
SHard: a Scheme to Hardware Compiler

Xavier Saint-Mleux
Université de Montréal���������
	�� �������������	���������������� ���

Marc Feeley
Université de Montréal� ����� �
 ��!���"�#����	$��������������� ���

Jean-Pierre David
École Polytechnique de Montréal%�&�' ��(�� ' � & ��� �)����� ���

Abstract
Implementing computations in hardware can offer better perfor-
mance and power consumption than a software implementation,
typically at a higher development cost. Current hardware/software
co-design methodologies usually start from a pure software model
that is incrementally transformed into hardware until the required
performance is achieved. This is often a manual process which is
tedious and which makes component transformation and reuse dif-
ficult. We describe a prototype compiler that compiles a functional
subset of the Scheme language into synthesizable descriptions of
dataflow parallel hardware. The compiler supports tail and non-
tail function calls and higher-order functions. Our approach makes
it possible for software developers to use a single programming
language to implement algorithms as hardware components using
standardized interfaces that reduce the need for expertise in digital
circuits. Performance results of our system on a few test programs
are given for FPGA hardware.

1. Introduction
Embedded systems combine software and hardware components.
Hardware is used for interfacing with the real world and for accel-
erating the lower-level processing tasks. Software has traditionally
been used for implementing the higher-level and more complex
processing logic of the system and when future changes in func-
tionality are expected. The partitioning of a system into its hard-
ware and software components is a delicate task which must take
into account conflicting goals including development cost, system
cost, time-to-market, production volume, processing speed, power
consumption, reliability and level of field upgradability.

Recent trends in technology are changing the trade-offs and
making hardware components cheaper to create. Reconfigurable
hardware is relatively recent and evolves rapidly, and can allow
the use of custom circuits when field upgradability is desired or
when production volume is expected to be low. Modern ASICs
and FPGAs now contain enough gates to host complex embedded
systems on a single chip, which may include tens of processors and
dedicated hardware circuits. Power consumption becomes a major
concern for portable devices. Specialized circuits, and in particular
asynchronous and mixed synchronous/asynchronous circuits, offer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Scheme Workshop ’06
Copyright © ACM [to be supplied]. . . $5.00.

better power usage than their equivalent software version running
on a general purpose CPU or in synchronous logic [9][21][3].

The field of hardware/software co-design [11] has produced
several tools and methodologies to assist the developer design and
partition systems into hardware and software. Many tools present
two languages to the developer, one for describing the hardware
and the other for programming the software. This widespread ap-
proach has several problems. It requires that the developer learn
two languages and processing models. The hardware/software in-
terfaces may be complex, artificial and time consuming to develop.
Any change to the partitioning involves re-writing substantial parts
of the system. It is difficult to automate the partitioning process in
this methodology.

Our position, which is shared by other projects such as SPARK-
C [12], SpecC [8] and Handel-C [6], is that it is advantageous to
employ a single language for designing the whole system (except
perhaps the very lowest-level tasks). We believe that the partition-
ing of a system into hardware and software should be done by the
compiler with the least amount of auxiliary partitioning informa-
tion provided by the developer (e.g. command line options, prag-
mas, etc). This partitioning information allows the developer to
optimize for speed, for space, for power usage, or other criteria.
Moreover this information should be decoupled from the process-
ing logic so that components can be reused in other contexts with
different design constraints.

As a first step towards this long-term goal, we have imple-
mented a compiler for a simple but complete parallel functional
programming language which is fully synthesizable into hardware.
Although our prototype compiler does not address the issue of au-
tomatic partitioning, it shows that it is possible to compile a general
purpose programming language, and in particular function calls and
higher-order functions, into parallel hardware.

We chose a subset of Scheme [17] as the source language
for several reasons. Scheme’s small core language allowed us to
focus the development efforts on essential programming language
features. This facilitated experimentation with various hardware
specific extensions and allowed us to reuse some of the program
transformations that were developed in the context of other Scheme
compilers, in particular CPS conversion and 0-CFA analysis.

Our compiler, SHard, translates the source program into a graph
of asynchronously connected instantiations of generic “black box”
devices. Although the model could be fully synthesized with asyn-
chronous components (provided a library with adequate models)
we have validated our approach with an FPGA-based synchronous
implementation where each asynchronous element is replaced by
a synchronous Finite State Machine (FSM). Preliminary tests have
been successfully performed using clockless implementations for
some of the generic components, combined with synchronous
FSMs for the others. Off-the-shelf synthesis tools are used to pro-
duce the circuit from the VHDL file generated by the compiler.

Throughout this project, emphasis has been put on the compi-
lation process. To that effect, minimal effort has been put on opti-

Scheme Workshop 1 2006/8/11

mization and on creating efficient implementations of the generic
hardware components that the back-end instantiates. Demonstrat-
ing the feasibility of our compilation approach was the main con-
cern. While SHard is a good proof of concept its absolute perfor-
mance remains a future goal.

In Section 2 we give a general overview of our approach. In
Section 3 the source language is described. The hardware building
blocks of the dataflow architecture are described in Section 4 and
Section 5 explains the compilation process. Section 6 explores
the current memory management system and possible alternatives.
Section 7 illustrates how behavioral simulations are performed and
Section 8 outlines the current RTL implementation. Experimental
results are given in Section 9. We conclude with related and future
work in Section 10.

2. Overview
The implementation of functions is one of the main difficulties
when compiling a general programming language to hardware. In
typical software compilers a stack is used to implement function
call linkage, but in hardware the stack memory can hinder paral-
lel execution if it is centralized. The work on Actors [14] and the
Rabbit Scheme compiler [13] have shown that a tail function call is
equivalent to message passing. Tail function calls have a fairly di-
rect translation into hardware. Non-tail function calls can be trans-
lated to tail function calls which pass an additional continuation
parameter in the message. For this reason our compiler uses the
Continuation Passing Style (CPS) conversion [2] to eliminate non-
tail function calls. Each message packages the essential parts of a
computational process and can be viewed as a process token mov-
ing through a dataflow architecture. This model is inherently paral-
lel because more than one token can be flowing in the circuit. It is
also energy efficient because a component consumes power only if
it is processing a token. The main issues remaining are the repre-
sentation of function closures in hardware and the implementation
of message passing and tail calls in hardware.

Many early systems based on dataflow machines suffer from
a memory bottleneck [10]. To reduce this problem our approach
is to distribute throughout the circuit the memories which store
the function closures. A small memory is associated with each
function allocation site (*�+�,�-/.�+ -expression) with free variables.
The allocation of a cell in a closure memory is performed whenever
the corresponding *�+�,/-/.�+ -expression is evaluated. To avoid the
need for a full garbage collector we deallocate a closure when
it is called. Improvements on this simple but effective memory
management model are proposed in Section 6.

By using a data flow analysis the compiler can tell which func-
tion call sites may refer to the closures contained in a specific clo-
sure memory. This is useful to minimize the number of busses and
control signals between call sites and closure memories.

To give a feel for our approach we will briefly explain a small
program. Figure 1 gives a program which sorts integers using
the mergesort algorithm. The program declares an input channel
(021�3) on which groups of integers are received sequentially (as
〈n, x1, x2, . . . , xn〉), and an output channel (0�465/7) on which the
sorted integers are output. The program also declares functions to
create pairs and lists as closures (3#1�* and 0�463#8), the mergesort al-
gorithm itself (functions 8�4:927 , 8�;�*�1:7 , ,�<�92=�< , and 9�<�>�+:;2;), func-
tions to read and write lists on the I/O channels (=2<�7#?:*�1�8:7 and
;25/7�?:*�128:7) and a “main” function (./421�4) which reads a group,
sorts it, outputs the result and starts over again. Note also that
the predefined procedure <�@/A can test if two closures are the same
(i.e. have the same address).

