
PICOBIT: A Compact Scheme System for Microcontrollers

Vincent St-Amour
Universit́e de Montŕeal

stamourv@iro.umontreal.ca

Marc Feeley
Universit́e de Montŕeal

feeley@iro.umontreal.ca

Abstract
Due to their tight memory constraints, small microcontroller based
embedded systems have traditionally been implemented using low-
level languages. This paper shows that the Scheme programming
language can also be used for such applications, with less than 7 kB
of total memory. We present PICOBIT, a very compact implemen-
tation of Scheme suitable for memory constrained embedded sys-
tems. To achieve a compact system we have tackled the space issue
in three ways: the design of a Scheme compiler generating compact
bytecode, a small virtual machine, and an optimizing C compiler
suited to the compilation of the virtual machine.

1. Introduction
Applications for embedded systems vary greatly in their compu-
tational needs. Whereas some modern cell phones, GPS receivers,
and video game consoles contain CPUs, memory and peripherals
that are comparable to desktop computers, there is at the other ex-
treme embedded systems with very limited resources. We are in-
terested in applications with complex behavior and low speed re-
quirements such as smart cards, remote sensors, RFID, and intel-
ligent toys and appliances. These devices have relatively simple,
slow, power efficient processors and only a few kilobytes of mem-
ory integrated with peripherals on an inexpensive single chip mi-
crocontroller.

Due to the extreme memory constraints such applications are
traditionally implemented using low-level languages, typically C
and assembler, which give programmers total control and respon-
sibility over memory management at the expense of software de-
velopment ease and speed. The overall objective of our work is
to show that a high-level mostly functional garbage collected lan-
guage is a viable option in this context. In this paper we explain
the design of the PICOBIT system, a very compact implementation
of the Scheme programming language which targets these appli-
cations. We discuss three variants of the system, which represent
different trade-offs and levels of featurefullness. The most compact
variant allows Scheme programs to run on microcontrollers with
less than 6 kB of ROM and 1 kB of RAM. The system is being
used in two notable contexts. It is the firmware of the “picoboard”,
a small mobile robot programmable in Scheme which is used to
teach introductory computer science at the Université de Montŕeal.
It is also used to implement the S3 network protocol stack [10],

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Not Published

which implements a basic stack for embedded systems supporting
TCP, UDP, ARP, etc.

2. Related Work
Virtual machine-based approaches have been used in the past to run
high-level languages in embedded environments. Invariably space
savings are achieved by implementing a subset of an existing high-
level language. For example, the Java language has been adapted
for embedded applications and the most compact version is the
Java Card Platform virtual machine [11]. To reduce the memory
requirements some important features of Java have been removed,
notably garbage collection and the 32 bit integer type (int) are
optional, and the 64 bit integer type (long) and threads do not exist.
Therefore the programming style is lower-level than with full Java.
Moreover smart cards which run Java typically have an order of
magnitude more memory than our target platforms.

Due to its small size Scheme has been a popular language to im-
plement in memory constrained settings. Many of the compact sys-
tems are based on interpreters and were designed for workstation
class platforms. Some of the most compact are based on a compiler
generating compact bytecode for a virtual machine. In particular
the BIT [3] and PICBIT [6] Scheme systems implement most of
the R4RS [2] and target small embedded systems having less than
8 kB of RAM and less than 64 kB of ROM.

3. Overview
The PICOBIT Scheme system has three parts: the PICOBIT
Scheme compiler, the PICOBIT virtual machine, and the SIXPIC
C compiler. The PICOBIT Scheme compiler runs on the host de-
velopment system, which is typically a workstation, and compiles
from Scheme to a custom bytecode designed for compactness. The
Scheme compiler is itself written in Scheme, though it is not self-
hosting.

The PICOBIT VM runs on any platform for which there is a C
compiler. Currently, we target the popular Microchip PIC18 family
of microcontrollers which are cheap single-chip microcontrollers.
The VM executes the bytecode produced by the PICOBIT Scheme
compiler. The VM is written in C for portability reasons, since most
microcontroller platforms already have C compilers targeting them.
Therefore, the PICOBIT virtual machine can be compiled for any
microcontroller which has a C compiler, making PICOBIT a highly
portable platform.

Finally, we have developed the SIXPIC C compiler, a C com-
piler which was designed specifically to compile virtual machines.
We studied the patterns present in typical virtual machines (and
the PICOBIT virtual machine in particular) to add specialized op-
timizations and omit certain features of the C language in order
to reduce the size of the generated code for virtual machines. This
compiler is typically used to compile the PICOBIT virtual machine.

1

Figure 1. Workflow of the PICOBIT Scheme system

4. General Approach
Because of the code size limitations of our target environment,
our approach was designed with the primary goal of generating
compact code.

The bytecode the PICOBIT Scheme compiler generates is
higher level than raw machine code. The bytecode necessary to
accomplish a task is typically more compact than the correspond-
ing machine code. Therefore, the use of interpreted bytecode can
lead to savings in a program’s code size over the use of machine
code. We must keep in mind that the virtual machine needed to
execute this bytecode also takes space. However, since the size of
the virtual machine is independent of the size of the programs it
executes, it is a fixed cost that is amortized over the cost of all the
executed programs. We therefore postulate that once applications
reach a certain size, the combined sizes of the application’s byte-
code and of the virtual machine would be smaller than the size
of the machine code resulting from the native compilation of the
application.

Another key point of our approach is that we control every step
of the execution process. By controlling both the Scheme compiler
and the virtual machine, we can adapt the bytecode representation
to better fit the needs of our applications. For instance, some op-
erations that occur frequently in the applications compiled by the
PICOBIT Scheme compiler can be implemented directly as instruc-
tions in the virtual machine for efficiency and code size reasons.
This was done in the PICOBIT virtual machine for some high-level
vector operations that were often used by applications, including
the S3 [10] network stack.

