
the source types to the same host types (so that the source vector
primitives vector?, vector-length, . . . are implemented with
the same host vector primitives, and similarly for procedure?).
This also facilitates the debugging of the interpreter because vectors
and procedures are displayed by write using the normal external
representation (typically procedures are displayed using an opaque
external representation such as #<procedure #10>).
To work around the host closures’ opacity, we impose a special

closure calling protocol. In this new calling protocol all closures
take the same number of parameters. Our original design used a
two parameter protocol. Because of its relative simplicity we will
describe our technique using this protocol. For increased efficiency,
in the final design we use a different calling protocol which is
explained in Section 4.5.
All closures take exactly two parameters. This is already the

case for code closures. Continuation closures are extended to take

a dummy first parameter whose value is non-#f when called by
call-k. Procedure object closures are changed so that the contin-
uation is passed in the first parameter and the list of arguments is
passed in the second parameter.
This calling protocol makes it possible for the closure to imple-

ment three distinct operations:

1. execution – normal execution of the closure,
2. extraction – extraction of the closure’s id and value of its free
variables,

3. initialization – mutation of all the free variables.

The last two operations are selected when the first parameter is
#f, a case that is not possible during the normal execution of
the interpreter, i.e. when the closure is called through call-c,
call-k, call-p, and apply-p. Initialization is selected when the
first parameter is #f and the second is a vector whose length must
be equal to the number of free variables. Each of the closure’s free
variables is mutated with the corresponding element of the vector.
Otherwise, extraction is selected. A vector containing the closure’s
integer label and the values of its free variables is returned.
The lambda macros implement a transformation similar to de-

functionalization [15] which moves lambda-expression bodies to
top-level procedure definitions. Each lambda-expression in the in-
terpreter becomes a call to a corresponding top-level closure con-
structor. Our approach differs from defunctionalization in the clo-
sure representation. We will use the prim and cst procedures to
explain the transformation that the lambda macros implement. The
interpreter contains the following definitions for those procedures:

(define (prim proc)
(lambda-p prim-p (proc) (rtk . args)

(call-k rtk (apply proc args))))

(define (cst val)
(lambda-c cst-c (val) (rtk rte)

(call-k rtk val)))

Let’s assume that the closures created by prim have id=0 and
the closures created by cst have id=1. When the lambda-p macro
call in prim is encountered it is replaced by a call to a closure
creation procedure, make-closure-0, whose definition must be
generated elsewhere at top-level. Similarly the lambda-c macro
call in cst is replaced by a call to make-closure-1. The clo-
sure creation procedures parameters are the free variables of the
lambda expression, i.e. proc and val respectively. Two tables are
also generated. The first table, closure-constructor-table,
contains all the closure creation procedures. The second table,
closure-size-table, indicates the size of the closure (number
of free variables) and whether the closure can contain cycles or not
(encoded in the number’s sign). The expanded code along with aux-
iliary definitions used by the deserialization algorithm are shown in
Figure 6.
Note that the initialization operation is implemented for the

closures created by prim, but not for the closures created by cst.
Scheme compilers typically use assignment conversion to handle
mutable free variables, such as the parameter proc of procedure
make-closure-0. The cell that is introduced causes a space and
time overhead for reading the variable’s value. It is worthwhile to
avoid this overhead for closures that can’t contain cycles.
The deserialization algorithm will use the single phase clo-

sure reconstruction process when the value size=(vector-ref
closure-size-table id) is negative (cycles impossible). The
list fv of length -size containing the deserialized free variables is
first built. The closure is then constructed with the call
(closure-construct id fv).

Scheme and Functional Programming 2007 63

(define (prim proc)
(make-closure-0 proc))

(define (cst val)
(make-closure-1 val))

(define (make-closure-0 proc)
(lambda (rtk args)

(cond (rtk
(call-k rtk (apply proc args)))

((vector? args)
(set! proc (vector-ref args 0)))

(else
(vector 0 proc)))))

(define (make-closure-1 val)
(lambda (rtk rte)

(cond (rtk
(call-k rtk val))

(else
(vector 1 val)))))

(define closure-constructor-table
(vector make-closure-0

make-closure-1
...))

(define closure-size-table
(vector 1 ;; 1 free variable, cycles possible

-1 ;; 1 free variable, cycles impossible
...))