Figure 2 sketches the hardware components which are gener-
ated by the compiler to implement the 8�4�9�7 function at line 33. The
8�4�9�7 function can be called from three different places (at lines 57,

1. BDC�E�F�G6E:H
2. B�B�H:I�JKBLI�J�M�N6F2O�HLP:Q�JRH:I�J�S�S
3. B�H�T
N6FUBDT
N6F�M�N6F2O�HLP:Q�JVH�T
N6F2S�S
4. BWJ�I
CXBDC�QZY�[6\6QUBD]�S_^�S�S
5. B�H�T
J�`RBDC�QZY�[6\6QaBWPbF2ScBDC�QZY�[6\6QKBed2ScBedfPgF2S�S�S�S
6. BeG6E�h6Q�M�MiBDC�QZY�[6\6QaBej2k_j6l�S
7. BLIZdaBmE�n:opJ�I
Cqj2k�S
8. j6l
9. Bej2kcBDC�QZY�[6\6QKBWPbF2S

10. BeG6E�h6Q�M�MrFRB�H�T
J�`pPbj6l�S�S�S�S�S�S�S
11. B�`LM�C�IZFUBDC�QZY�[6\6QaBejgj2ksj6l�S
12. BLIZdaBmE�n:opJ�I
Cqj2S
13. B�H�T
J�`pj2ksj6l�S
14. BejRBDC�QZY�[6\6QUBWPgF2S
15. B�`LM�C�IZFtFRB�H�T
J�`pPbj6l�Ssj2k�S�S�S�S�S�S
16. BuY2E�G�v6EKBDC�QZY�[6\6QaBej2ksj6lfj2S
17. BLIZdaBmE�n:opJ�I
Cqj2k�S
18. BeG6E�h6Q�M�Mtjfj6l�S
19. BLIZdaBmE�n:opJ�I
Cfj6l�S
20. BeG6E�h6Q�M�Mrjfj2k�S
21. Bej2k
22. BDC�QZY�[6\6QKBWP�ksF2k�S
23. Bej6l
24. BDC�QZY�[6\6QKBWP:lfF6l�S
25. BLIZdKBDwpP�kxP:l�S
26. BuY2E�G�v6EgF2k
27. B�H�T
J�`pP:lgF6l�S
28. B�H�T
J�`pP�k_j2S�S
29. BuY2E�G�v6E
30. B�H�T
J�`_P�ksF2k�S
31. F6l
32. B�H�T
J�`_P:lfj2S�S�S�S�S�S�S�S�S�S�S
33. B�`�T�G�FUBDC�QZY�[6\6QaBej2S
34. BLIZdaBmE�n:oqJ�I
Cqj2S
35. J�I
C
36. B�B�`LM�C�IZFtjqJ�I
CqJ�I
C�S
37. BDC�QZY�[6\6QaBej2k_j6l�S
38. BLIZdaBmE�n:ofJ�I
Cqj6l�S
39. j2k
40. BWM:Q�GUB�B�`:kcB�`�T�G�Fbj2k�S�S
41. B�`�lRB�`�T�G�Fbj6l�S�S�S
42. BuY2E�G�v6Ec`:kq`�lpJ�I
C�S�S�S�S�S�S�S�S
43. Bev6E�F2O
C�I�`
FiBDC�QZY�[6\6QaBWJ�S
44. BLIZdaBeyb^qJ�S
45. J�I
C
46. B�H�T
J�`XB�H:I�J�S
47. Bev6E�F2O
C�I�`
FiBLOxJzk�S�S�S�S�S�S
48. BWM�N6F2O
C�I�`
FiBDC�QZY�[6\6QaBej2S
49. BLIZdaBmE�n:oqJ�I
Cfj2S
50. B�H�T
N6FgJ�I
C�S
51. BejaBDC�QZY�[6\6QKBWPbF2S
52. B�H�T
N6FgP�S
53. BWM�N6F2O
C�I�`
FrF2S�S�S�S�S�S
54. Be\:T�I
TaBDC�QZY�[6\6QaBLS
55. BDC�E�FKB�BWJKB�H:I�J�S�S�S
56. BDC�E�FaB�BejaBev6E�F2O
C�I�`
FtJ�S�S�S
57. BWM�N6F2O
C�I�`
FUB�`�T�G�Ftj2S�S
58. Be\:T�I
T�S�S�S�S�S�S
59. Be\:T�I
T�S�S

Figure 1. Mergesort program

40 and 41; “callers” 1, 2 and 3 respectively) and “merge” compo-
nents are used to route all function call requests to the function’s
body (A). The body starts with a fifo buffer (B) followed by the
implementation of the test at line 34 (“stage” and “split” compo-
nents, C). If the list is not empty, function 8�;�*�1:7 is called (line 36)
after allocating a continuation closure for returning the result (D).
This continuation, when called, allocates another continuation (the
function at line 37) and calls 8�;�*�1:7 ’s result (which is a function
closure representing a pair) with it (E). Next, the test at line 38 is
implemented like the previous one (F). If needed, two processes
are forked with recursive calls to 8�4:927 and their results are merged
after both complete (G) (this is achieved with the ;�+�9 construct at
line 40, which is syntactically like a *�<�7 but evaluates all its bind-
ing expressions in parallel).

Scheme Workshop 2 2006/8/11

Figure 2. mergesort’s 8�4�9�7 function

3. Source Language
The source language is a lexically-scoped mostly functional lan-
guage similar to Scheme [17]. It supports the following categories
of expressions:

• Integer literal
• Variable reference
• Function creation: {�*�+�,/-�.�+|{W}�~���~��#���������6�/�
• Function call
• Conditional: {Z1:���:�6�������:�����:����}��#~��
���/�:����}��
• Binding: *�<�7 , *�<�729�</0 and ;�+�9
• Sequencing: -�<�=�1�3
• I/O channel creation: {Z1�32;�5/7#?�0��/+:3���~����6� and
{�465�7�;25/7#?:0���+:3���~����6�

• Global vectors: ,#+:�/<�?�>�</067/4�9 , >�<�0:7/4�9#?:8�<�7�� and >�</0:7�4�9#?�9�<�� .

Primitive functions are also provided for integer arithmetic op-
erations, comparisons on integers, bitwise operations and, for per-
formance evaluation, timing. For example, the recursive factorial
function can be defined and called as follows:

{�*�<�7292</0�{2{m��+�0:7|{�*�+�,/-/.�+|{W3��
{�1:�|{��V3i���

{Z¡z3|{m��+/067¢{
?t3 �2�2�2�2���2�
{m��+�0:7i£��2�
In our prototype, the only types of data supported are fixed

width integers, global vectors and function closures. Booleans are
represented as integers, with zero meaning false and all other values
meaning true. Closures can be used in a limited fashion to create
data structures, as in the following example:

{�*�<�7|{�{Z0�463#8�{�*�+�,/-�.�+|{W�i7#�
{�*�+�,�-/.�+|{m�#�¤{m�R�i7��2�2�2�

{Z0�+�9|{D*�+�,/-/.2+|{W;��
{W;¢{�*�+�,/-/.�+|{¥�i7#�t���2�2�2�2�

{�*�<�7|{2{W;�+�1:9¢{Z0�463�8R¦a§#�2���
{Z0:+�9R;�+/169#�2�2�

While this is a simple and effective way of supporting data
structures, the programmer has to adapt to this model. The function
call {Z0�463�8a¦R§#� allocates memory for the closure containing the
two integers, but this memory is reclaimed as soon as ;/+/1:9 is called
inside the 0�+�9 function; ;/+/1:9 cannot be called again and the value
§ is lost. The only way to fetch the content of a closure is to call it
and then recreate a similar copy using the data retrieved. Possible
improvements are discussed in Section 6.