Controlling both the virtual machine and the C compiler which
compiles it means that we can specialize the C compiler to use
domain-specific optimizations: optimizations that are especially
interesting when compiling virtual machines or optimizations that

are possible thanks to properties of virtual machines, and would not
be valid for all programs.

Finally, the use of a virtual machine also increases the portabil-
ity of our system. Since the PICOBIT virtual machine is written in
a highly portable subset of C, porting it to different architectures
is easy. So far, PICOBIT has been ported to the PIC18, MSP430,
i386, amd64 and PowerPC architectures, and compiles successfully
using the SIXPIC, MCC18, Hi-Tech C, mspgcc, and gcc C compil-
ers. Of course, this portability argument does not yet extend to our
SIXPIC C compiler, which currently only supports the PIC18 ar-
chitecture.

Several versions of the PICOBIT Scheme system exist, catering
to different application types and sizes. The full version of PICO-
BIT supports all the features described in this article, and is suitable
for large applications dealing with a large amount of data. A some-
what smaller version of PICOBIT removes support for unbound
precision integers in return for a smaller virtual machine size. Fi-
nally, a minimalist version of PICOBIT also exists, called PICO-
BIT Light, which removes support for unbound precision integers
and byte vectors, is limited to 16 global variables and 128 memory
objects, but is much more compact than the full version (5.2 kB
versus 15.6 kB). This version is appropriate when building simpler
applications that only deal with small amounts of data at the same
time. For example, a temperature sensor that sends reports via UDP
using the S3 network stack.

5. Supported R5RS Scheme Subset
Unlike most programming platforms targeting embedded systems,
PICOBIT supports a large number of high-level programming lan-
guage features. It supports a broad subset of the R5RS [7] Scheme
standard including :

• Macros
• Automatic memory management
• Lists
• Byte vectors
• Closures and higher-order procedures
• First-class continuations
• Lightweight threads
• Unbound precision integers

Other features were consciously excluded due to their lack of
usefulness in an embedded context :

• Floating-point, rational and complex numbers
• String to symbol conversion (and vice versa)
• S-expression input
• File I/O
• eval

• Vectors are implemented with lists (they are not a distinct type)

5.1 Unbound Precision Integers

PICOBIT supports arithmetic on unbound precision integers,
whereas most embedded C compilers limit integers to 16 or 32
bits. The support for large integers in embedded systems can create
opportunities to do processing that would traditionally be done on
host systems or specialized hardware (such as cryptographic cal-
culations or counting elapsed time to a high resolution) directly on
microcontrollers, therefore reducing latency and bandwidth needs,
and increasing the autonomy of such embedded systems.

The implementation of unbound precision integers has been
done inside the PICOBIT virtual machine. At the bytecode level,
arithmetic operations on large integers are indistinguishable from

2

operations on small integers, as both use the same set of instruc-
tions, the dispatch between small and large integers being done by
the virtual machine. This reduces the number of instructions the vir-
tual machine needs to support, which both reduces the size of the
virtual machine, and increases the compactness of the bytecode.

The implementation of unbound precision integers in the VM is
detailed in section 7.5.

5.2 Built-in Data Structures

Being a member of the LISP family of languages, the Scheme lan-
guage makes heavy use of lists. Therefore, PICOBIT offers built-in
support for lists and implements many common list operations. It
is worth noting that these lists are heterogeneous lists, and can thus
be used to implement most other data structures easily.

This flexibility opens possibilities regarding which classes of
applications can reasonably be implemented in embedded systems.
Indeed, some applications which have been deemed too complex
for small embedded systems would be straightforward to imple-
ment using advanced data structures, reducing the need for more
sophisticated hardware where microcontrollers could suffice.

In addition to lists, PICOBIT offers support for byte vectors,
which are equivalent to fixed-width byte arrays. Vectors being more
efficient than lists for many tasks common on embedded systems
(mostly thanks to theirO(1) random access), vector support is
especially interesting on our target platforms. The implementation
of byte vectors in the VM is explored in detail in section 7.8.

Finally, in addition to the aforementioned data structures, PICO-
BIT also offers limited support for strings. While advanced string-
processing operations, such as regular expressions, are not built-in
(and would be costly in terms of code size to implement), the op-
erations supported by PICOBIT are useful for debugging and for
working with simple text-based communication protocols. For ex-
ample, the S3 TCP/IP stack, built on PICOBIT, includes a simple
web server that uses PICOBIT’s string primitives extensively. Of
course, since embedded systems are unlikely to be used for ad-
vanced text-processing, this lack of advanced string operations is
not, in our opinion, much of a problem.

5.3 First-Class Continuations

First-class continuations are one of Scheme’s key features, and
accounts for a large part of the language’s flexibility. They are
usually considered difficult, or costly, to implement, which has led
some Scheme implementations to omit them.

Since first-class continuations can be used to implement useful
control structures that cannot easily be implemented using tradi-
tional embedded development techniques (such as multithreading),
we chose to implement them in PICOBIT. To illustrate this, the
PICOBIT standard library includes a compact continuation-based
multithreading system, shown in full in figure 2. Writing such a
multithreading system in C and including it in the virtual machine
would have likely resulted in a larger code size. In addition, the
same first-class continuation primitives used here could be used to
implement backtracking or early exits without any changes to the
virtual machine.

PICOBIT provides a first-class continuation API similar to the
one proposed in [5], which consists of three procedures. The call
(get-cont) returns the continuation object of the current proce-
dure, which can then be used with the other two procedures. The
call (graft-to-cont cont thunk) calls thunk with continuation
cont. The call(return-to-cont cont val) returnsval to thecont
continuation.

Thecall/cc procedure is also provided in the standard library.
As shown in figure 2 it is implemented using the above primitives.

