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Abstract
Building high performance virtual machines for dynamic
languages usually requires significant development effort.
They may require an interpreter and one or more compila-
tion phases to generate efficient code. In addition, they may
require several static analyses using custom intermediate
representation(s).

This paper presents techniques used to implement virtual
machines for dynamic languages with relatively low develop-
ment effort and good performance. These techniques allow
compiling directly from the abstract syntax tree to target
machine code while still enabling useful optimizations and
without using any intermediate representation.

We have used these techniques to implement a JIT com-
piler for Scheme.We show that performance of the generated
code competes with the code generated by mature Scheme
implementations.

CCS Concepts • Software and its engineering → Just-
in-time compilers; Compilers;
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1 Introduction
Building high performance Just-In-Time (JIT) compilers re-
quires significant development effort. They typically have
a complex architecture involving an interpretation phase
followed by one or more compilation phases, each with its
own set of optimizations. However, JIT compilers allow the
efficient implementation of dynamic languages by adapting
the generated code to the execution of the program at run
time using some run time monitoring.
With dynamic languages, the dynamic properties of the

source program are not generally statically known. This
means that to implement the dynamic features of these lan-
guages, additional checks and operations are inserted in
the generated code, hurting performance. To decrease this
impact, compilers may use static analysis on low level inter-
mediate representations (IR) coupled with profiling to infer
the dynamic properties and decrease the number of checks
and operations inserted in the generated code. Designing
and maintaining an IR makes the architecture more complex
and further increases development effort.
Previous work [2, 3, 16, 21, 22] suggests building inter-

preters to implement dynamic languages and to rely on other
systems to optimize the interpreter itself instead of the ex-
ecuted programs. The implementation then relies on the
optimizations of these systems to efficiently execute pro-
grams. These techniques significantly decrease development
effort but they limit the control over the compilation process.

More recently, techniques have been designed to quickly
build JIT compilers for dynamic languages with relatively
good performance [5, 9, 15, 20]. This is particularly interest-
ing to implement Domain Specific Languages, for prototyp-
ing or if development resources are limited.
One of these techniques, Basic Block Versioning [4, 5]

(BBV) is based on a JIT lazy compilation design that allows
the compiler to generate multiple versions of basic blocks,
each specialized according to dynamic properties observed
for the current execution of the program without requiring
previous interpretation nor profiling phases. An interesting
advantage of BBV is that it allows compilers to decrease
the number of extra type checks and other operations using
a single compilation pass by duplicating the basic blocks
on-the-fly.

This paper presents simple techniques used on top of BBV
allowing to further decrease development effort and thus
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quickly implement JIT compilers for dynamic languages. We
show that a compiler for dynamic languages can compile di-
rectly from the Abstract Syntax Tree (AST) to machine code
without requiring the use of an IR, by limiting static anal-
ysis and without using a complex architecture, yet achieve
relatively good performance.
We also present the implementation of LC1. LC is a re-

search oriented JIT compiler for Scheme using these tech-
niques and we evaluate the impact they have on the perfor-
mance of the generated code.
The rest of the paper is structured as follows. Section 2

presents BBV and how we adapted it to a compiler that is not
using any IR. Section 3 shows how constant propagation and
constant folding can easily be applied in our implementation
of BBV. Section 4 shows how we implemented register allo-
cation with relatively good performance without using any
static analysis. Section 5 presents how code specialization
can be used to decrease the performance impact introduced
by the operations necessary to implement dynamic typing. In
section 6, we present the results of our experiments. Related
work is presented in section 7 followed by a brief conclusion.

2 Basic Block Versioning
BBV is a JIT compilation technique that specializes the gener-
ated code according to the dynamic properties of the source
program observed at run time. Instead of relying on profiling
or analysis, BBV uses a design based on lazy compilation of
basic blocks to discover new information. When generating
code for a basic block b, if b has a single successor block, this
block is generated immediately after b is generated. If b has
several branches out, instead of generating the code for the
successor blocks, each branch out of block b goes to a stub
that calls back to the compiler to generate the corresponding
successor block. Then the generated code is executed. Each
branch may cause the compiler to discover new information
about the dynamic properties of the program. For example,
if b represents a type test on a variable v, it has two branches
out. The first branch is taken if the test succeeds and the
second is taken if the test fails. If the test succeeds, the stub
associated with this branch is triggered and the compiler is
called. The compiler now knows the type of v on this branch
so it checks in a code cache if a version of the next basic
block has already been specialized using this information. If
the version exists, the test is patched to jump to this version.
If the version does not exist, it is generated, added to the
cache, and the test is patched to jump to this version.