The ;�+�9 binding construct is syntactically and semantically
similar to the *�<�7 construct but it indicates that the binding expres-
sions can be evaluated in parallel and that their evaluation must be
finished before the body is evaluated. They can be seen as a calcu-
lation with a continuation that takes several return values. They can
be used for manual parallelization when automatic parallelization
(Section 5.1) is turned off or when expressions with side-effects
may run concurrently.

The I/O channel creation forms create a functional representa-
tion of named input and output channels. Input channels are func-
tions with no arguments that return the value read. Output channels
take the value to be written as an argument and always return 0. The
name given as an argument to 1�3�;25/7#?�0���+:3 and 465/7�;�5/7#?�0��/+:3 will
be used as a signal name in the top-level VHDL circuit description.
For example, the following specification creates a circuit that adds
the values read from two different input channels, writes the sum
on an output channel and starts over again:

Scheme Workshop 3 2006/8/11

Figure 3. I/O example

{�*�<�7|{2{Z021�3 {Z1�32;�5/7#?�0��/+:3¤0���+:3�¨�1�3 ���
{Z021�3��©{Z1�32;�5/7#?�0��/+:3¤0���+:3�¨�1�3������
{Z0�4�5/7¢{�465/7:;25/7#?�0���+:3¤0���+63�¨2465/7��2�2�

{D*�<�729�<�0�{2{m./4�1�4©{�*�+�,/-�.�+©{
�
{Z0�4�5/7|{Dª©{�021�3 ��{�021�3������2�
{m./421�4��2�2���

{m./4�1�4/�2�2�
This example is illustrated in Figure 3 using the components

described in Section 4.
Like any other function with no free variables, channel proce-

dures can be called any number of times since no closure allocation
or deallocation is performed.

Mutable vectors are created with the ,#+:��<�?�>�</0:7�4�9 primitive,
which is syntactically similar to its Scheme equivalent. Currently,
only statically allocated vectors are supported (i.e. vectors must be
created at the top-level of the program). Our memory management
model would have to be extended to support true Scheme vectors.

To simplify our explanations, we define two classes of expres-
sions. Trivial expressions are literals, lambda expressions and refer-
ences to variables. Simple expressions are either trivial expressions
or calls of primitive functions whose arguments are trivial expres-
sions.

4. Generic Hardware Components
The dataflow circuit generated by the compiler is a directed graph
made of instantiations of the 9 generic components shown in Fig-
ure 4. The components are linked using unidirectional data busses
which are the small arrows entering and leaving the components
in the figure. Channels carry up to one message, or token, from
the source component to the target component. Each channel con-
tains a data bus and two wires for the synchronization protocol. The
request wire, which carries a signal from the source to target, indi-
cates the presence of a token on the bus. The acknowledge wire,
which carries a signal from the target to the source, indicates that
the token has been received at the target. The two signals imple-
ment a four-phase handshake protocol (i.e. ↑ Req, ↑ Ack, ↓ Req, ↓
Ack).

The following generic components are used in the system:

(a) stage (b) fifo (c) split

(d) merge (e) closure (f) vector

(g) par (h) input (i) output

Figure 4. Generic Hardware Components

• Stage (Fig. 4(a)): Stages are used to bind new variables from
simple expressions. Every *�<�7 expression in which all bindings
are from simple expressions are translated into stages in hard-
ware; this is the case for all *�<�7 expressions at the end of com-
pilation. The stage component has an input channel that carries
a token with all live variables in the expression that encloses the
*�<�7 . It has one output channel that sends a token with the same
information, which then goes through a combinatorial circuit
that implements all the simple expressions; the stage compo-
nent is responsible for all synchronization so it must take into
account the delay of the combinatorial part. The final token is
sent to the component that implements the *�<�7 ’s body with all
live variables at that point.

• Fifo (Fig. 4(b)): Fifos are used as buffers to accumulate tokens
at the beginning of functions that might be called concurrently
by several processes. Fifos are necessary in some situations to
avoid deadlocks. They are conceptually like a series of n back-
to-back stages but are implemented using RAM blocks in order
to reduce the latency from input to output and the size of the
circuit.

• Split (Fig. 4(c)): Split components are used to implement con-
ditional (1:�) expressions. They have an input channel that re-
ceives a token with all live variables in the expression that en-
closes the conditional. The test expression itself is a reference
to a boolean variable at the end of compilation so it is received
directly as a wire carrying a 0 or a 1. Every token received is
routed to the appropriate component through either one of two
output channels, representing the then and else branches of the
conditional expression. The appropriate branch will get a token
carrying all live variables in the corresponding expression.

• Merge (Fig. 4(d)): Merge components are used to route tokens
from a call site to the called function whenever there is more
than one possible call site for a given function. Tokens received
at the two input channels contain all the parameters of the func-
tion. In the case of a closure call, a pointer to the corresponding
closure environment is also contained in the token. An arbiter
ensures that every token received is sent to the component that
implements the function’s body, one at a time. Merge compo-

Scheme Workshop 4 2006/8/11

nents are connected together in a tree whenever there is more
than two call sites for a function.

• Closure (Fig. 4(e)): Closure components are used to allocate
and read the environments associated with function closures.
They have two pairs of input and output channels, one for al-
locating and the other for reading. When a closure needs to be
allocated, a token containing all live variables in the expres-
sion that encloses the closure declaration is received. All free
variables in the function are saved at an unused address in a lo-
cal RAM and a token containing that address, a tag identifying
the function and all variables that are live in the declaration’s
continuation is sent to the component that implements that con-
tinuation. On a closure call, a token containing both the address
of the closure’s environment and the actual parameters is re-
ceived, the free variables are fetched from the local RAM and a
token containing the free variables and the actual parameters is
sent to the component that implements the function’s body. The
closure component’s read channel is connected to the output of
the merge node(s) and the channel for the value read goes to
the component that implements the function body. Since each
closure has its dedicated block of RAM, the data width is ex-
actly what is needed to save all free variables and no memory is
wasted. Closure environments can be written or read in a single
operation.

• Vector (Fig. 4(f)): Vector components are used to implement
global vectors introduced through the ,�+:��<�?�>2</0:7/4�9 primitive.
They have two pairs of input and output channels, one for writ-
ing and another for reading. When the >�<�0:7/4�9#?:8�<�7�� primi-
tive is called, a token is received with all live variables, an ad-
dress and data to be written at that address. The data is writ-
ten and a token with the live variables is sent as output. When
the >�</067/4�9#?�92<�� primitive is called, a token containing all live
variables and an address is received. Data is read from that ad-
dress and sent in an output token along with the live variables.
A block of RAM is associated with each vector and is sized
accordingly.