(define (closure-construct id fv)
(apply (vector-ref closure-constructor-table id)

fv))

(define (closure-allocate id size)
(closure-construct id (iota size)))

(define (closure-initialize clo fv)
(clo #f fv))

(define (closure-extract clo)
(clo #f #f))

Figure 6. Result of expansion of lambda macros.

The two phase closure reconstruction process is used when
the value size is positive (cycles possible). It first allocates the
closure clo with dummy values for the free variables with the
call (closure-allocate id size). It then allocates a vector fv of
length size and fills it with the deserialized free variables. The call
(closure-initialize clo fv) finishes the reconstruction of the
closure by assigning the values to the free variables.
The procedure closure-extract is used by the serialization

algorithm to extract the closure’s id and the value of its free vari-
ables.

4.4 Implementation of lambda macros
The lambda macros perform an unusual non-local transformation
of the source code. Each call site is transformed into a call to a
top-level closure constructor whose name depends on the number
of previously encountered call sites. The closure constructor’s defi-
nition appears later and it depends on information from the lambda

macro’s call site. Consequently there is a need for carrying infor-
mation across macro calls. We do this by maintaining state in the
macro-expansion environment. This is not something that is possi-
ble with the hygienic syntax-rules form. Instead we have used
the unhygienic Common-Lisp style define-macro form which is
supported by the Snow framework and many implementations of
Scheme.
To maintain state we have two options: use a file which is

incrementally updated or a global variable in the macro expansion
environment. We chose the second option which avoids file system
access portability issues and messing up the file system.
Three auxiliary macros are used: lambda*-begin, lambda*,

and lambda*-end. Two calls to the macros lambda*-begin,
and lambda*-end delimit the section of code where calls to
lambda* are allowed (i.e. all the code generation procedures).
The call (lambda*-begin) initializes the state which is main-
tained between calls to lambda* and the call (lambda*-end)
produces the top-level definitions of the closure constructors,
closure-constructor-table and closure-size-table. The
macro lambda* performs the local transformation at the lambda
macro call sites and stores in the state the information of the lambda
macro call for later use by lambda*-end.
The definition of the lambda macros and the three auxil-

iary macros are given in Figures 7 and 8. The state is stored
in three global variables in the macro expansion environment:
lambda*-indx, lambda*-todo, and lambda*-done. These vari-
ables are defined by the macro lambda*-begin using a call to
eval. This is a reasonably portable approach to add new global
variables to the macro expansion environment. The other macros
also reference these variables using calls to eval because there is
no guarantee that macro bodies share the evaluation environment
with eval.
The definition of lambda*-end needs to be recursive to handle

nested calls to lambda*. For example, this happens in the proce-
dure lamb which nests a call to lambda-p in a call to lambda-c.
In this case, the closure constuctor generated by lambda*-end for
the lambda-c will contain a call to lambda-p. It is only when the
generated closure constructor is macro expanded that the call to
lambda-p is processed. This must cause the generation of a new
closure constructor. To handle this properly two lists of lambda*
call sites is maintained. The variable lambda*-todo contains the
list of call sites whose closure constructor has not yet been gen-
erated, and lambda*-done contains the list of call sites whose
closure constructor has been generated. When lambda*-todo is
non-empty when lambda*-end is expanded, the closure construc-
tors for the call sites in lambda*-todo are generated followed by
a call to lambda*-end, and the list lambda*-todo is transferred
to lambda*-done. Otherwise, lambda*-done is used to generate
the definitions for the tables closure-constructor-table and
closure-size-table, and the recursion stops. This approach re-
quires that the host Scheme system expand macros from top to
bottom, but this must be the case to properly handle macros that
generate macro definitions.

4.5 Improved procedure calling protocol
When Mobit uses the two parameter calling protocol, a source call
to a source procedure constructs a list of the parameters and passes
this list as the procedure’s second parameter. This tends to generate
many short lived objects which cause the program to spend consid-
erable time garbage collecting. To reduce the generation of garbage
a N parameter protocol is used. The first parameter is the contin-
uation, the second is the number of source parameters, the third is
the first source parameter (if there is one), the fourth is the second
source parameter (if there is one), and so on. The last parameter is
the list of the remaining source parameters. The need to construct

64 Scheme and Functional Programming 2007

(define-macro (lambda-c info fv params . body)
‘(lambda* #f ,fv ,params

,@body))