Figure 1 shows a Scheme function computing the factorial
of its argument n using tail recursion. This example is used
throughout the paper.
Figure 2 shows the code generated for the fact function

by a compiler using BBV. When the function fact is called
for the first time, the compiler is triggered and compilation

1https://github.com/bsaleil/lc

(define (fact n r)

(if (= n 0)

r

(fact (- n 1) (* n r))))

(fact (read) 1)

Figure 1. Scheme tail recursive function computing the fac-
torial of its argument.

starts with no type information for n and r. The primitive =
is overloaded over several operand types. For example, it can
be used to test equality of fixnums (Scheme small integers)
and flonums (Scheme floating point numbers). Because at this
point the type of n is unknown, type tests must be generated
to dispatch execution to the specialized = operator.

The compiler then first generates a code sequence to deter-
mine if n is a fixnum. Two stubs are created to handle both
branches. When the function is executed, assuming n is a
fixnum, the stub associated with the true branch is triggered,
the type of n is discovered for this call, and compilation
continues specializing code using this information.

The figure shows the compilation state after the execution
finishes, when fact is called with n being a fixnum. If fact is
later called with n being a flonum, the stub Stub1 is triggered
and using the same process, other versions of the same blocks
are generated, specialized for n being a flonum.

This example shows how BBV is efficient at removing type
checks. The type of n is determined once for the primitive
= with one or two type tests and propagated for the rest
of the function body’s compilation. It is then not needed
to determine its type dynamically for the primitives - and
*. A second type dispatch is executed per recursive call to
determine the type of r. This means that, without analyzing
nor profiling code, only two type dispatches are inserted for
this example whereas a naive compiler would insert four
(three for n and one for r).

Other work has demonstrated that BBV is efficient at re-
moving type checks to generate fast code [4, 5]. Chevalier-
Boisvert and Feeley [6] later extended BBV to work interpro-
cedurally and Saleil and Feeley [19] extended code special-
ization to work interprocedurally in the presence of higher
order functions. These extensions allow BBV to remove even
more type tests and generate even faster code.

In our example, if the compiler uses these extensions and
is able to propagate discovered type information through
function calls and returns, the type of r is never tested dy-
namically because the compiler knows that it is a fixnum
(constant 1) for the first call, and its type remains the same af-
ter the multiplication and at the entry point of the recursive
call. The type of n is tested in the first call of the function for
the primitive =, its type is discovered and is also propagated
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Figure 2. Code generated for the fact function of figure 1.

for the second call (in effect interprocedural BBV creates a
second version of the function specialized for both n and r
being fixnums). Consequently, the type of n is not tested in
the recursive calls. This means that in this example, inter-
procedural BBV allows executing a single dynamic type test
for the call to fact, regardless of the value of n.

2.1 Basic Block Versioning from AST
We adapted BBV to work in the absence of a low level IR. This
allows building optimizing JIT compilers without requiring
to design and implement an IR, simplifying the development
process thus decreasing development effort. If the compiler
does not use a low level IR, it has no concept of basic blocks
thus BBV, as presented above, cannot be implemented. In-
stead, we extend BBV to work on AST nodes.

When the compiler needs to execute an expression, it first
builds a chain of objects we call lazy code objects (LCO) from
the AST representing the expression. The compiler stops
building the chain if all nodes of the AST have been visited
or if a node with several successors (i.e. a node that may
cause compilation stubs to be generated) is visited. An LCO
contains a reference to the AST node it is associated with
and a generator. A generator is a piece of code (e.g. a func-
tion) that, given a compilation context, is able to generate
a specialized version of the AST node it is associated with.
When a generator is called, it (i) generates specialized code
for the context, (ii) augments the context using information
it just discovered and (iii) calls the generator of the successor
node if it has a single successor (i.e. if it does not generate
compilation stubs).
All the techniques presented in this paper are local to an

LCO. When a generator is called, it generates code optimized
for the AST node it is associated with using information
propagated up to this node and information associated with

Figure 3. Two steps of the LCO chain creation process for
the Scheme expression (= n 0) of the fact function. Solid
arrows represent the successor links. Dashed arrows show
how the generators are called and which compilation con-
texts are used.