• Par (Fig. 4(g)): Par components are used to implement ;�+�9
binding expressions. Like the closure component, the par com-
ponent has an allocation and a reading part, respectively called
fork and join. When a token is received for fork, it contains all
the live variables of the ;�+�9 expression. All variables that are
free in the ;�+�9 ’s body are saved in a local RAM, much like for a
closure environment; the corresponding address is an identifier
for the ;�+�9 binding expressions’ continuation. Then, tokens are
sent simultaneously (forked) to the components that implement
the binding expressions. Each of these parallel tokens contains
the binding expression’s continuation pointer and free variables.
When a token is received for join, the binding expression’s re-
turn value is saved in the local RAM along with the continua-
tion’s free variables. When the last token for a given identifier
is received for join the return value is sent to the ;/+�9 ’s body
along with the other branches’ return values and the free vari-
ables saved in the local RAM for that identifier, and the memory
for that identifier is deallocated. Currently only two binding ex-
pressions are supported.

• Input (Fig. 4(h)): Input components implement all declared
input channels in the circuit. It can be viewed like a simplified
join part of a par component: it waits until it has received tokens
from both inputs before sending one as output. One of the input
tokens represents the control flow and contains all live variables
in the call to the input function. The other input token contains
the data present on the corresponding top-level signal of the
circuit. The output token contains data from both input tokens.

• Output (Fig. 4(i)): Output components implement output chan-
nels. They act like a simplified fork part of a par component:
whenever a token is received as input, two output tokens are
sent simultaneously as output: one to the corresponding top-
level signal of the circuit and one to the component that imple-
ments the continuation to the call to the output function.

The system has been designed so that all components can be im-
plemented either as synchronous (clocked) or asynchronous com-
ponents. For easy integration with the other synthesis and simu-
lation tools available to us, our prototype currently uses clocked
components reacting to the rising edge of the clock.

Input and output components can be implemented to support
different kinds of synchronization. All experiments so far have been
done using a four-phase handshake with passive inputs and active
outputs: input components wait until they receive a request from the
outside world and have to acknowledge it while output components
send a request to the outside world and expect an acknowledgment.
This allows linking of separately compiled circuits by simply con-
necting their IO channels together.

5. Compilation Process
The core of the compilation process is a pipeline of the phases
described in this section. The 0-CFA is performed multiple times,
as sub-phases of parallelization and inlining, and as a main phase
by itself.

5.1 Parallelization
The compiler can be configured to automatically parallelize the
computation. When this option is used, the compiler looks for sets
of expressions which can be safely evaluated concurrently (side-
effect free) and binds them to variables using a ;�+�9 construct. This
is done only when at least two of the expressions are non-simple,
since simple expressions are evaluated concurrently anyways (they
are implemented as combinatorial circuits in a single stage) and
the ;�+�9 construct produces a hardware component that implements
the fork-join mechanism, which would be useless overhead in this
case.

This stage is implemented as four different sub-stages. First a
control flow analysis is performed on the program (see Section 5.5)
in order to determine which expressions may actually have side-
effects and which functions are recursive. Then, for all calls with
arguments that are non-simple, those arguments are replaced with
fresh variable references and the modified calls form the body of
a *�<�7 that binds those variables to the original arguments. For
example,

{m�©{m�2+/0:7U«#�¤{
?¬{m��1�-i#�X®��c¦��
becomes

{�*�<�7|{�{m>/¨�¯©{e��+/0:7K«��2�
{m>/¨ {L?¬{m��1�-U#�X®��2���

{m�K>�¨�¯a>/¨ ¦��2�
Next, all *�<�7 s are analyzed and those for which all binding

expressions have no side-effects and are non-simple are replaced by
;�+�9 s. Finally, the transformed program is analyzed to find all ;�+�9 s
that may introduce an arbitrary number of tokens into the same part
of the pipeline. These are the ;�+�9 s for which at least two binding
expressions loop back to the ;�+�9 itself (e.g. a recursive function
that calls itself twice). Any recursive function that can be called
from the binding expressions is then tagged as “dangerous”. The
reason for this last step is that recursive functions are implemented
as pipelines that feed themselves and each of these can only hold a
given number of tokens at a given time before a deadlock occurs.

Scheme Workshop 5 2006/8/11

This tagging is used later in the compilation process to insert fifo
buffers to reduce the possibility of deadlock.

5.2 CPS-Conversion
The compiler uses the CPS-Conversion to make the function call
linkage of the program explicit by transforming all function calls
into tail function calls. Functions no longer return a result; they
simply pass the result along to another function using a tail call.
Functions receive an extra parameter, the continuation, which is
a function that represents the computation to be performed with
the result. Where the original function would normally return a
result to the caller, it now calls its continuation with this result as a
parameter.

Since all functions now have an extra parameter, all calls must
also be updated so that they pass a continuation as an argument.
This continuation is made of the “context” of the call site embed-
ded in a new lambda abstraction with a single parameter. The body
of the continuation is the enclosing expression of the call where the
call itself is replaced by a reference to the continuation’s param-
eter. Syntactically the call now encloses in its new argument the
expression that used to enclose it. For example,
{�*�<�729�</0�{2{e��+/0:7|{D*�+�,/-/.2+|{m«#�

{Z1:�|{D°R¯a«#�
{Z¡z«|{m��+�0:7|{
?z« �2�2���2�2�2�

{mª©{m��+/067U¦��X�2®/�2�
becomes
{�*�<�729�</0�{2{e��+/0:7|{D*�+�,/-/.2+|{W�i«#�

{Z1:�|{D°R¯a«#�
{W� �
{m�2+/0:7|{�*�+�,/-/.�+|{e9#�¬{W�|{Z¡X«a9��2�2�

{
?c« �2���2�2�2�
{e��+/0:7¢{�*�+�,/-/.�+�{m9#�¬{DªR9U�2®����X¦��2�
There are two special cases. The program itself is an expression

that returns a value so it should instead call a continuation with this
result, but the normal conversion cannot be used in this case since
there is no enclosing expression. The solution is to use a primitive
called ��+�*�7 that represents program termination.

Because of the parallel fork-join mechanism, we also need to
supply the parallel expressions with continuations. This is done in
a similar way using a ;�±24�1�3 primitive which includes information
about the ;/+�9 form that forked this process. This represents the fact
that parallel sub-processes forked from a process must be matched
with each other once they complete. For example,
{W;�+�9|{2{m«|{e�U¦��2�

{m|{e�i®��2�2�
²�²2² �

becomes
{W;�+�9R;#1:./¨ ��¦

{2{m«|{m��{�*�+�,�-/.�+|{m9#��{W;�±24�1�3U;#1:./¨ ��¦a9U¯����V¦��2�
{m|{m��{�*�+�,�-/.�+|{m9#��{W;�±24�1�3U;#1:./¨ ��¦a9 ���X®��2�2�

²�²2² �
;#1:.�¨ ��¦ is bound by the ;/+�9 at fork time and corresponds to the
newly allocated address in the local RAM. ;�±24�1�3 ’s last parameter
(¯ or) distinguishes the two sub-processes.