(define-macro (lambda-k info fv params . body)
‘(lambda* #t ,fv (dummy ,(car params))

,@body))

(define-macro (lambda-p info fv params . body)
‘(lambda* #t ,fv (,(car params) ,(cdr params))

,@body))

(define-macro (lambda* cycles? fv params . body)
(eval ‘(let* ((i

lambda*-indx)
(constr
(string->symbol
(string-append
"make-closure-"
(number->string i))))

(size
,((if cycles? + -)
(length fv))))

(set! lambda*-todo
(cons (list i

constr
size
’,fv
’,(car params)
’,(cadr params)
’,body)

lambda*-todo))
(set! lambda*-indx

(+ lambda*-indx 1))
(cons constr ’,fv))))

Figure 7. Definition of lambda macros.

a list of parameters is completely avoided when there are zero to
N − 3 source parameters.
This situation is analogous to a machine code calling convention

which assigns some of the registers to hold the parameter count
and the N − 3 first parameters. In our final design we use N = 6.
This works well in practice because no garbage is created for the
statistically most frequent procedure calls (which take at most two
parameters).

4.6 Serializing ports
Scheme ports present important challenges for serialization. Like
closures, ports are opaque objects. Moreover they contain state and
are bound to local resources (disks, operating system handles, etc).
In most Scheme systems ports can provide access to a variety of
data sources: existing data permanently stored on a file system (a
file), a communication sink where yet-to-exist data will be sent in
the future (a socket), a physical device that accepts data from a
user (a terminal), etc. It is unclear what the user’s expectations are
concerning a deserialized port. In the case of a file, a copy of the
file might be acceptable if the file is read-only, but not if the file is
mutable or very large. Our view is that in a language like Termite,
Scheme ports should be wrappers around processes. In other words,
a port is a record which refers to the process bound to the local
resources. When a port is serialized it is the underlying process’
pid that is serialized. The state of the port is thus shared with other
processes.

(define-macro (lambda*-begin)
(eval ’(begin

(define lambda*-indx 0)
(define lambda*-todo ’())
(define lambda*-done ’())))

#f)

(define-macro (lambda*-end)

(define (expand x)
(apply
(lambda (i constr size fv p1 p2 body)
‘(define (,constr ,@fv)

(lambda (,p1 ,p2)
(cond (,p1

(let ()
,@body))

,@(if (< size 0)
’()
‘(((vector? ,p2)

,@(map (lambda (v j)
‘(set! ,v

(vector-ref
,p2
,j)))

fv
(iota size)))))

(else
(vector ,i ,@fv))))))

x))

(let ((todo (eval ’lambda*-todo)))
(if (pair? todo)

(begin
(eval ’(begin

(set! lambda*-done
(append lambda*-todo

lambda*-done))
(set! lambda*-todo ’())))

‘(begin
,@(map expand todo)
(lambda*-end)))

(let ((done (reverse (eval ’lambda*-done))))
‘(begin

(define closure-constructor-table
(vector ,@(map cadr done)))

(define closure-size-table
(vector ,@(map caddr done))))))))

Figure 8. Definition of auxiliary macros.

Scheme and Functional Programming 2007 65

4.7 Interfacing to the host Scheme system
Because Mobit uses a special procedure calling protocol the host
Scheme system’s procedures are incompatible with Mobit’s pro-
cedures. In other words Mobit procedures can’t be called directly
from the host Scheme system and vice versa. To solve this problem
two conversion procedures are needed: (mobit-procedure->host
mobit-proc) and (host-procedure->mobit host-proc). So al-
though Mobit’s implementation does not rely on any host specific
feature, with host->mobit-procedure it is easy to extend Mobit
with host specific features by storing converted host procedures in
Mobit’s global environment. Values other than procedures have the
same representation in Mobit and the host so they do not require a
conversion.