the node itself, without considering extended control or data
flow.
In the case of LC, a compilation context contains a stack

of types representing the types of the values in the current
frame, and the local environment, including the types of the
local variables. If type information is not known, the type
unknown is used.
Figure 3 shows an example of code generation for the

Scheme expression (= n 0) of the fact function. To execute
the function, and because the chain does not exist yet, the
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compiler first builds the chain associatedwith this expression.
Because the Scheme primitive = is overloaded over several
operand types, type checks LCO are created before creating
the LCO associated with the = AST node. For this Scheme
expression, the first node in the chain is the loading of the
variable n, then the constant 1 then a type check for the
primitive =.
Because this check has several successors (depending on

the result of the check), the compiler stops building the chain.
All the generators of the chain are then sequentially called
(represented by dashed lines in the figure), starting with an
initial context with an empty stack and no information on the
type of n. Because interprocedural BBV is used, the compiler
knows that r is a fixnum. When a generator is called, it
generates the code corresponding to its node and updates
the context before calling the generator of its successor. Once
all generators have been called, the compiler jumps to the
first instruction generated from the chain and the generated
code is executed. If the type check succeeds, the next chain,
containing the node for the primitive = is generated. If this
piece of code is later executed with n being a flonum, the
check fails, and using the same process, the rest of the chain
is built and the generators are called. The right side of the
figure shows the compilation state after this piece of code
has been executed with n being a fixnum and a flonum. We
can see that in both cases, the same LCO is used for the =
node, but because the generator associated with this node
has been called with two different contexts two different
specialized versions of the equality operator are generated.

Using this design allows generation of code using a single
pass on the AST, without visiting the nodes that are not
executed, meaning that dead code is never executed nor
generated.

2.2 Tail Position Detection
An interesting side effect of building a chain of LCO is that
no additional pass on the AST is needed to determine if a
function call is in tail position, which is required to imple-
ment the Scheme programming language. In LC, the LCO
chain is built recursively meaning that each time an LCO is
created, its successor LCO has already been created. When
creating an LCO, if the AST node it is associated with rep-
resents a function return, the LCO can be flagged as return
LCO. When a generator associated with a function call node
is called, it can check if the successor LCO is flagged as return
LCO. If it is the case, the call is in tail position. This is how
LC detects that the recursive call of the fact function is in
tail position.

3 Constant Propagation
Constant propagation and constant folding are classical op-
timizations and are required to generate efficient code but
these optimizations require additional static analysis on IR,

Figure 4. Contexts used for generators of the first chain of
the fact function augmented with constant information.

or additional passes on the AST. However, BBV and the way
we adapted it allows both optimizations without additional
analyses or passes.
When a generator is called, it generates specialized code

for the node it is associated with. It then updates the context
and calls the generator of the successor with this updated
context.
In the case the LCO is associated with a constant node

(e.g. the node associated with 0 in figure 3), a naive stack-
based compiler would generate code to push the value to the
execution stack, add its type to the stack in the context and
call the generator of the successor.

The type representation in the context can be augmented
to include constant information. For a constant node, the
compiler would generate no code, add the constant and its
type to the context and call the generator of the successor
LCO. In the same way, constants are propagated with the
type of the local variables in addition to the type stack. This
addition to the compilation context allows constant propa-
gation.

As an example, figure 4 shows how the generators of the
first chain of the fact function are called using a context
augmented with constant information. When the generator
associated with the AST node 0 is called, no code is generated
and the type (fix:0) is added to the stack and propagated,
meaning that the next nodes are specialized using this infor-
mation.

When a generator associated with a primitive is called, it
uses context information to generate optimized code. For ex-
ample, in the case of a binary arithmetic operator, if the type
of the two operands (i.e. the two types on top of the context
stack) represent constants, no code is generated, the result
of the operation, computed at compilation time, is added to
the context and propagated as a constant. In the case the
operator is a comparison operator the generator can directly
call one of its successors depending on the result, without
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(define (type-mask n m)

(+ (if (fixnum? m) 1 0)

(if (fixnum? n) 2 0)))

(type-mask 10 #f)

(type-mask (read) (read))

Figure 5. Scheme code of a function computing the type
binary mask of two variables.

generating stubs. This addition allows the compiler to do
constant folding using propagated constant information.