5.3 Lambda Lifting
Lambda lifting [16] is a transformation that makes the free vari-
ables of a function become explicit parameters of this function.
Using this transformation, local functions can be lifted to the top-
level of the program. Such functions have no free-variables and are
called combinators. For example,

{�*�<�7|{�{m«i�2®����
{�*�<�7|{2{m�|{D*�+�,/-/.2+|{m#�¬{DªX«K#�2���2�
{m� ���2���

becomes
{�*�<�7|{�{m«i�2®����
{�*�<�7|{2{m�|{D*�+�,/-/.2+|{m«/�R#�¤{Dªa«/�X#�2�2�2�
{m�R« �����2�

which is equivalent to
{�*�<�7|{�{m�|{�*�+�,/-/.�+©{e«/�R#�¬{mªa«/�X��2�2�2�
{�*�<�7|{2{m«i��®��2�
{m�R« �����2�

Since a combinator has no free-variables, it doesn’t need to be
aware of the environment in which it is called: all the values that it
uses are explicitly passed as parameters. Combinators are closures
that hold no data and therefore, in our system, we do not assign a
closure memory to them. For example, if function � is not lambda
lifted in the above example, it needs to remember the value of «
between the function declaration and the function call; this would
normally translate to a memory allocation at the declaration and
a read at the call (see Section 5.6). After lambda lifting, « does
not need to be known when � is declared since it will be explicitly
passed as parameter «/� on each call to � . The use of lambda lifting
in our compiler helps to reduce the amount of memory used in the
output circuit and to reduce latency.

Lambda lifting is not possible in all situations. For example:
{�*�<�7292</0�{2{m��+�0:7|{�*�+�,/-/.�+|{W�K«#�

{�1:�|{D°K¯X«#�
{W� �
{m��+�0:7¢{�*�+�,�-/.�+©{m9��¬{W�³{Z¡V«a9#�2���

{
?c« �2�2�2���2�
{m��+�0:7¢{�*�+�,�-/.�+©{m9��z9#�X®����
This is a CPS-converted version of the classic factorial function.

In this case, function ��+�0:7 needs to pass its result to continuation
� , which can be the original continuation {D*�+�,/-/.2+|{m9#�z9#� or the
continuation to a recursive call {�*�+�,/-/.�+|{m9��¬{W�³{Z¡z9K«#�2��� .
The continuation to a recursive call needs to remember about
the parameters to the previous call to �2+/0:7 (� and «). We could
add those free variables as parameters, like {�*�+�,/-/.�+|{m9V�i«#�
{W�¢{Z¡V9K«#�2�2� , but then ��+�0:7 would need to know about the pa-
rameters to its previous call in order to be able to call its contin-
uation, thus adding parameters to ��+�0:7 as well. Since ��+�0:7 is a
recursive function and each recursive call needs to remember the
parameters of the previous call, we would end up with a function
that needs a different number of arguments depending on the con-
text in which it is called, and this number could be arbitrarily large.
Such cases are handled by closure conversion (Section 5.6) which
identifies which closures actually contain data that needs to be al-
located. In the ��+�0:7 example, the allocation of the free variables
of the continuation to a recursive call (� and «) corresponds to the
allocation of a stack frame in a software program.

5.4 Inlining
Inlining is a transformation which puts a copy of a function’s
body at the function’s call site. In the circuit this corresponds
to a duplication of hardware components. Although the resulting
circuit is larger than could be, the circuit’s parallelism is increased,
which can yield faster computation. For this reason the compilation
process includes an optional inlining phase.

The only information given to this phase by the developer is the
maximum factor by which the code size should grow. Code size
and circuit size is roughly approximated by the number of nodes
in the corresponding AST. Since parallelism can only occur within

Scheme Workshop 6 2006/8/11

;�+�9 expressions, inlining is done only in ;�+�9 binding expressions
that have been tagged as “dangerous” by the parallelization phase
(see Section 5.1). No inlining will occur in a program that does not
exploit parallelism.

The inlining process is iterative and starts by inlining functions
smaller than a given “inlining” size in all the identified expressions.
If no function can be inlined and the desired growth factor has
not been reached, this inlining size is increased and the process
is iterated. Since inlining a function introduces new code in a ;/+�9 ’s
binding expressions, this can offer new candidate functions for
inlining which may be much smaller than the current inlining size.
The inlining size is therefore reset to its initial value after every
iteration in which inlining actually occurred.

At each iteration, the number of callers for each inlinable func-
tion is calculated, functions are sorted from the most called to the
least called and then treated in that order. The goal is to try to first
duplicate components that have more chances of being a sequential
bottleneck. 0-CFA is also done at each iteration in order to be aware
of new call sites and the call sites that have vanished.

This method does not consider the fact that the size of the
resulting circuit is not directly related to the size of the AST.
In particular, the networking needed to connect calls to function
bodies may grow quadratically as functions are duplicated. This
is due to the fact that calls must be connected to every function
possibly called, and the number of call sites also grows when code
grows. An example of this is given in Section 9.

5.5 0-CFA
The 0-CFA (Control Flow Analysis [18]) performs a combined
control flow and data flow analysis. Using the result of the 0-CFA,
the compiler builds the control flow graph of the program. This is a
graph that indicates which functions may be called at each function
call site. This graph indicates how the circuit’s components are
interconnected, with each edge corresponding to a communication
channel from the caller to the callee. When several edges point to
the same node, we know that this function needs to be preceded by
a tree of merge components (e.g. part A of Figure 2).

This analysis is also used for automatic parallelization and in-
lining as explained in Sections 5.1 and 5.4, and to assign locally
unique identifiers to functions (see Section 5.7).

Abstract interpretation is used to gather the control flow infor-
mation and that information is returned as an abstract value for each
node in the AST. An abstract value is an upper bound of the set of
all possible values that a given expression can evaluate to. In our
case, all values other than functions are ignored and the abstract
value is just a list of functions which represents the set containing
those functions along with all non-function values.

5.6 Closure Conversion
Closure conversion is used to make explicit the fact that some
functions are actually closures that contain data (free-variables);
those are the functions that could not be made combinators by
lambda lifting (Section 5.3). This conversion introduces two new
primitives to the internal representation: ´/0�*�4�8�5/9�< and ´/0�*�4�?�9�<�� .
The ´�0�*24�8�5�9�< primitive is used to indicate that a function actually
is a closure for which some data allocation must be made; its first
parameter is the function itself and the rest are values to be saved
in the closure memory. The ´�0�*24�?�92<�� is used within closures to
indicate references to variables saved in the closure memory; it
has two parameters: the first is a “self” parameter that indicates
the address at which the data is saved and the second one is an
offset within the data saved at that address (field number within a
record), with ¯ representing the function itself (not actually saved
in memory). For example,

{�*�<�7292</0�{2{m��+�0:7|{�*�+�,/-/.�+|{W�K«#�
{�1:�|{D°K¯X«#�

{W� �
{m��+�0:7¢{�*�+�,�-/.�+©{m9��¬{W�³{Z¡V«a9#�2���

{
?c« �2�2�2���2�
{m��+�0:7¢{�*�+�,�-/.�+©{m9��z9#�X®����

becomes
{�*�<�7292</0�{2{m��+�0:7|{�*�+�,/-/.�+|{W�K«#�

{�1:�|{D°K¯X«#�
{2{D´�0�*24�?�92<��K�i¯��r� �
{m��+�0:7
{D´�0�*24�8�5�9�<
{�*�+�,/-�.�+|{Z8�<�*:�K9#�
{2{D´/0�*24�?�9�<��

{m´/0�*24�?�9�<���8�<�*��U���
¯��

{D´/0�*24�?�9�<���8�<�*��i�/�
{Z¡X9�{D´/0�*�4�?�9�<���8:<�*�� ���2�2�

«
���
{L?z« ���2�2�2�2�

{m��+�0:7¢{D´/0�*�4�8�5/9�<|{D*�+�,/-/.2+©{Z8�<�*:�U9#�c9#���X®��2�
5.7 Finalization
The finalization stage consists of three sub-stages: a trivial opti-
mization, a “cosmetic” transformation to ease the job of the back-
end, and information gathering.