(define root-k #f) ;; root (empty) continuation
(define readyq #f) ;; queue of runnable threads

(define start-first-process
(lambda (thunk)
(set! root-k (get-cont))
(set! readyq (cons #f #f))
(set-cdr! readyq readyq)
(thunk)))

(define spawn
(lambda (thunk)
(let* ((k (get-cont))

(next (cons k (cdr readyq))))
(set-cdr! readyq next)
(graft-to-cont root-k thunk))))

(define exit
(lambda ()
(let ((next (cdr readyq)))
(if (eq? next readyq)

(halt)
(begin
(set-cdr! readyq (cdr next))
(return-to-cont (car next) #f))))))

(define yield
(lambda ()
(let ((k (get-cont)))
(set-car! readyq k)
(set! readyq (cdr readyq))
(let ((next-k (car readyq)))
(set-car! readyq #f)
(return-to-cont next-k #f)))))

(define call/cc
(lambda (receiver)
(let ((k (get-cont)))
(receiver
(lambda (r)
(return-to-cont k r))))))

Figure 2. Multithreading system built using PICOBIT’s first-class
continuations, and implementation ofcall/cc

6. The PICOBIT Scheme Compiler
The PICOBIT Scheme compiler is a specialized optimizing Scheme
compiler which generates bytecode. This bytecode can then be ex-
ecuted using the PICOBIT virtual machine. In order to produce as
compact as possible bytecode, some specialized optimizations have
been added to the compiler. Most of these optimizations are made
possible by the extensive use of whole-program analysis through-
out the compiler. When compiling a program, PICOBIT appends
it to its standard library and compiles the result. By compiling
applications and the standard library as a single program, all the
whole-program analyzes done in the compiler also apply to the
standard library, which leads to more optimization opportunities.

In addition to using selected optimizations to achieve low code
sizes, we have designed a custom instruction set, shared by the PI-
COBIT Scheme compiler and the PICOBIT virtual machine. Much
of design of this custom bytecode was geared towards representing
common idioms in a compact fashion, with the goal of achieving
small application sizes.

3

6.1 Optimizations

Keeping in mind that the goal of the PICOBIT Scheme system is
to produce compact code, the optimizations implemented in the
PICOBIT Scheme compiler were chosen mostly for their effect on
the resulting code size.

In order to minimize the number of allocations done at runtime,
a mutability analysis is done over the whole program at compile-
time. Variables that are never mutated are not allocated in memory
at runtime, reducing the program’s memory footprint and eliminat-
ing some variable bookkeeping code, reducing the application code
size. For this mutability analysis to be valid, the compiler must ana-
lyze the whole program at the same time, which makes PICOBIT’s
single-program compilation process interesting.

The PICOBIT Scheme compiler also does branch tensioning.
Whenever a branch instruction points to another branch instruction,
the destination of the first is changed to that of the second, and so on
in case of longer branch series. While this optimization is reason-
ably useful in most compilers, combining it with single-program
compilation opens up new possibilities. When using separate com-
pilation, inter-module branches cannot be tensioned, since the na-
ture of such a branch’s destination is unknown. However, when
using single-program compilation, all destinations are known, and
what would have been inter-module branches can be tensioned like
any other branches, which leads to more optimization opportuni-
ties.

Finally, a treeshaker was added to the PICOBIT Scheme com-
piler in order to remove any code that is not actually used in the
program from the resulting bytecode. A depth-first search is done
on the application (and the standard library) to determine which
procedures are reachable from the top level. Only these procedures
then end up being compiled to bytecode. The rest are simply ig-
nored.

The use of whole-program compilation combined with a tree-
shaker has an obvious advantage over the use of separate compi-
lation and linking. When using separate compilation, each compi-
lation unit has to be compiled in its entirety, as it is impossible to
know before linking which of its procedures will actually be used.
With our approach, however, the unreachable code is automatically
excluded from the final binary, resulting in smaller application code
sizes.

This treeshaker makes it possible to have a well-furnished stan-
dard library and still generate compact output, since any unused
library procedures will not be present in the resulting bytecode.
In our case, the PICOBIT standard library compiles down to 2064
bytes of bytecode, which can be rather large compared to the size
of some programs. A PICOBIT program that does not use strings
will not include the string functions of the standard library, and will
therefore save 508 bytes.

6.2 The PICOBIT Bytecode

Since our goal is to compile applications to small amounts of
bytecode, much of the design of the bytecode was geared towards
representing common idioms as compactly as possible.

The PICOBIT virtual machine is a stack-based virtual machine.
Therefore, pushing values on the data stack is a common operation
for the vast majority of the programs it runs. As such, effort was put
towards representing pushing instructions in a compact way. This
was achieved by having pushing instructions of different lengths,
as shown in figure 3. When operands are short enough (typically 4
or 5 bits), short instructions can be used, leading to savings in code
size.

To make the most of these short instructions, the shortest value
encodings are assigned to frequently used values, as explained in
section 7.4. In addition, global variable encodings are assigned in
decreasing order of frequency of use, so that the most frequently

used global variables are assigned the shortest encodings, and can
therefore be used with the short instructions.

In addition to short pushing instructions, PICOBIT also sup-
ports short relative addressing instructions. In some frequently oc-
curring cases, such as a goto-if-false whose destination is no more
than 15 bytecodes away, instructions fit in a single byte, rather than
the three bytes of an absolute addressing instruction. To make the
most of these instructions, we use trace scheduling to position the
destination code as close to the instructions that reference this des-
tination.

Similarly, the whole instruction set was designed so that instruc-
tions that occurred frequently when compiling our set of test appli-
cations are represented with shorter encodings than seldom used
instructions.

Finally, the PICOBIT bytecode features some high-level in-
structions. Some common operations, such as creating a closure or
copying data from a byte vector to another, are done using a single
instruction.

7. The PICOBIT Virtual Machine
The PICOBIT virtual machine is the part of the PICOBIT system
that resides on the target microcontroller and interprets the byte-
code generated by the PICOBIT Scheme compiler. As such, care
was taken to build the virtual machine to be as compact as possi-
ble, which means that algorithms and data structures are kept sim-
ple throughout the virtual machine. That being said, the PICOBIT
virtual machine is a full-featured virtual machine which includes a
garbage collector, an implementation of unbound precision integers
and support for data structures.