Because BBV uses code duplication to generate specialized
versions of the blocks, constant propagation and constant
folding are available even if different constant combinations
are observed when a generator is called.
Figure 5 shows an example in which constant propaga-

tion based on BBV allows generation of efficient code. The
type-mask function computes a binary mask. A bit is set
in the mask if the variable it is associated with is a fixnum.
The fixnum? operator detects if the variable is a fixnum.
No matter if the variable is a fixnum or not, the constant is
propagated for the rest of the function. When the addition is
reached, both operands are represented by constants in the
compilation context meaning that the compiler can compute
the final mask without generating code. In addition, if inter-
procedural extensions are used, it is possible that the type
of the operands are known thus no code is generated for
the fixnum? operators. It is the case for the first call to the
type-mask function in the figure. This means that for this
specialized version, no code at all is generated to compute
the mask.
Using interprocedural extensions opens up the opportu-

nity to interprocedurally propagate constants.

3.1 Loops
An important problem with this optimization is loops. If a
loop counter is initialized using a constant and modified
each iteration by a constant, its value is propagated through
the context and generated code is specialized using its value
resulting in a loop unrolled n times, n being the number
of iterations. Although this is beneficial for loops with few
iterations, it results in code explosion for loops with many
iterations. To avoid this problem, simple heuristics can be
used such as stopping constant propagation at loop nodes,
or limiting variations of constants in versions. This is not a
problem in LC because Scheme has no primitive loop con-
structs.

Figure 6. Contexts used for generators of the first chain of
the fact function augmented with register allocation infor-
mation.

4 Register Allocation
Register allocation is a problem isomorphic to graph color-
ing. Graph coloring algorithms are then used to solve regis-
ter allocation in Ahead-Of-Time (AOT) compilers allowing
to generate efficient code. However, the allocation time of
graph coloring is high which is problematic in a JIT compiler
because compilation time impacts the total execution time.
Other techniques more adapted to JIT compilers such as

Linear Scan [14] have been discovered. Linear Scan allows to
reduce static work by generating code slightly slower than
when graph coloring is used. However, Linear Scan requires
liveness information gathered from dataflow analysis which
is not compatible with our goals.

To avoid IR and static analysis, a greedy register allocation
can be used. The compiler can greedily associate a machine
register to each slot of the context virtual stack each time a
type is added. It is possible that multiple slots of the stack
are associated with the same register. For example, if a local
variable is added multiple times to the stack, a single register
can be used thus adding the variable to the stack requires no
operation.
At its initial state, the virtual stack is empty meaning

that all registers are available. When a type which is not
representing a constant value is added to the virtual stack,
the compiler associates an available register to this slot. If
a register is available, this register is associated with the
slot and it is removed from the set of available registers. If
no register is available, a value associated with a slot in the
virtual stack of the context must be spilled to free a register.
Any spilling heuristic can be used in this situation. In LC,
we decided to spill the value associated with the lowest slot
in the context stack which is associated with a register.

As an example, figure 6 shows how the generators of the
first chain of the fact function are called using contexts
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augmented with register allocation information. When the
generator of the first node is called, the type of n is added to
the stack and the next available register (r1 in this case) is
associated with this new slot. This information is propagated
and next generators use this information to generate code
using registers. Because the node associated with 0 repre-
sents a constant, it is not necessary to associate a register to
the new slot when its generator is called.
An important problem with greedy register allocation is

that registers are allocated for temporary values. Because
liveness analysis is not necessarily used, the compiler does
not know when allocating a register, that a value is not live
thus its associated register is available. Using a stack in the
compilation context, as done in LC, solves this problem. Be-
cause a temporary value is represented in the compilation
context by a slot in the virtual stack, the register it is associ-
ated with can be added to the available register set when the
slot is popped from the stack and if no other slot is associated
with the same register.

Using a virtual stack in the context then allows the com-
piler to free registers associated with temporary values as
soon as they are used.

4.1 Code Specialization Based on Register
Allocation

When a version must be generated, the compiler first checks
if a version has already been generated for this context to
reuse it. However, if register allocation is added to the compi-
lation context, it is possible that a context used for an existing
version differs in register allocation information only.

In this case, the compiler can use this version and gener-
ate extra moves between registers to conform to the register
allocation used for the existing version. The other solution,
used by LC, is to use register allocation information to spe-
cialize code. This means that, in this situation, a new version
is generated for this exact context thus no extra move is
generated nor executed at run time. Next blocks are then
specialized using this register allocation information.

5 Boxing and Unboxing
To implement dynamic typing, type checks are inserted in the
generated code to ensure safety of the language primitives.
It has been shown that BBV is efficient at discovering types
thus at removing type checks [5, 6, 19].