The first sub-stage merges sequences of embedded *�<�7 expres-
sions into a single *�<�7 , when possible. It checks for a *�<�7 in the
body of another one and extracts the bindings in the embedded *�<�7
that do not depend on variables declared by the embedding *�<�7 .
Those extracted bindings are moved up from the embedded *�<�7 to
the embedding one. If the embedded *�<�7 ends up with an empty
binding list, it is replaced by its own body as the body of the em-
bedding *�<�7 . For example,
{�*�<�7|{�{D+©{DªX«Uµ��2�2�
{�*�<�7|{2{W-³{�¡XK¶����2�
{�*�<�7|{2{Z0�{
?z+K¦��2�2�
²2²2² �2���

becomes
{�*�<�7|{�{D+©{DªX«Uµ��2�

{W-³{Z¡zU¶��2�2�
{�*�<�7|{2{Z0·{L?V+a¦����2�
²2²�² �2�2�

This is done because each *�<�7 translates directly to a pipeline
stage in hardware; instead of operations being done in sequence
in several stages, they are done concurrently in a single stage thus
reducing latency and circuit size.

The next sub-stage is used to make explicit the fact that closures
must be allocated before they are used. At this point in the compiler,
arguments to calls are all values (literals or closures) or references
to variables, so that a function call would be a simple connection
between the caller and the callee. The only exception to this is that
some closures contain data that must be allocated and these are
represented by both a lambda identifier and an address that refers
to the closure memory. To make everything uniform, closures that
contain data are lifted in a newly created *�<�7 that embeds the call.
This way, we now have a special case of *�<�7 that means “closure
allocation” and the function call becomes a single stage where all
arguments can be passed the same way. For example,
{m�/424 ��¦a«©{m´/0�*24�8�5/9�<|{�*�+�,/-/.�+|{m�� ²2²2² �z+X-��2�
becomes

Scheme Workshop 7 2006/8/11

{�*�<�7|{2{Z0�*�42¨2�2®©{D´�0�*24�8�5�9�<|{�*�+�,�-/.�+|{m#� ²2²2² �V+z-��2�2�
{e�/424 ��¦X«¸0�*24�¨2�2®��2�

so that it is clear that + and - are allocated in the closure memory
in a stage prior to the function call.

The last sub-stage of finalization is used to assign locally unique
identifiers to lambda abstractions to be used in the circuit instead
of globally unique identifiers. The reason for this is that IDs take
dlog

2
ne bits to encode, where n can be the number of lambdas

in the whole program (global IDs), or the number of lambdas in a
specific subset (local IDs); our aim is to reduce the width of busses
carrying those IDs. Since we have previously performed a 0-CFA,
it is possible to know which lambdas may be called from a given
call site. We first make the set of all those sets of functions and then
merge the sets of functions that have elements in common until all
are disjoint. This ensures that each lambda has an ID that, while not
being necessarily unique in the program, gives enough information
to distinguish this lambda from others in all call sites where it might
be used.

5.8 Back-End
The back-end of the compiler translates the finalized Abstract Syn-
tax Tree (AST) into a description of the circuit. The description
is first output in an intermediate representation that describes the
instantiation of several simple generic components and the data
busses used as connections between them. This intermediate rep-
resentation can be used for simulation and it is translated to VHDL
through a secondary, almost trivial back-end (see Section 8).

Data busses are of two different types: -25�8 and ±24�1�3 :
• {¥-25#8¸¹�º:����»R¼�~��L� : describes a bus width bits wide with an

initial value of val.
• {D±24�1�3¬�6�#�2����� 1 ²2²2² �:���2����� n � : describes a bus which is

made of the concatenation of one or more other busses.
Integer literals and variable references are translated to -25�8 ses;

literals are constant busses while references are busses that get
their value from the component that binds the variable (e.g. stage).
All components that implement expressions through which some
variable is live will have distinct input and output busses to carry
its value, like if a new variable was bound at every pipeline stage.

As explained in Section 4, each *�<�7 expression is translated to
a stage component followed by a combinatorial circuit that imple-
ments the binding expressions and the component that implements
the *�<�7 ’s body. The binding of a variable that represents a closure
is translated to the alloc part of a closure component. Parallel bind-
ings are translated to par components with the fork outputs and the
join inputs connected to the binding expressions and the join out-
put connected to the component that implements the ;�+�9 ’s body.
At this point in compilation, *�<�7�9�</0 bindings contain nothing else
than function definitions so they are translated to the implementa-
tion of their body and all functions defined.

Function calls are translated to stage components where the
combinatorial circuit is used to test the tag that identifies the func-
tion called and route the token accordingly. The result of the 0-CFA
is used to determine which expressions call which functions. No
stage is present if only one function can be called from a given
point. Since all actual parameters are trivial expressions at this
point in compilation, a connection from caller to callee is all that is
needed.

Conditionals are translated to split components with each output
connected to the component that implements the corresponding
expression (���������6����} or �#~��L�����:����}). As explained in Section 4,
the condition is a trivial expression and its value is used directly to
control a multiplexer.

Lambda abstraction declarations are translated to the bus that
carries the function’s or closure’s identifying tag and address. Def-

initions are translated to the component that implements the func-
tion’s body, possibly preceded by a tree of merge nodes and/or the
read part of a closure component. The result of the 0-CFA is used to
build the tree of merge nodes. Input and output channels are trans-
lated just like functions with an input or output component as a
body.

Primitives may be translated in different ways: arithmetic prim-
itives are translated to the equivalent combinatorial circuits while
calls to the 7�1�,�<�9 primitive – which returns the number of clock
cycles since the last circuit reset – are similar to function calls to
a global timer component. Other primitives are used internally by
the compiler and each is translated in its own way. For example, the
��+�*�7 primitive terminates a process and the similar ;�±24�1�3 primi-
tive indicates that a sub-process forked by a ;�+�9 has completed.

The compiler also adds an input and an output channel to the
top-level circuit. The input channel carries tokens containing all
free variables in the program and is used to start a new process;
in most cases, this channel carries no data and is used only once
since concurrent processes can be created using ;�+�9 expressions.
The output channel carries tokens that contain the return value of
the process; a token is output whenever the control reaches the
��+�*�7 primitive and indicates that a process has completed. Thus,
the whole circuit can be seen as a function itself.

6. Memory Management
Memory management has been made as simple as possible since
this is not our main research interest. As mentionned before, the
memory associated to a closure is freed as soon as the closure is
called. While this is enough to make our language Turing-complete,
it imposes a very particular programming style, is error prone and
makes inefficient tricks become indispensable in some situations.

The most desirable solution would, of course, be a full garbage
collector as it normally exists in Scheme. Since closures can be
stored in other closures (and this is always the case for continua-
tions), a garbage collecting hardware component would need to be
connected to all closure memories in a given system. The garbage
collector would also need to be aware of all closures contained in
tokens flowing in the system. Such a centralized component would
hinder parallel execution and is in no way trivial to implement.

A reasonable alternative to a full garbage collector is to augment
our memory management mechanism with a manual memory deal-
location mechanism. This could be done as in many languages by
using a “free” primitive. Closure memory components would need
a new pair of input/output channels to support this, which would be
connected to “free” call sites much like functions are connected to
their call sites. It would also be possible to let the programmer indi-
cate which closures are to be manually reclaimed and let the others
be reclaimed automatically as is currently the case, thus reducing
the size and latency of the resulting circuit.