7.1 Environment Representation

The PICOBIT virtual machine being a stack-based virtual machine,
environments are represented as stacks. These stacks are them-
selves represented as PICOBIT lists made of cons cells, allocated
in the heap. When looking up a variable in an environment, it is
therefore necessary to know its depth in the stack at the current
execution point, which can be determined statically.

Such a representation allows us to store multiple environments
at the same time, which was invaluable when implementing clo-
sures, as seen in section 7.6.

7.2 Automatic Memory Management

The PICOBIT virtual machine is unusual among embedded run-
times in that it features automatic memory management. This al-
lows dynamic languages (such as Scheme) to be run easily on top
of it. For this purpose, we use a mark-and-sweep garbage collector.
Due to the limited amount of memory available on our target sys-
tems, a mark-and-sweep garbage collector is especially interesting
as the whole heap can be in use at the same time. By compari-
son, copying garbage collectors can only use half of the available
memory at a given time, thereby cutting the heap size in half and
limiting the data size of the applications that can be run on a given
chip. Another advantage of a mark-and-sweep garbage collector is
that the necessary algorithms are simple, which leads to a compact
garbage collector.

The Deutsche-Schorr-Waite algorithm [9] is used in the mark-
ing phase, and it really shines in an embedded context. Since this
algorithm does not need to use a stack to traverse a tree, no mem-
ory needs to be allocated for such a stack. Reserving a portion of
the heap for such a stack would not be an interesting option, con-
sidering the low amount of available memory to begin with. The
use of the Deutsche-Schorr-Waite algorithm therefore allows us to
use a larger portion of the microcontroller’s memory for our heap,
enabling more complex applications to be run using PICOBIT.

4

000xxxxx Push constantx
001xxxxx Push stack element #x
0100xxxx Push global #x
0101xxxx Set global #x to TOS
0110xxxx Call closure at TOS withx arguments
0111xxxx Jump to closure at TOS withx arguments
1000xxxx Jump to entry point at addresspc + x
1001xxxx Go to addresspc + x if TOS is false
1010xxxx xxxxxxxx Push constantx
10110000 xxxxxxxx xxxxxxxx Call procedure at addressx
10110001 xxxxxxxx xxxxxxxx Jump to entry point at addressx
10110010 xxxxxxxx xxxxxxxx Go to addressx
10110011 xxxxxxxx xxxxxxxx Go to addressx if TOS is false
10110100 xxxxxxxx xxxxxxxx Build a closure with entry pointx
10110101 xxxxxxxx Call procedure at addresspc + x − 128
10110110 xxxxxxxx Jump to entry point at addresspc + x − 128
10110111 xxxxxxxx Go to addresspc + x − 128
10111000 xxxxxxxx Go to addresspc + x − 128 if TOS is false
10111001 xxxxxxxx Build a closure with entry pointpc + x − 128
10111110 xxxxxxxx Push global #x
10111111 xxxxxxxx Set global #x to TOS
11xxxxxx Primitives (+, return, get-cont, ...)

Figure 3. The PICOBIT instruction set and its bytecode encoding

Encoding PICOBIT PICOBIT Light
0 #f
1 #t
2 ’()
3 -1
4 0

5 - 44 1 .. 40
45 - 127 41 - 123 ROM values

128 - 255 124 - 251 Heap values
256 - 259 252 - 255

N/A260 - 511 ROM values
512 - 4095 Heap values

4096 - 8191 Vector space

Figure 4. Object encoding in PICOBIT and PICOBIT Light

7.3 Address Space Layout

The distinction between RAM and ROM is important in embedded
systems, especially for single-chip microcontrollers. Since there is
usually more ROM than RAM available, it is interesting to move
as much data as possible to ROM, to leave as much room in RAM
as possible for mutable data. Literal values and variables that are
never mutated are stored in ROM whereas mutable variables and
temporaries are stored in RAM. Therefore, objects manipulated by
the PICOBIT virtual machine can be located either in ROM or in
RAM.

To reference these objects, the full version of PICOBIT uses 13-
bit encodings, whereas the Light version uses 8-bit encodings. Us-
ing shorter encodings obviously reduces the number of objects that
can be referenced, as shown in figure 4, but since 8-bit encodings
can be manipulated using 8-bit rather than 16-bit operations, their
use leads to a more compact virtual machine on 8-bit architectures.

In order for objects to contain references to objects stored both
in ROM and in RAM, it was necessary to partition PICOBIT’s ad-
dress space. For instance, a pair (whose internal layout is discussed
in section 7.4) could have its car stored in ROM and its cdr stored
in RAM, in the heap. To reflect this address space partition, the ob-
ject reference determines whether it points towards a ROM object

or a RAM object. As we can see in figure 4, an object encoded with
the value 260 is the first object present in ROM, whereas one with
value 1285 is the sixth object of the RAM heap.

References can denote ROM and RAM objects, and also pre-
allocated constants that occupy no memory. As shown in figure 4,
references with a value from 0 to 259 (0 to 44 for PICOBIT Light)
refer to immediate values. Preallocating commonly used values
(false, true, the empty list and all numbers that can be represented
in a byte) reduces the amount of memory, both ROM and RAM,
required to store values. Many common operations, in particular
arithmetic on small numbers, can therefore be done without allo-
cating any memory. Furthermore, since special short instructions
(see section 6.2) exist to handle references with small values, the
use of these frequently occurring preallocated constants can help
reduce the size of application bytecode.

Finally, the fourth zone of PICOBIT’s address space is used for
vectors. The use of this zone will be detailed in section 7.8.

It is worth noting that, to simplify, and therefore reduce the size
of, the virtual machine, RAM and ROM objects have the same
layout, which only depends on their type, not on their location.
More details about these layouts are found in section 7.4.