5. Performance
In this section we investigate the performance of the Mobit inter-
preter. Our goal is to show that it is in the same ballpark as the
performance of interpreters available in other Scheme systems.
Being mostly written in R4RS Scheme Mobit can be executed

by many host Scheme systems, including interpreters and compil-
ers. Obviously the performance of Mobit is highly dependent on
the performance of the host Scheme system, and the best perfor-
mance is expected from optimizing compilers. In our experiments
we tried the following host Scheme compilers: Bigloo, Chicken,
Gambit and Larceny [5]. These are Scheme to C compilers, ex-
cept Larceny which generates native code. We encountered some
problems with Bigloo and Chicken, and abandoned their use in the
final experiments. Bigloo frequently produced segment violation
run time errors when executing long-running programs. We suspect
this is due to its non-conformant implementation of tail-calls which
caused stack overflows. Chicken executed Mobit properly but very
slowly. We suspect that we did not supply the compilation options
and declarations for best performance.
Most of the Scheme programs we used for measuring perfor-

mance are taken from the Gambit benchmark suite. Each program
is iterated hundreds of times so that the execution time for the
fastest case is at least 4 seconds. This avoids losing too much pre-
cision (in some cases we could only measure execution time with a
resolution of 1 second). The following five Scheme programs were
used:

• Tak: Takeuchi function, (tak 18 12 6), 500 iterations.
• Ctak: Takeuchi function using call/cc, 500 iterations.
• Earley: Earley parser, 150 iterations.
• Mazefun: Maze generator, 500 iterations.
• Paraffins: Compute how many paraffins exist with N carbon
atoms (N = 17), 500 iterations.

Our test machine is a 1.8 GHz AMD Opteron workstation run-
ning Linux.

5.1 Interpretation Speed
To compare Mobit’s interpretation speed against other Scheme
interpreters we used two host Scheme systems to execute Mobit:
Gambit and Larceny (version 0.93). These instances of Mobit are
respectively called Mobit/Gambit and Mobit/Larceny.
We ran the test programs with the two instances of Mobit and

the builtin interpreters of the following Scheme systems: Bigloo
3.0a, Chicken 2.608, Gambit 4.0 beta 22, Gauche 0.8.9, Guile 1.6.7,
and MzScheme 360. To be consistent with our goal of compar-
ing implementations of interpreters, in the case of MzScheme the
--no-jit option was used to disable the JIT compiler.
For the test programs the execution speed of Mobit/Larceny

is consistently faster than Mobit/Gambit (between a factor of 1.5

Earley Mazefun Paraffins Tak Ctak
Bigloo .9 .5 .5 .6 82.2
Chicken 1.9 1.0 1.4 .8 7.5
Gambit .9 .6 1.0 .6 2.0
Gauche .1 .1 .2 .1 2.8
Guile .9 .8 1.0 .8 56.8
MzScheme .2 .3 .4 .2 13.8
Mobit/Gambit 1.7 1.6 2.3 1.6 1.5
Mobit/Larceny 1.0 1.0 1.0 1.0 1.0

Table 1. Execution time for various interpreters relative to Mo-
bit/Larceny

Earley Mazefun Paraffins Tak Ctak
Speedup 2.0 2.1 1.8 2.1 1.9

Table 2. Execution speedup when support for serialization is re-
moved from Mobit

and 2.3 times faster). Table 1 shows the execution times for all
interpreters relative to Mobit/Larceny. A number less than one
indicates that the interpreter is faster than Mobit/Larceny.
If we exclude the Ctak benchmark we see that Gauche is con-

sistently the fastest of the interpreters. Mobit/Larceny is 5 to 10
times slower than Gauche. On the other hand Mobit/Larceny is
faster than the Chicken interpreter on all the benchmarks except
Tak. The performance of Mobit on these benchmarks when com-
pared to the other interpreters is certainly on the slow side, but still
in the same ballpark as other interpreters. For instance it is within
a factor of 2 of the speed of Bigloo, a factor of 1.66 of the speed of
Gambit, and a factor of 1.25 of the speed of Guile.
Mobit’s performance shines on Ctak which makes heavy use of

first-class continuations using call/cc. Indeed Mobit/Gambit and
Mobit/Larceny are faster than the other interpreters. Mobit/Larceny
is up to 82.2 times faster than Bigloo, 56.8 times faster than Guile,
13.8 times faster than MzScheme and 7.5 times faster than Chicken
(which is surprizing because Chicken’s structure is specifically de-
signed for reducing the cost of call/cc [3]). Here we see that the
use of a CPS style in Mobit makes the implementation of call/cc
simple and efficient, in addition to allowing the serialization of con-
tinuations. Because of this we envisage the implementation of Ter-
mite processes using Mobit’s first-class continuations. There is lit-
tle incentive performance-wise to extend Mobit with builtin pro-
cesses. We expect Termite to be implemented for the most part
through a library. This modularity will improve the maintainabil-
ity of Mobit and Termite.