Another issue is the amount of memory that is reserved for
closures. Since each closure has its own block of RAM, this block
has to be large enough to hold the largest number of closures that
can exist concurrently, lest a deadlock might occur. Our prototype
currently sets all closure memories to the same depth, which results
in far more RAM being generated than necessary. One solution
would be to use smaller closure memories and allow them to spill to
a global memory; they would thus become local, distributed caches.
Finding the optimal size for each local cache would be the main
goal in order to minimize concurrent requests to the main memory.
A non-trivial, multi-ported implementation of the global memory
might be necessary in order to achieve good levels of parallelism.

Finally, the current implementation of vectors creates a bottle-
neck in parallel circuits since each vector is a single component
and it cannot be duplicated like a function. A solution would be to
split each vector into several independently accessible sub-vectors

Scheme Workshop 8 2006/8/11

controlled by a multiplexer which would route the request to the
appropriate sub-vector.

7. Behavioral Simulation
The intermediate representation generated by the primary back-end
is itself a Scheme program: it can be printed out in S-expression
syntax and then executed to perform a simulation. This is done by
using a simulator and behavioral descriptions of the components,
both written in Scheme and included as external modules to the
intermediate representation.

The simulator provides functions to manipulate wires and
busses and to supply call-backs for some events: a signal transi-
tion, an absolute time from the beginning of simulation or a delay
relative to the actual simulation time. In the behavioral simulator,
it is therefore possible to write “when the input signal becomes 1,
wait for 10ns and set the value of the output signal to 0” as:
{�463�1�32;25/7©{�*�+�,/-�.�+|{
�

{Z1:��{D° {e½�1:9�<�?�>2+�*65�<¸1�3�;25/7#�2�
{�*�+�,/-�.�+|{
�
{Z1�3 ¯�¾2¾m7/1�,#<¸128K1�3a3#8 ²

{D*�+�,/-/.2+|{
�
{e½�1:92<�?�52;/.2+�7�<¿�g465/7:;25/7 �2���2�

>/4�1:.#���2�
The program generated by the back-end also includes a test

function which can be modified by hand to specify simulation
parameters (input values, duration, etc). When the program is run,
it produces output in VCD format (Value Change Dump, described
in [1]). This output indicates the initial values of all signals in the
circuit and all transitions that occurred during the simulation and
can be sent to a standard waveform viewer (e.g. GTKWave).

8. Implementation
Hardware implementations are described using the VHDL lan-
guage. All components listed in Section 4 are implemented as
VHDL entities and architectures using generic parameters for bus
widths, memory and fifo depths, etc. Most components have input
signals for the global clock and reset signals.

For example, the stage VHDL component has an input channel
and an output channel, and a -25�8�¨:½�1:.�7�� generic parameter to
specify the width of those channels. An internal register saves
the input data at the rising edge of the clock on a successful
handshake, and is cleared when the reset signal is asserted. Each
channel is associated with a pair of wires that carry the request and
acknowledge signals for synchronization; request signals go in the
same direction as the data and acknowledge signals go the opposite
way.

The top-level of the circuit is also translated from the Scheme
program described above into a VHDL entity and architecture
which instantiates all the necessary components. In addition to
components described in Section 4, trivial combinatorial compo-
nents like adders and equality testers are also used in the top-level.

The most difficult aspect of generating a VHDL circuit descrip-
tion is to handle ±24�1�3 busses properly. There is no standard VHDL
construct to express that some bus is in fact just an alias for the con-
catenation of other busses; these have to be translated to one-way
assignments, either assigning the concatenation of several busses to
a ±24�1�3 bus or assigning a slice of a ±24�1�3 to another bus. The rest
is a straightforward translation of busses and components from the
intermediate representation to VHDL, including bus renaming.

9. Results
We have tested our prototype on a number of programs to produce
dataflow machines on an FPGA. The compiler’s VHDL output

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250

nb
. c

yc
le

s

list length

seq-quicksort
seq-quicksort-avg

seq-mergesort
seq-mergesort-avg

par-quicksort
par-quicksort-avg

par-mergesort
par-mergesort-avg

Figure 5. Sequential and parallel mergesort vs. quicksort, number
of cycles as a function of list length

is fed to Altera’s Quartus-II development environment. The only
human intervention necessary at this point is the assignment of
the circuit’s external signals to FPGA pins; other constraints can
also be given to the synthesis tool, for example to force it to try to
produce a circuit that runs at a specific clock speed.

As an example, the quicksort and mergesort algorithms have
been implemented in an Altera Stratix EP1S80 FPGA with a speed
grade of -6. This FPGA contains 80,000 configurable cells. The
list of elements is represented as a vector for quicksort and as a
chain of closures for mergesort. The resulting circuits use about
11% and 14% of the reconfigurable logic and about 5% and 8% of
the memory available in the FPGA, respectively, for lists of up to
256 16-bit integers and can run at clock rates above 80MHz. Also,
mergesort is an algorithm for which the automatic parallelization
stage of the compiler is useful.

Figure 5 shows the number of clock cycles required to sort lists
of different lengths using mergesort and quicksort, for sequential
and parallel versions of the algorithms. The parallel mergesort was
automatically obtained by the compiler from a program without
;�+�9 expressions. Because of the vector mutations in the quicksort
algorithm, the compiler could not obtain a parallel version automat-
ically; it was necessary to manually insert a ;/+�9 expression for the
recursive calls.

Figure 6 shows average clock cycles per element and compares
sequential and parallel versions of both programs. It shows that a
simple, sequential algorithm can gain a lot in terms of performance
by using the parallelization stage of the compiler, or through simple
modifications (changing *�<�7 s to ;�+�9 s); performance is then limited
by the amount of hardware used (e.g. components can be duplicated
to gain more parallelism).

The fact that the quicksort algorithm is slower than the merge-
sort algorithm in our tests comes mainly from an inefficient imple-
mentation of vectors. Quicksort implemented using a chain of clo-
sures is, on average, faster than mergesort for sequential execution
and about as fast for parallel execution.

Table 1 illustrates the effect of inlining (Section 5.4) on per-
formance and circuit size. The program used for this test is the
mergesort algorithm shown in Figure 1. In this program, the func-
tion which is inlined most often is 0�463#8 , which has the effect of
distributing the memory used to store the list in several indepen-
dent memory blocks; with an inlining factor of 1.10, it is the only
function that gets inlined and it is inlined five times out of a total

Scheme Workshop 9 2006/8/11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250

nb
. c

yc
le

s
pe

r e
le

m
en

t

list length

sequential quicksort
sequential mergesort

parallel quicksort
parallel mergesort

Figure 6. Parallel vs. Sequential mergesort and quicksort, average
number of cycles per element as a function of list length

Inlining % of merge cycles to % of baseline’s
factor logic components sort 250 elts. (1.00) cycles

1.00 14 57 126,226 100.0
1.10 21 107 110,922 87.9
1.25 22 110 95,486 75.6
1.50 32 204 91,684 72.6
2.50 74 709 96,006 76.1

Table 1. Effect of inlining on mergesort

of seven call sites within ;�+�9 s. The proportion of logic is given for
the Stratix EP1S80.