Another interesting feature of the PICOBIT virtual machine is
that its data stack and its continuations are stored as lists in the heap.
By storing these in the heap, there is not need to explicitly deallo-
cate stack frames once they are popped or continuations once they
are returned from, the garbage collector will automatically deallo-
cate any unreachable objects. The absence of a dedicated allocation
scheme for these objects keeps the virtual machine compact, and
helps the implementation of closures and first-class continuations,
as seen in sections 7.6 and 7.7.

7.4 Object Representation

The PICOBIT virtual machine being designed for dynamic lan-
guages, it is necessary to encode objects stored in memory along
with their type and garbage collection information.

First of all, all objects are 32 bits wide, whether they are stored
in ROM, along with the program, or in RAM, in the heap. We can
therefore consider the heap as a simple array of objects, and short
indices can be used to refer to objects instead of longer pointers,

5

Figure 5. Object encodings in PICOBIT

Figure 6. Object encodings in PICOBIT Light

6

Figure 7. Data accessors in PICOBIT

void sweep () {
obj visit = MAX_HEAP;
free_list = 0;
while (visit >= MIN_HEAP) {
if (marked(visit))
clear_gc_tags(visit);

else {
/* add to the free list */
set_car (visit, free_list);
free_list = visit;

}
visit--;

}
}

Figure 8. Pseudo-code for the sweeping function of the PICOBIT
virtual machine’s garbage collector

which leads to a compact object representation. Having a single
object size also simplifies garbage collection. Instead of having to
figure out where objects begin and end, the sweeping phase of the
garbage collector only has to iterate on the array representing the
heap. In addition, since the garbage collection flags are located in
the same place for objects of all types, it is not necessary to know
the exact type of an object when sweeping it. Pseudo-code for the
whole sweeping procedure is shown in figure 8.

In addition to being all the same size, PICOBIT objects all
follow the same general structure, as shown in figure 5. These
similarities reduce the number of virtual machine primitives needed
to access the data contained in objects, as the same primitives can
be used on most data types, as shown in figure 7. Once again,
needing fewer data access primitives helps keeping the PICOBIT
virtual machine’s size small.

7.5 Unbound Precision Integers

A feature that sets PICOBIT apart from most other embedded pro-
gramming environments is the availability of unbound precision in-

tegers. Traditionally, embedded programming environments on 8-
bit microcontrollers offer support for numeric values up to 32 bits
wide. However, larger values are needed in some embedded appli-
cations. For instance, the S3 network stack, which runs on top of
the PICOBIT system, uses 48 bit integers to store MAC addresses.
Large integral values are also necessary for some cryptographic cal-
culations, for instance the SHA [1] family of cryptographic hashing
functions, which need values up to 512 bits wide.

Embedded applications also often need to keep track of time,
sometimes with a high degree of precision (when controlling ma-
chinery, for example). If an application keeps track of time at the
microsecond level using a 32-bit value, a wraparound will occur ev-
ery hour or so. To handle such wraparounds, complex logic might
have to be included in the application, leading to an ad-hoc bignum
implementation.

Without support for unbound precision integers, these examples
could have been implemented using byte vectors instead of large
integers, but the necessary calculations would have been awkward
and, especially, would require more PICOBIT instructions to en-
code. For example, the addition of two 16 bit numbers encoded in
byte vectors would require an addition for the two low bytes, an
overflow check, a second addition for the carry and a third addition
for the two high bytes. On the other hand, using unbound precision
integers, this requires a single PICOBIT addition instruction. With-
out even considering problems that might arise if the sum of our
two numbers cannot be correctly expressed with 16 bits, we observe
that the use of unbound precision integers helps generate compact
application bytecode. The size difference become even more no-
ticeable when working with larger values or with multiplications.

As can be seen in figure 5, unbound precision integers are
encoded in PICOBIT as linked lists of 16 bit values. At the end of
each list is either the integer 0 or -1, which represents the sign. Note
that both of these integers have a link to themselves. This simplifies
the handling of integers of different lengths and thus the size of
the virtual machine. For instance, for addition of two integers, the
linked lists are traversed simultaneously until 0 or -1 is reached in
both lists.

7

Figure 9. Closed environment look-up

On versions of PICOBIT which do not support unbound preci-
sion integers (including PICOBIT Light), integers are limited to 24
bits, and encoded directly in the object, as seen in figure 6.

7.6 Closures

Scheme being a functional language, PICOBIT offers support for
closures. Closures are represented as heap objects containing a
pointer to the entry point of their associated procedure (in the
program space) and a reference to the environment it was created
in.

By having the reference to their enclosed environment in the cdr,
closures can be traversed as part of a regular environment look-up.
Therefore, environment look-up is done in exactly the same way
regardless of if the variable is local or closed, the look-up index
just has to be adjusted so the look-up skips over the closure in case
of a closed variable look-up. This technique works for any number
of closures in the environment stack.

7.7 First-Class Continuations

Most Scheme systems implement first-class continuations by copy-
ing the stack into the heap with each call tocall/cc, which can
cause an important overhead both in terms of speed and in terms of
space.

PICOBIT avoids this overhead by avoiding the use of a call
stack, and directly allocating each continuation in the heap like any
other object. Manipulating continuations is therefore as simple and
efficient as manipulating any other object. In effect, this represen-
tation gives us first-class continuations for free. Thus, operations
on continuations are implemented as simple virtual machine in-
structions. Being allocated in the heap, discarded continuations are
garbage collected, regardless of how they have been used.

As seen in figure 5, continuations are represented as a chain
of continuation objects, each containing a reference to their parent
continuation and a reference to a closure object. As explained
above, the closure object contains the entry point of the function
associated to the continuation and the enclosed environment.

This representation of continuations is very compact, with two
objects (the continuation object and the closure object) per frame.
When using the multithreading system presented in figure 2, each
thread only causes an overhead of one continuation frame, or 8
bytes. Applications with several threads, such as systems monitor-
ing multiple sources of input, can thus be implemented with a very
low memory footprint.