5.2 Serialization overhead
Each closure generated by lambda* supports serialization through
code which is executed at run time. There are dynamic tests to dis-
tinguish the three operations (execution, extraction and initializa-
tion). The presence of assignments in the initialization operation
slows down the access to the closures’ free variables which would
otherwise be immutable. This happens for closures generated by
lambda-k and lambda-p.
To evaluate the overhead of supporting serialization we rede-

fined the lambda macros so that they only perform the execution
operation. The speedup obtained for the benchmarks is given in Ta-
ble 2. The execution speed improves fairly consistently by a factor
of 2.0. This means that the performance of the raw fast interpreter
at the core of Mobit is reasonably good (it is slower than Gauche
and MzScheme, roughly the same speed as Bigloo, and faster than
Gambit and Guile).

66 Scheme and Functional Programming 2007

6. Related work
Distributed programming languages face the same fundamental
implementation problems as Termite: the distribution of data and
code. Many systems use some form of copying through serializa-
tion to transfer data between nodes. The way in which functions and
code are distributed varies considerably between systems. Here we
focus on functional languages.
The GdH [13] distributed Haskell implementation uses a closed

distributed system model (i.e. nodes cannot leave or join the dis-
tributed system dynamically). All the nodes must be running the
same program. Although GdH does support the concept of remote
evaluation, closures are second-class data because they cannot be
transferred freely between nodes.
In Erlang [2] a distributed system’s code is copied to every node

through some manual installation process. Modules of code are
stored in the file system so that the Erlang runtime system can
locate them by name and dynamically load them. Closures sent
between nodes A and B identify the closure’s code using the name
of the module, which must exist on A and B (and be consistent).
The advantages of this approach are that the user has direct control
over the installed code (which is good for security reasons) and that
the serialization of closures is simple and compact. The drawback
is that it becomes a barrier to the introduction of new code and
the transfer of closures in loosely coupled open distributed systems
where the nodes are managed by different organizations or do not
have a file system (such as tiny embedded systems).
Both mHaskell [14] and Kali Scheme [4] address this issue by

using a bytecode representation for code. The bytecodes associated
with a closure’s code are contained in the serialized encoding of the
closure. Kali Scheme’s serialization preserves sharing and cycles
and supports continuations. To avoid the cost of sending large
continuations, it serializes the topmost few frames and keeps a
reference to the continuation’s tail. A request to transfer the next
chunk of the tail will be sent when it is needed. The garbage
collection problem this introduces requires the use of a distributed
garbage collector. Kali Scheme’s implementation requires non-
trivial extensions to the Scheme 48 virtual machine which are hard
to maintain. Indeed the code is no longer operational in recent
versions of Scheme 48.
An interesting approach for implementing Scheme code migra-

tion was presented by Sumii [17]. This approach, based on type-
directed partial evaluation [7], does not handle all of Scheme. In
particular, dynamic recursion, eq?, apply, and call/cc cause
problems.
Our work is most closely related to the Tube mobile Scheme

system [12]. The Tube’s implementation is based on a CPS conver-
sion of the source program. The serialization of closures is achieved
by a function which returns an S-expression representation of the
corresponding lambda-expression. Deserialization is obtained by
passing the S-expression to eval. Portability was not a design goal
for the Tube. It is unclear how hard it would be to port to other sys-
tems (it is build on top of Bigloo) and if different Scheme imple-
mentations can be used in the same distributed system. There is no
published evaluation of the Tube’s interpretation speed. Unlike for
the Tube which requires eval on all nodes, Mobit does not require
the whole interpreter to be available. Nodes can save code space
by eliminating the comp and code generation procedures, keeping
only the closure constructors, while still allowing closures to be
serialized/deserialized. This is useful when the distributed system
contains a mix of node types: workstation class nodes for develop-
ment (which can support eval, comp, etc) and embedded system
class nodes with very little memory.