Another reason dynamic typing negatively impact perfor-
mance is that because types are not necessarily known at
compilation time and type checks must be able to retrieve
the type of a value at run time, the run time representation
of a value must include both the value and its type. This
representation is commonly referred to as a box.
To allow primitives to handle values, additional boxing

and unboxing operations are inserted in the generated code.
Unboxing operations are generated before a primitive to

; compute n-1 and box the result

r1 = unbox(n)

r2 = r1 - 1

r2 = box(r2)

; compute n*r and box the result

r3 = unbox(n)

r4 = unbox(r)

r5 = r3 * r4

r5 = box(r5)

; recursive call

r6 = call fact(r2, r5)

Figure 7. Pseudo assembly code including boxing and un-
boxing operations generated by a naive compiler for the
recursive call of the fact function.

extract values from the boxes representing its arguments.
Boxing operations are generated after a primitive to create
a box containing the result of the primitive along with the
type of the result.
In a compiler using naive boxing and unboxing, redun-

dant boxing and unboxing operations are inserted in the
generated code.

Figure 7 shows an example of pseudo assembly code gen-
erated for the recursive call of the fact function including
boxing and unboxing operations by a naive compiler. Two
unboxing operations are inserted, and executed for n for
the operators - and * whereas a single unboxing operation
could have been inserted and the unboxed value used for
both operations.
Common Subexpression Elimination (CSE) is used to re-

move these redundant operations. Global CSE is usually
computed on the IR to remove extra boxing and unboxing
operations in a procedure, and local CSE is performed when
generating code to remove boxing and unboxing operations
inside a basic block. Because we decided to avoid the use of
IR, and because the compiler has no concept of basic block,
classical CSE cannot be applied.

5.1 Run Time Value Representation
Depending on the box representation the compiler uses, box-
ing and unboxing operations impact performance differently.
Type tagging [10] is a technique widely used to represent
boxes in dynamically typed languages. When type tagging
is used, one or more of the least significant bits of a machine
word representing a value are reserved to represent the type
(type tag). The remaining bits are used to represent the value.
In the case of LC, two bits are used for the type and the
remaining 62 bits are used for the value. Fixnums are usually
represented with a type tag containing only zeros allowing
boxing and unboxing operations on fixnums at no cost. For
example, the addition (e.g. the x86 add instruction) of two
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boxed fixnums (i.e. two fixnums that are not unboxed before
the addition), results in a fixnum representing the boxed
result. In other words, adding two boxed fixnums is equiva-
lent to unboxing the fixnums, adding both unboxed values,
and boxing the result. However, some primitives still require
unboxing. This is, for example, the case for multiplication.
For multiplication, one of the operands must be unboxed
before the multiplication is performed. The result already is
boxed.
This shows that wisely choosing the representation of

boxes allows to significantly decrease the performance im-
pact of boxing and unboxing operations with no develop-
ment effort.

On specific architectures, boxing and unboxing operations
on heap-allocated objects can also be done at no cost. When
type tagging is used, memory objects are aligned when al-
located. This alignment ensures that the n least significant
bits are set to 0. The type tag can then be inserted in these n
bits. To unbox a heap-allocated object, the n bits are cleared
to retrieve the object address.
In the case of x86, the addressing mode allows the use of

a displacement constant when reading or writing a memory
slot. This displacement allows the removal of the tag from
the box at no cost thus to read or write a field of a boxed
object using a single instruction. Boxing operations can also
be executed at no cost. On x86, after an object is allocated, its
address can be computed, and the tag can be inserted using
a single lea instruction.

5.2 Flonums
Flonums are a specific case of heap-allocated objects. The
double precision IEEE-754 standard [8], widely used to rep-
resent flonums, requires 64 bits to represent a number. This
means that on 64 bits machines, if all the bits of a word are
used to represent the value, the type tag cannot be inserted
in the least significant bits thus flonums must be allocated
in the heap.

Heap allocating flonums means that a memory allocation
is executed for each boxing operation and a memory read
is executed for each unboxing operation significantly im-
pacting performance compared to other types. In addition,
because more objects are allocated, garbage collector (GC)
time also is impacted.