7.8 Byte Vectors

Many embedded applications make use of vectors of bytes. For
instance, most applications dealing with communication protocols
(such as the S3 network stack) require the use of buffers to store
binary data. Byte vectors, mostly because of their constant time
random access, are ideal for that use.

Unlike other PICOBIT objects, byte vectors do not necessarily
occupy four bytes. In order to guarantee fast random access, byte
vectors have to be allocated as a single contiguous space of the
appropriate size. To preserve the advantages brought by having all
objects of the same size in the heap, we allocate byte vectors in a
different section of memory. As such, references with values over
1279 point to objects within this zone, which we call the vector
space.

Like the heap, the vector space is allocated by increments of
four bytes. However, unlike with the heap, contiguous segments
of any length (bounded by the size of the vector space) can be
allocated in the vector space. A simple first-fit allocation algorithm
is used to decide where to allocate each byte vector.

In addition to the vector contents which are located in the vector
space, vectors are also composed of a header, containing the length
of the vector and a pointer to the start of the contents (as seen in
figure 5). These headers are stored in the heap, and as such are four
bytes wide and follow the same general layout as any heap object.

The vector space is not explicitly garbage collected. Instead,
when there is not enough space left to allocate a new vector, the
garbage collection of the heap is launched, which will likely free
some vectors, whose contents’ locations are then added to the
vector space’s free list. Therefore, there is no need for a second
garbage collector specifically for the vector space. The absence of
a second garbage collector once again helps in keeping the size of
the virtual machine low.

PICOBIT Light does not offer support for byte vectors, which
removes the need for a separate vector space, and simplifies several
algorithms of the virtual machine, leading to a more compact VM.

8. The SIXPIC C Compiler
When using the PICOBIT Scheme system, the total size of the soft-
ware running on the target system is the sum of the size of the PI-
COBIT virtual machine and of the application programs, and out
goal is to minimize that total size. As we have seen earlier, the PI-
COBIT Scheme compiler was designed to generate compact appli-
cation bytecode. That leaves the size of the virtual machine, which,
in some cases, can account for an important part of the whole sys-
tem. While the PICOBIT virtual machine can be compiled with any
C compiler, some savings in code size can be achieved by using a
specialized C compiler to compile it. The SIXPIC C compiler is
one such compiler.

The SIXPIC C compiler was designed to generate compact
code, especially when compiling virtual machines. This was done
by analyzing the code of typical virtual machines (including the
PICOBIT virtual machine) to find and then optimize common pat-
terns found within them. This analysis also showed us which fea-
tures of the C language were seldom used for virtual machines,
and could therefore be omitted from SIXPIC. In addition to reduc-
ing the complexity of the compiler, some of these omissions also
opened possibilities for optimization which would not have been
valid otherwise.

The SIXPIC C compiler currently compiles C to machine code
for Microchip’s PIC18 family of microcontrollers, which is com-
monly used in small embedded systems. However, the techniques
explained here are not PIC18-specific, and would be useful on most
microcontroller architectures. In fact, most of the SIXPIC C com-

8

piler’s compilation process is architecture-independent and could
be used for most 8-bit microcontroller families.

8.1 Restrictions

Even though virtual machines are complex pieces of software,
they do not make use of every single feature of the C language.
Therefore, while designing SIXPIC, some features could be left
out and some others were restricted to the subset actually used by
most virtual machines.

The first notable omission is that of support for floating point
numbers. Since the PICOBIT Scheme system does not support
them, and that most microcontrollers do not support floating point
operations, this omission is pretty straightforward.

Since virtual machines typically manage their data structures at
the bit level (especially in embedded systems), ordinary C structs
are not generally useful in the context of virtual machines.

A more controversial restriction would be that SIXPIC does
not support recursive (or mutually-recursive) functions. At first
glance, this might appear restrictive. However, since typical virtual
machines consist mostly of aswitch statement in a loop, recursion
is not usually needed. This omission is what makes our specialized
calling convention (see subsection 8.2) possible.

Finally, arrays in SIXPIC are restricted to byte arrays. Since the
SIXPIC C compiler targets the PIC18 family of microcontrollers,
which are 8-bit systems, the performance of arrays of larger values
would have been much worse than that of byte arrays. While this
might seem limitating at first, especially considering that PICOBIT
objects are 32 bits wide, it is not the case. Most of the time, data
stored in objects is read only one field at a time, most of the time
only the header. As shown in figure 7, all fields of PICOBIT objects
(with the exception of closure entry points) span at most two bytes,
and the header always fits in one byte. While having to make two
array accesses to read a single field might seem slow, it is not much
slower than a single access to an array of 16 bit-wide values on an
8-bit system.

8.2 Calling Convention

To support recursive functions, a call stack is usually needed. Most
modern workstation architectures provide hardware support for
such stacks, which makes the compiler’s job easier. However, most
microcontroller architectures do not offer such support, which
means that the compiler would need to build a software stack in
memory in order to support recursive functions. The building and
use of such a stack increases the complexity, and therefore the
size, of the generated code. By giving up support for recursive
functions, no such stack is needed anymore and it becomes pos-
sible to use a calling convention which passes function arguments
in pre-determined registers. This approach is taken by the leading
embedded C compilers, such as Microchip’s Hi-Tech Cc© compiler.

With the SIXPIC C compiler, we take this approach further.
Since we do not support recursive functions, every variable (be it
a local variable, a global variable, or a function parameter) can be
allocated at a static location. We then use whole-program analysis
to determine which variables interfere with each other and use the
results to do register allocation for the whole program all at once.

Since the location of each variable is known at compile-time,
we can avoid moving values to and from the registers needed by the
calling convention. Instead, we use a specialized calling convention
where the caller moves the arguments directly in the registers where
the callee’s local variables reside, as shown on figure 10.