7. Conclusion
We have described the implementation of Mobit, a portable Scheme
in Scheme interpreter. It supports the serialization of closures and
continuations, provides very efficient first-class continuations, and
the execution speed is comparable to other Scheme interpreters.
Because of these features it is particularly well suited as the basis
for implementing concurrent languages and distributed systems.
We intend to use it for a portable implementation of the Termite
language.
Mobit’s code is derived from an existing interpreter which uses

the fast interpretation method. We have shown how serializable
closures and continuations have been added to this interpreter with
minimal impact on the interpreter’s structure and maintainability. It
constitutes an unusual use of macros which takes advantage of the
power of unhygienic “defmacro” style macros.
Two extensions to the interpreter are planned to increase its

flexibility. Firstly it will be useful to make the closures safe for
space to avoid space leaks and needless communication of dead
variables. Secondly an assignment conversion which creates boxes
for the mutable variables will allow Termite to support mutation of
local variables by simulating the boxes with lightweight processes.
Another interesting avenue is to extend Mobit’s portability by

implementing the closure constructors and the runtime system in
other dynamically typed languages. For this we are contemplating
JavaScript, Erlang, Python and Ruby. It would allow distributed
Scheme programs to run on a wide variety of platforms and to
easily interface with other software (web browsers, web servers,
databases, etc).

Acknowledgments
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

References
[1] Harold Abelson and Gerald Jay Sussman and Julie Suss-

man, Structure and Interpretation of Computer Programs,
2nd ed., MIT Press, Cambridge (MA), 1996.

[2] Joe L. Armstrong, The Development of Erlang, Interna-
tional Conference on Functional Programming, pp. 196–
203, 1997.

[3] Henry Baker, CONS Should Not CONS Its Arguments,
Part II: Cheney on the M.T.A., Nimble Computer Corpora-
tion, http://home.pipeline.com/˜hbaker1/CheneyMTA.pdf,
1994.

[4] Henry Cejtin and Suresh Jagannathan and Richard Kelsey,
Higher-Order Distributed Objects, ACM Transactions on
Programming Languages and Systems, 17(5):704–739,
1995.

[5] William Clinger, et al, The Larceny Project,
http://www.ccs.neu.edu/home/will/Larceny/.

[6] William Clinger and Jonathan A. Rees (editors), The
Revised4 Report on the Algorithmic Language Scheme,
Lisp Pointers, 4(3), Association fo Computing Machinery,
1991.

[7] Olivier Danvy, Type-Directed Partial Evaluation, Lecture
Notes in Computer Science 1706, pp. 367–411, 1998.

[8] Marc Feeley, Scheme Now! http://snow.iro.umontreal.ca/,
2007.

[9] Marc Feeley, Gambit-C, A
portable implementation of Scheme,
http://www.iro.umontreal.ca/˜gambit/doc/gambit-c.html,
2007.

Scheme and Functional Programming 2007 67

[10] Marc Feeley and Guy Lapalme, Using closures for code
generation, Computer Languages, 12(1):47–66, 1987.

[11] Guillaume Germain and Marc Feeley and Stefan Monnier,
Concurrency Oriented Programming in Termite Scheme,
Scheme and Functional Programming 2006, pp. 125–135,
2006.

[12] David Alan Halls, Applying Mobile Code to Distributed
Systems, PhD thesis, University of Cambridge, 1997.

[13] R.F. Pointon and Phil Trinder and Hans-Wolfgang
Loidl, The Design and Implementation of Glasgow dis-
tributed Haskell, In Proceedings of the 12th International
Workshop on Implementation of Functional Languages,
pp. 101–116, 2000.

[14] André Rauber Du Bois and Phil Trinder and Hans-
Wolfgang Loidl, mHaskell: Mobile Computation in a
Purely Functional Language, Journal of Universal Com-
puter Science, 11(7):1234-1254, 2005.

[15] John C. Reynolds, Definitional Interpreters for Higher-
Order Programming Languages, Higher-Order and Sym-
bolic Computation, 11(4), pp. 363–397, 1998.

[16] Manuel Serrano and Pierre Weis, Bigloo: A Portable and
Optimizing Compiler for Strict Functional Languages,
Static Analysis Symposium, pp. 366–381, 1995.

[17] Eijiro Sumii, An implementation of transparent migration
on standard Scheme, Scheme and Functional Program-
ming 2000, pp. 61–63, 2000.

[18] Felix Winkelman, CHICKEN - A practical and
portable Scheme system, http://www.call-with-current-
continuation.org/, 2007.

68 Scheme and Functional Programming 2007