As mentioned in Section 5.4, the circuit size is not proportional
to the AST size. To illustrate this, the number of merge compo-
nents is given for each inlining factor. This outlines the fact that,
by duplicating code, each function is potentially called from sev-
eral more places. Area usage quickly becomes prohibitive as the
inlining factor is increased. Also, more inlining does not always
translate to a better performance: as the tree of merge components
at each function entry gets bigger, the pipeline gets deeper and the
latency increases; there is no need to have a lot more components
than the maximum number of simultaneous tokens in the circuit.

To test the implementation of vectors we wrote a program which
interprets a machine language for a custom 16-bit processor. Vec-
tors are used to implement the RAM and the program memory.
The instruction set contains 21 simple 16-bit instructions, some of
which use a single immediate integer value. With the RAM and
program memory both at 4096 elements deep, the circuit uses only
10% of the logic and 3% of the memory in a Stratix EP1S80. Unfor-
tunately the execution speed is poor, in part because our language’s
lack of a 0�+/8�< construct forced us to use nested 1:� s to decode the
instructions. It is exciting to consider that with some extensions to
our system it might be possible to generate a “Scheme machine”
processor by compiling an <�>2+�* suitably modified for our system.
Moreover, a multithreaded processor could be obtained easily by
adding to the instruction set operations to fork new threads.

Tests have also been performed on the SHA-1 hashing algo-
rithm. Since this algorithm always uses a fixed amount of memory,
it has been written so that it does not use memory allocated data
structures. Instead, each function receives all the values it needs as
separate parameters. Input data is received in a stream from an in-
put channel and new values are read only when the circuit is ready

to process them. This has the effect of reducing latency since fewer
closures have to be allocated, but it also means that tokens, and
therefore data busses, can be very large. Closure memories for con-
tinuations also need to store more variables and the circuit ends up
taking 39% of the logic and 23% of the memory in a Stratix EP1S80
device. This program highlights several situations in which simple
optimizations could be added to the compiler to reduce the size of
the circuit.

10. Conclusions
We have presented a compiler that automatically transforms a high
level functional program into a parallel dataflow hardware descrip-
tion. The compilation process, from a Scheme-like language to
VHDL, requires no user intervention and the approach has been
validated on non-trivial algorithms. Our system handles tail and
non-tail function calls, recursive functions and higher-order func-
tions. This is done using closure memories which are distributed
throughout the circuit, eliminating bottlenecks that could hinder
parallel execution. The dataflow architecture generated is such that
it could be implemented with power-efficient asynchronous cir-
cuits.

10.1 Related Work
Other research projects have studied the possibility of automatic
synthesis of hardware architectures using software programming
languages. Lava [4] allows the structural description of low-level
combinatorial circuits in Haskell by the use of higher-order func-
tions. It does not translate functional programs into hardware.
Handel-C [6] is a subset of the C language which can be com-
piled directly to hardware, but it lacks support for features which
are common in C, like pointers. Moreover it only supports inlined
functions (“macros” which cannot be recursive). Scheme has also
been applied to hardware synthesis in the context of the Scheme
Machine project at Indiana University [20][15][5]. That work also
does not support non-tail function calls and higher-order functions.

10.2 Future Work
In this work, our focus was to show that it is feasible to compile a
functional description of a computation into a parallel circuit. We
think it would be good to implement our generic hardware com-
ponents in asynchronous logic to target very low power circuits.
Asynchronous FPGAs [19] are being designed and these chips
would be the perfect targets for our approach. As mentioned pre-
viously, an exciting prospect is the application of our compilation
technique to hardware/software co-design for reconfigurable chips
containing embedded processors and to Globally Asynchronous
Locally Synchronous (GALS) architectures [7] which allow very
high speed and massively parallel execution by eliminating the
need for a global clock.

Several optimizations normally applied to software programs
can be added to our compiler to produce more efficient circuits.
For example, constant propagation can be used to reduce the width
of busses and the size of memories, and even eliminate some su-
perfluous closures. The simple inlining technique described in Sec-
tion 5.4 could be replaced by a more clever one or one that can take
into account the amount of logic available to implement the circuit
or the desired level of parallelism. Common subexpression elim-
ination, which compacts the circuit and reduces parallelism, may
also be interesting to explore for space constrained applications.

As explained in Section 6, several improvements could be made
to the memory management.

Our language lacks some useful constructs, such as 0�+/8:< ex-
pressions, dynamically allocatable vectors, and data types, which
would greatly enhance its expressiveness. A type system would

Scheme Workshop 10 2006/8/11

also be useful to determine the width of busses and memories and
to perform static type checking.

References
[1] IEEE Std 1364-2001 Verilog® Hardware Description Language.

IEEE, 2001.
[2] A. W. Appel and T. Jim. Continuation-passing, closure-passing style.

In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 293–302.
ACM Press, 1989.

[3] G. M. Birtwistle and A. Davis, editors. Asynchronous Digital Circuit
Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

[4] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware
design in Haskell. In ICFP ’98: Proceedings of the third ACM
SIGPLAN international conference on Functional programming,
pages 174–184, New York, NY, USA, 1998. ACM Press.

[5] R. G. Burger. The Scheme Machine. Technical Report Technical
Report 413, Indiana University, Computer Science Department,
August 1994.

[6] Celoxica. Handel-C Language Reference Manual RM-1003-4.0.
http://www.celoxica.com, 2003.

[7] A. Chattopadhyay and Z. Zilic. GALDS: a complete framework for
designing multiclock ASICs and SoCs. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 13(6):641–654, June 2005.

[8] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, editors.
SpecC: Specification Language and Methodology. Springer, 2000.

[9] D. Geer. Is it time for clockless chip? Computer, pages 18–21, March
2005.

[10] C. Giraud-Carrier. A reconfigurable dataflow machine for implement-
ing functional programming languages. SIGPLAN Not., 29(9):22–28,
1994.

[11] R. Gupta and G. D. Micheli. Hardware/Software Co-Design. In IEEE
Proceedings, volume 85, pages 349–365, March 1997.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicola. SPARK : A High-
Level Synthesis Framework For Applying Parallelizing Compiler
Transformations. In International Conference on VLSI Design, New
Delhi, India, January 2003.

[13] J. Guy L. Steele. Rabbit: A Compiler for Scheme. Technical report,
Cambridge, MA, USA, 1978.

[14] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proc. of the 3rd International
Joint Conference on Artificial Intelligence, pages 235–245, 1973.

[15] S. D. Johnson. Formal derivation of a scheme computer. Technical
Report Technical Report 544, Indiana University Computer Science
Department, September 2000.

[16] T. Johnsson. Lambda lifting: transforming programs to recursive
equations. In Functional programming languages and computer
architecture. Proc. of a conference (Nancy, France, Sept. 1985), New
York, NY, USA, 1985. Springer-Verlag Inc.

[17] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 Report on the
Algorithmic Language Scheme. In Higher-Order and Symbolic
Computation, volume 11, August 1998.

[18] O. G. Shivers. Control-flow analysis of higher-order languages of
taming lambda. PhD thesis, Carnegie Mellon University, 1991.

[19] J. Teifel and R. Manohar. An Asynchronous Dataflow FPGA
Architecture. IEEE Transactions on Computers (special issue),
November 2004.

[20] M. E. Tuna, S. D. Johnson, and R. G. Burger. Continuations
in Hardware-Software Codesign. In IEEE Proceedings of the
International Conference on Computer Design, pages 264–269,
October 1994.

[21] C. Van Berkel, M. Josephs, and S. Nowick. Applications of
asynchronous circuits. In Proceedings of the IEEE, volume 87,
pages 223–233, Feb. 1999.

Scheme Workshop 11 2006/8/11