The analyzes we use for this whole-program register allocation,
liveness analysis and interference graph construction, are typically
used as intra-procedural analyzes. However, when using them glob-
ally, the traditional algorithms scale poorly, resulting in slowdowns.

byte f (byte x) {
return x + 3;

}
...
byte y = 3;
f(y);

Stack-based calling convention:

...
push $y
call $f

...
f: pop $x
...

Total: 20 bytes of PIC18 machine code.

Register-based calling convention:

...
move $y A ; from y to the predetermined register
call $f

...
f: move A $x ; from the predetermined register to x
...

Total: 12 bytes of PIC18 machine code.

Specialized calling convention:

...
move $y $x ; directly from y to x
call $f

...
f:
...

Total: 8 bytes of PIC18 machine code.

Figure 10. Comparison between a stack-based calling convention,
a register-based calling convention and our specialized calling con-
vention

To avoid these slowdowns, we developed variations of these algo-
rithms that ended up being more suitable to use as global analyzes.

Of course, since this calling convention is dependent on whole-
program analysis, the use of external libraries is not as transparent
as with other C compilers. To use external libraries with the SIXPIC
C compiler, it is necessary to compile the libraries and the original
program as a single program, which means our specialized calling
convention will be used through the whole program, leading to
more compact code.

8.3 Optimizations

As with the PICOBIT Scheme compiler, the optimizations present
in the SIXPIC C compiler were chosen for their impact in reducing
the size of the resulting code.

First of all, our register allocation algorithm does register coa-
lescing. Since the SIXPIC C compiler does whole-program register
allocation, register coalescing can be used more broadly. Instead of
being limited to coalescing virtual registers inside each function, as
would be the case with intra-procedural register allocation, global
register allocation makes it possible to coalesce registers being used
in two different functions. With our specialized calling convention

9

(see subsection 8.2), such opportunities occur enough to be worth-
while. We measured that the use of register coalescing reduces the
size of the generated code by around 4.5%, mostly by eliminat-
ing move instructions between coalesced registers. Out of the 2420
byte cells found in the PICOBIT virtual machine, 1453 end up be-
ing coalesced. After register allocation, only 324 bytes of RAM are
necessary to run the VM.

Since virtual machines traditionally do a lot of accesses to
a restricted number of arrays (the heap and the program space,
for instance), SIXPIC provides a way to flag two byte arrays as
being more important than others. This has the effect of allocating
pointers to these arrays directly in the PIC18 array registers instead
of allocating them in regular memory. Since the PIC18 (and most
8-bit microcontroller architectures) lack sophisticated addressing
modes, this optimization helps reduce the number of operations
needed for array accesses.

By looking for patterns in the code of several virtual machines,
we noticed that theswitch/case construct was extensively used,
especially for instruction decoding. PICOBIT is no exception. We
also noticed that most of theswitch/case statements used in
virtual machines respected several other properties, including the
absence ofdefault labels and the presence of mostly contigu-
ous label numbers. We therefore worked on an implementation of
switch/case that would generate compact code, especially when
the above properties hold. After trying several implementations, we
settled on a branch table-based approach which, despite the absence
of computed branches on the PIC18 architecture, generates com-
pact code in the cases that interest us.

Like the PICOBIT Scheme compiler, SIXPIC does trace schedul-
ing. The benefits explained in section 6.1 also apply to SIXPIC,
since it also does single-program compilation. When compiling the
PICOBIT virtual machine, 519 jumps are shortened thanks to trace
scheduling and 228 are eliminated altogether, which saves 6.3% of
the virtual machine size.

Instead of providing an external standard library with which ap-
plications can be linked, the SIXPIC C compiler’s standard library
is defined in terms of the compiler’s intermediate representation
(control flow graphs with abstract 3-argument instructions). When
compiling a program, SIXPIC joins the standard library’s control
flow graph to the program’s, and uses the resulting graph for the
rest of the compilation process. Therefore, all the whole-program
optimizations describes above are run on the standard library at the
same time, resulting in a greater optimization potential.

Finally, the SIXPIC C compiler uses, like the PICOBIT Scheme
compiler, a treeshaker to remove any unused code from the gener-
ated executable, reducing its size. As is the case with the Scheme
compiler, SIXPIC appends its standard library to application pro-
grams, then compiles only the reachable parts. Once again, the use
of this treeshaker helps SIXPIC achieve low application code sizes
by excluding unused code in the application (or in the standard li-
brary).

9. Experimental Results
9.1 Bytecode-Based Approach

As we anticipated, a bytecode-based approach to embedded appli-
cation development leads to compact application sizes.

On figure 11, we show examples of programs used with the PI-
COBOARD robot, and the amount of bytecode required for each.
As we can see, all these programs, even relatively sophisticated
ones like a web server, can be represented compactly using byte-
code. It is worth noting that these small code sizes were obtained
despite PICOBIT having a large (2064 bytes) standard library,
thanks to the treeshaker, which removes unused parts of the library
from the final bytecode.

Program Code size (B)
Flashing led 9

Follow the light 101
Remote control 106

Hello 355
Light sensors 374

Multi-threaded presence counter599
Web server 1033

Figure 11. Example PICOBOARD programs

Stack Code size (kB) VM size (kB) Total size (kB)
S3 3.1 15.6 18.7

uIP 10.0 - 10.0

Figure 12. Comparison between the S3 and uIP embedded net-
work stacks

We have also compared the S3 TCP/IP stack, which is used
with the PICOBIT Scheme system, to Adam Dunkels’s uIP [4]
stack, which is written in C and is compiled natively to machine
code. Both stacks implement a similar set of features and share
most design decisions. They can be therefore considered roughly
equivalent for our comparison’s purposes.

When compiling S3 with the PICOBIT Scheme compiler, we
obtain 3.1 kB of bytecode whereas when we compile the uIP stack
using Microchip’s MCC18 compiler, we obtain a 10.0 kB binary.
We notice that compiling to bytecode resulted in the application
being about three times as compact.