Other box representations such as NaN-boxing [10] solve
this problem for flonums. NaN-boxing uses the unused range
of NaN representations of the IEEE-754 standard to represent
boxes of other types. The advantage of this representation is
that boxed flonums can directly be represented by their IEEE-
754 representation avoiding boxing and unboxing operations.
However, NaN-boxing limits the fixnums to 32 bits and does
not allow zero cost unboxing of heap-allocated objects on
x86.

To decrease development effort, a compiler could then
use type tagging to represent boxes, allowing a significant

decrease in the cost of boxing and unboxing of fixnums and
non-flonum heap-allocated objects. Development effort can
then be focused on decreasing the impact of flonum boxing
and unboxing.

5.3 Eager Unboxing of Flonums
Compilers can use type discovery of BBV to eagerly box and
unbox values. Using BBV, each time a type check succeeds for
the first time, a type is discovered and the compiler is called
by the compilation stub created for this check to generate the
next branch. Before generating the branch, the compiler can
generate a code sequence to unbox the value for which the
type has just been discovered meaning that this variable is
handled unboxed for the rest of the execution. The compiler
can use this approach on flonums to decrease boxing and
unboxing impact.

Using eager unboxing, the compiler knows that if the type
of a variable is known and the variable is a flonum, the value
is unboxed (i.e. there is no need to unbox it before primitives).
If the compiler does not know the the type of a variable it
knows the value is boxed.

If the type of a value that is an argument of a flonum prim-
itive is unknown, type checks LCO are necessarily inserted
before the primitive meaning that using our implementation
of BBV and eager unboxing, the compiler necessarily knows
that this argument is an unboxed flonumwhen the generator
of the LCO associated with the primitive is called.

Because BBV uses code duplication to generate specialized
versions, polymorphic variables are successfully handled. In
addition, by using interprocedural extensions, the compiler
can propagate unboxed flonums through function calls and
returns even in the presence of higher order functions.
In addition, if the target machine provides specialized

registers (e.g. xmm registers on x86), each newly unboxed
flonum can be moved to one of these registers. Register
allocation of specialized registers can be propagated and used
to specialize code using the same technique we presented in
section 4.

5.3.1 Impact on the Garbage Collector
Even if unboxed flonums are moved to specialized registers,
it is possible the compiler decides to spill an unboxed flonum
at some point. This means that both boxed and unboxed
values can be stored in the execution stack, meaning that
the GC cannot do precise stack scanning to detect roots
representing heap-allocated objects. Instead, the GC can use
a conservative approach but such a system can retain objects
that must actually be collected. Another solution, used by
LC, is to indicate to the GC which slots of the execution
stack actually contain heap-allocated objects using GC stack
maps [11]. In the case of LC, a GC stack map uses a single bit
per slot of the frame it is associated with. A bit is set if the
compiler knows that the slot it is associated with contains
a flonum (i.e. a context stack slot associated with a spilled
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value contains the type flonum) allowing the GC to know
that this slot does not contain a memory allocated object.

6 Results
LC is a research oriented JIT compiler for Scheme, written in
Scheme. It implements a subset of the R5RS Scheme standard
[12] (first-class continuations are not supported and eval
implementation is limited). Its implementation is described
in [17–19]. The compiler uses the techniques presented in
this paper to generate efficient code and to decrease devel-
opment effort. The compiler is based on Gambit [7], it uses
its frontend, GC and x86 assembler.

LC interprocedurally specializes code according to type in-
formation. Supported types are boolean, character, f64vector,
fixnum, flonum, function, pair, string, symbol and vector. Gen-
erated code is also intraprocedurally specialized using con-
stants and register allocation information.

The 38 benchmarks used for these experiments are those
typically used to benchmark Scheme implementations.
LC is written by a single person in less that 15 KLOC

(physical SLOC) of Scheme and has been successfully used
as a research tool for the past 4 years. This confirms that
the techniques presented in this paper allow a reduction
in development effort to build a JIT compiler with limited
resources.

This section presents the results of the experiments show-
ing what performance can be reached by a compiler based
on these techniques.
The baseline used for the results is LC that is not using

the optimizations we presented. In this configuration, a sin-
gle generic version is allowed for each AST node, meaning
that constants and types are not propagated, code is not
specialized using type information nor register allocation in-
formation (i.e. merge code is generated) and flonums are not
unboxed thus specialized registers are not used. The base-
line then shows how code would be generated by a simple
and naive JIT compiler for x86. For the rest of the section,
this configuration is referred to as LC in naive mode. The
configuration in which LC uses all the techniques is referred
to as LC in optimized mode.

6.1 Type Checks
Chevalier-Boisvert and Feeley [5] showed that BBV is effi-
cient at removing type checks for JavaScript. Other work
has demonstrated that interprocedural extensions allow BBV
to remove even more checks for JavaScript [6] and Scheme
[19].
Figure 8 shows the number of type checks executed by

LC in optimized mode relative to LC in naive mode. For 12
of the benchmarks, interprocedural BBV, as implemented in
LC, allows the removal of essentially all the checks. For the
other benchmarks, the number of executed type checks is
significantly decreased. In the worst case with takl, around

7% fewer checks are executed. On average, 70% fewer checks
are executed.

6.2 Eager Unboxing
We showed in section 5 that, used along with BBV, eager
unboxing allows the removal of boxing and unboxing opera-
tions without using static analysis nor IR.

Table 1 shows the number of executed boxing and unbox-
ing operations for LC in naive mode and LC in optimized
mode for flonum intensive benchmarks. We can see that
essentially all of the operations are removed for these bench-
marks. In the worst case (simplex), around 97% fewer boxing
operations are executed and around 95% fewer unboxing op-
erations are executed. On average, more than 99% fewer
operations are executed.
As a comparison, we measured the number of executed

boxing and unboxing operations on flonums by the Gambit
Scheme compiler for these benchmarks. Because LC uses the
frontend of Gambit, the input AST of the two compilers is the
same thus LC in naive mode represents the worst case (i.e.
each argument is unboxed when generating a primitive and
the result is boxed). Gambit, using local CSE in basic blocks,
executes only 2% fewer boxing operations and 3% fewer
unboxing operations than LC in naive mode on average.

6.3 Execution Time
The benchmarks are executed on a machine using an Intel
Core i7-4870HQ CPU with 16GB DDR3 RAM running the
GNU/Linux operating system. Each benchmark is executed
10 times, the minimum and maximum execution times are
removed and the average of the 8 remaining values is taken.
The number of iterations for each benchmark is taken from
Gambit.

Figure 9 shows the execution time of themachine code gen-
erated by LC in optimized mode relative to LC in naive mode.
The execution time presented in this figure allows the mea-
surement of the impact of the techniques on the performance
of the generated machine code. It then includes execution
time of generated machine code and excludes compilation
time and GC time. As expected, due to eager unboxing of flon-
ums, the most important speedup for LC in optimized mode
occurs for flonum intensive benchmarks (up to 8.7x faster
with fftrad4). Because BBV allows to interprocedurally
remove type checks, fixnum intensive micro-benchmarks
such as fib and sum are also significantly faster. The biggest
benchmark is compiler (~12 KLOC) which intensively uses
data structures. For this benchmark, LC in optimized mode
allows generating code that is 1.4x faster than the code gen-
erated by LC in naive mode. All the benchmarks are signifi-
cantly faster with LC in optimized mode compared to LC in
naive mode. The worst case occurs for divrec which is only
1.05x faster. This benchmark intensively uses lists. Because
LC does not track the type of the values in compound data
types such as lists or vectors, type information is lost when
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Figure 8. Number of executed type checks relative to LC in naive mode.

Table 1. Number of flonum boxing and unboxing operations with LC in optimized mode relative to LC in naive mode.

LC - Naive unboxing LC - Eager unboxing
Benchmark # boxing # unboxing # boxing # unboxing % boxing % unboxing
fft 93168009 128990020 10 19 ≈0.00 ≈0.00
fftrad4 262133751 435134470 10 19 ≈0.00 ≈0.00
fibfp 89582115 179164234 11 21 ≈0.00 ≈0.00
mbrot 137762909 273654718 9 18 ≈0.00 ≈0.00
nbody 470000627 665000701 11 20 ≈0.00 ≈0.00
nucleic 65971745 74996176 189010 189019 0.29 0.25
pnpoly 112100009 194200018 9 18 ≈0.00 ≈0.00
simplex 48300009 52800018 1400009 2400018 2.90 4.55
sumfp 400040009 800100020 11 20019 ≈0.00 ≈0.00
Mean 0.35 0.53
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Figure 9. Execution time of the code generated by Gambit and by LC in optimized mode relative to the code generated by LC
in naive mode.
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Figure 10. Execution time with LC in optimized mode relative to Pycket.
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an element is inserted in a list or a vector meaning that the
compiler is not able to remove type checks. On average, the
code generated by LC in optimized mode is 2.25x faster than
the code generated by LC in naive mode.