Since the bytecode is useless without the PICOBIT virtual ma-
chine to interpret it, we have to include the size of the virtual ma-
chine to get realistic figures. When comparing the size of the whole
systems (see figure 12), the natively compiled uIP is about twice
as compact as the combination of S3 and of the PICOBIT virtual
machine.

However, it is worth noting that the size of the virtual machine
is a fixed cost which is independent of the size of the application it
interprets. Therefore, the cost of the virtual machine is amortized
over all the applications it executes.

Since TCP/IP stacks are complex applications, we believe that
the compactness of bytecode versus machine code that we have
observed when compiling S3 would hold when compiling other
complex applications. We therefore expect that for sufficiently large
applications, our bytecode-based approach would lead to smaller
system sizes than a native compilation-based one. Due to their
smaller size, we expect that the restricted versions of PICOBIT will
fare even better in this regard.

Keeping in mind that our motivation was to execute larger pro-
grams on smaller chips, the fact that our bytecode-based approach
will likely behave better than native compilation for sufficiently
large programs is promising.

9.2 Specialized C compiler

Another key element of our approach towards embedded devel-
opment is the use of a specialized C compiler optimized towards
virtual machines. So far, this approach looks promising, but a suf-
ficiently optimizing general-purpose C compiler can still generate
more compact code than our specialized SIXPIC C compiler, as is
shown in figure 13.

Thanks to its domain-specific optimizations, SIXPIC outper-
forms Microchip’s MCC18 general-purpose C compiler by about
42% when compiling the PICOBIT virtual machine. However the
more mature Microchip’s Hi-Tech C compiler generates code that
is 12% more compact than SIXPIC’s, likely due to its broader

10

Version SIXPIC MCC18 Hi-Tech C
Full PICOBIT 17.5 kB 24.8 kB 15.6 kB

Without bignums 13.0 kB 17.0 kB 11.6 kB
PICOBIT Light 7.2 kB 8.0 kB 5.2 kB

Figure 13. Size comparison between the different versions of the
PICOBIT VM compiled with various C compilers

range of general-purpose optimizations. We expect that adding
more domain-specific optimizations to the SIXPIC C compiler will
allow it to close the gap.

10. Future Work
While some work has already been done towards make the PICO-
BIT bytecode compact, it has mostly consisted in observing the
generated code and finding more compact encodings by hand. An
interesting, and more rigorous, approach would be to use Huffman
encoding on the bytecode to further reduce its size. Such an ap-
proach has been successful [8] for several virtual machines, and
could lead to reductions in application code size.

Some work also remains to be done on the SIXPIC C compiler
to handle in a more compact fashion some common virtual machine
idioms. So far, work has been done to leverage several interesting
properties of virtual machines, most notably their lack of recursive
functions, but some observed virtual machine patterns are not yet
properly exploited by SIXPIC.

Finally, as previously mentioned, the instruction set and data
types of the PICOBIT virtual machine, even though they were cho-
sen and designed with the Scheme language in mind, are general
enough to support other dynamic languages, such as Python or Perl.
The Factor language also comes to mind, as a dynamically-typed
garbage-collected stack-based language could integrate well with
the stack-based PICOBIT virtual machine.

11. Conclusion
We have presented an implementation of the Scheme program-
ming language which is suitable for programming small micro-
controllers. The system supports several high-level constructs not
usually available in microcontroller development tools, including
garbage collection, higher-order procedures, first-class continua-
tions, threads, and unbound precision integers. Our approach tack-
les the space issue in three ways: the design of a Scheme compiler
generating compact bytecode, a small virtual machine, and an opti-
mizing C compiler suited to the compilation of the virtual machine.
Although there are still avenues for improvement that we will pur-
sue in our future work, our results show that a fairly featurefull
Scheme system can run on platforms with only a few kilobytes of
memory. For instance, it allows a basic network protocol stack (S3)
to run on a microcontroller with less than 19 kB of ROM.

References
[1] Secure Hash Standard. National Institute of Standards and

Technology, Washington, 2002. Federal Information Process-
ing Standard 180-2.

[2] W. Clinger and J. Rees. The revised4 report on the algorithmic
language scheme, Nov 1991.

[3] D. Dube. BIT: A very compact scheme system for embedded
applications. InProceedings of the Workshop on Scheme and
functional programming, 2000.

[4] A. Dunkels. Full TCP/IP for 8-bit architectures. InMobiSys
’03: Proceedings of the 1st international conference on Mo-

bile systems, applications and services, pages 85–98, New
York, NY, USA, 2003. ACM.

[5] M. Feeley. A better API for first-class continuations. In2nd
Workshop on Scheme and Functional Programming, 2001.

[6] M. Feeley and D. Dube. PICBIT: A Scheme system for the
PIC microcontroller. InProceedings of the Fourth Workshop
on Scheme and Functional Programming, 2003.

[7] R. Kelsey, W. Clinger, and J. Rees. The Revised5 Report on
the algorithmic language Scheme.Higher-Order and Sym-
bolic Computation, 11(1), Sep 1998.

[8] M. Latendresse and M. Feeley. Generation of fast interpreters
for huffman compressed bytecode. InIVME ’03: Proceedings
of the 2003 workshop on Interpreters, virtual machines and
emulators, pages 32–40, New York, NY, USA, 2003. ACM.

[9] H. Schorr and W. M. Waite. An efficient machine-independent
procedure for garbage collection in various list structures.
Commun. ACM, 10(8):501–506, 1967.

[10] V. St-Amour, L. Bouchard, and M. Feeley. Small Scheme
Stack: a Scheme TCP/IP stack targeting small embedded ap-
plications. In2008 Workshop on Scheme and Functional Pro-
gramming, 2008.

[11] I. Sun Microsystems. Java card 3.0.1 platform specification,
May 2009.

11