This figure also shows the execution time of the code gen-
erated by Gambit relative to LC in naive mode. Gambit is
known to be an efficient AOT implementation of the Scheme
programming language. For some benchmarks, Gambit gen-
erates faster code than LC in optimized mode. Because LC
does not track the type of the values in compound data types,
it does not remove type checks in some cases and because
indirections at function returns are necessary to implement
the interprocedural extensions, generated code is slower.
We can see in the figure that for 26 benchmarks out of

38, the code generated by LC in optimized mode is faster
than the code generated by Gambit. Because eager unboxing
allows the removal of the overhead of heap-allocated flon-
ums, flonum intensive benchmarks are significantly faster
with LC. On average, the code generated by LC in optimized
mode is 1.47x faster than the code generated by Gambit.

Figure 10 shows the execution time of the benchmarks for
LC relative to Pycket2 [1]. Pycket is a Scheme JIT compiler
based on meta-tracing built with the PyPy framework [16].
The execution time presented in this figure includes com-
pilation time, GC time and execution time. The compiler
benchmark is not included because Pycket fails to execute
it. Because Pycket does not support homogeneous numeric
vectors, heterogeneous vectors are instead used for both
compilers. LC is significantly faster for 22 benchmarks out
of 37. Thanks to BBV, fixnum intensive benchmarks are sig-
nificantly faster. Because eager unboxing is used on flonums,
several flonum intensive benchmarks are also significantly
faster (up to 8.42x faster with nucleic). However, several
flonum intensive benchmarks are significantly slower with
LC (e.g. fft and fftrad4). In addition to flonums, these
benchmarks intensively use vectors. We think these bench-
marks are faster with Pycket because it optimizes vectors
for flonums. When we execute these benchmarks with LC
using homogeneous vectors (f64vector), they are as fast as
with Pycket. On average, the benchmarks executed with LC
in optimized mode are 1.35x faster than when executed with
Pycket.

6.4 Summary
Our results show that these simple techniques allow to sig-
nificantly decrease the performance impact necessary to
implement dynamic programming languages. In the case of
LC, the techniques allow to generate code that is, in many
cases, faster than existing optimizing AOT and JIT compilers
for Scheme.

2https://github.com/pycket/pycket, September 2018 build

7 Related Work
Several studies showed that JIT compilers are difficult to
build compared to interpreters. The DynamoRIO [20] project
showed that the negative performance of the interpretation
of dynamic languages can be decreased using compilation
traces. However, the technique requires the use of an in-
terpreter thus makes the architecture more complex. Other
research shows that development effort necessary to imple-
ment JIT compilers can be decreased by writing interpreters
and optimizing the interpreter itself to increase performance.
The PyPy project [2, 16] used by Pycket [1] uses trace based
JIT compilation, typically used by JIT compilers on source
programs, to the code of interpreters allowing the efficient
building of virtual machines with low development effort.
The Truffle [21, 22] project goal is similar to PyPy. It allows
building interpreters for languages and optimizes the inter-
preters using type feedback and other profiling information.
These projects allow to significantly decrease the develop-
ment effort necessary to build language implementations.
However, they give no control over the compilation phases
and low level techniques limiting their use if full control is
needed.

An alternative to build efficient language implementations
is to use an existing bytecode based virtual machine such
as the Java Virtual Machine [13]. These optimizing virtual
machines execute programs previously compiled to the byte-
code they support. A compiler from the source language to
bytecode can then be built and rely on these virtual machines
optimizations and execution environments to efficiently exe-
cute programs. Using bytecode based virtual machines allows
more control on the compilation phases but gives no control
on low level implementation.

8 Conclusion
We have presented techniques allowing to decrease the devel-
opment effort necessary to build JIT compilers for dynamic
languages. These techniques have been used to build LC,
a JIT compiler for Scheme, written by a single person in
less than 15 KLOC and successfully used as a research tool
showing that they are suitable to be used in an environment
with limited resources. We have evaluated performance of
the code generated by LC to show what performance can be
reached by a compiler based on these techniques. We have
shown that they allow to reach significantly better perfor-
mance than naive JIT compilers (up to 8.3x faster) allowing
LC to reach better performance than mature AOT Scheme
implementations and other optimizing JIT compilers.
This study shows that it is possible to build efficient JIT

compilers for dynamic languages with relatively low de-
velopment effort and, unlike frameworks designed to build
language implementations, with full control over the system.
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