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Abstract—Electrical distribution networks develop config-
urations that deviate from the original long-term plan. The
Distribution Trees Problem (DTP) is one means of measuring
this development, which finds the deviation between long-term
planning and the optimal topology for the actual conditions of
the network. Each feasible solution corresponds to a set of di-
rected out-trees rooted at the substations. DTP takes into account
characteristics of the substations and consumer demand. It also
determines the optimal topology of the network to distribute
electrical energy at minimum cost. In this paper, we use two
search techniques to solve this problem: 1) simulated annealing
and 2) tabu search. Nine different problems within 500 to 30 000
consumer points and 20 substations were used to calibrate the
parameters of both methods and to compare their efficiency.
The numerical results indicate that the efficiency of simulated
annealing decreases as the problem size increases, and that tabu
search is more efficient than simulated annealing.

Index Terms—Distribution trees problem (DTP), electrical en-
ergy distribution, simulated annealing, tabu search.

I. INTRODUCTION

D ISTRIBUTION networks planning has been of academic
interest since 1960 [1] when the first mathematical

models were proposed. In the long term, the expansion of
networks is studied by defining the location and selecting the
proper transformers at the substations, and by selecting the
routes of new feeders and the type of conductor to be used.
The objective is to satisfy the current and future demands at
minimal total cost. This includes investment in the installation
of transformers and feeders to decrease the non-linear power
loss cost due to the resistance of power flow in the conductors
of the feeder.

Distribution planning is frequently classified in three different
ways [2], [3]. In the first approach, expansion planning consists
of the optimal design for expansion of the distribution network
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for both the future growth of current customers and new fore-
casted loads. The second approach is the Greenfield planning
structure, which is based on the optimal design of the whole
distribution network for real consumption by assuming there is
no real existing network. From this ideal network we can deter-
mine differences with the existing network. Known as operation
planning, the third approach consists of optimizing the operation
of the existing network by analyzing different operation combi-
nations in order to decrease the system losses in a given time
horizon. This paper deals with a combination of the last two ap-
proaches. That is, from the existing substations, and considering
the location and the magnitude of the actual demand points, we
look to identify the topology of minimal losses and to minimize
the installation cost, while conditions of radiality, ampacity of
the conductors and demand requirements are satisfied. We refer
to this problem as a Distribution Tree Problem (DTP).

In the normal operation the primary distribution network has
a radial topology (i.e., each consumer point is supplied with en-
ergy by a unique pathway from a power substation). In this way,
the distribution network is a set of directed out-trees rooted at
the power substations. The DTP considered in this paper deter-
mines the primary distribution network using radial topology for
a specific period, assuming that:

• the installation costs and the physical locations of substa-
tions and consumer points are known;

• additional transformers may have to be added to some
power substations;

• each consumer point has a fixed power demand;
• each consumer point is connected to a substation along a

path that may include other consumer points;
• there is a set of conductor types available with known pa-

rameters (ampacity, resistance, reactance, and cost per unit
length);

• the selected conductors for each path are capable of trans-
mitting the necessary power flow;

• the sum of the capacities of all substations is sufficient to
supply power to all customers; several consumer points
may belong to the same client.

The DTP can be seen as a special case of the planning
problem of a primary distribution network for a single period
using a similar objective function, where the demand is known,
where the locations of the substations are already selected, and
where we account for the current components of the system.
Also, the DTP is different from the networks reconfiguration
problem, where the distribution network in normal operating
conditions is adjusted to react to emergencies or to reduce
the operating cost. This is done by using the feeders currently
available in the physical network where no new components
can be installed in the system. Indeed, the DTP solution may
include new transformers in the substations, new branches, and
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new feeder conductors on existing branches, which results in a
modified physical network.

Exact and heuristic techniques have been used to deal with
both design and reconfiguration problems arising in electric
distribution. These problems are large scale, non-linear, and
combinatorial in nature. Chang and Wu [4] have studied a
problem similar to DTP. They solve the optimal reliability de-
sign problem by determining a solution of the equations system
that results from the Karush-Kuhn-Tucker conditions for a
non-linear optimization problem. The algorithm was tested
with a problem including only 3 substations and 4 consumer
points. In a previous work [5] based on a non-linear network
flow model, we studied the computational performance of
Simulated Annealing to solve problems in up to 20 substations
and 295 consumer points. Nevertheless, since the Prim’s algo-
rithm was used at each iteration, it was not possible to solve
large-sized problems. On the other hand, the reconfiguration
problem has been formulated as a binary quadratic program-
ming problem as in [6], [7] and as an integer programming
problem that can be seen as a Steiner tree problem in Avella,
et al. [8]. The largest problem studied includes one substation
and 69 consumer points. In order to tackle the computational
difficulties that typically are found in reconfiguration prob-
lems, heuristic methods such as Tabu Search [9], Simulated
Annealing [10], and genetic algorithms [11] have been used.
Genetic algorithms also have been used for representing and
solving design problems [12], for encoding (representing) the
solution, and for simultaneously specifying the location of the
substations and required feeders.

The remainder of this paper is organized as follows: In Sec-
tion II we introduce a specification of the DTP problem, and we
summarize a procedure to evaluate the cost of a solution. Two
local search techniques are presented in Section III. First we
characterize the structure of the neighborhood, and then we in-
troduce a procedure to determine an initial solution. Then the
two procedures that have been implemented (Simulated An-
nealing and Tabu Search) to solve the DTP are summarized. In
order to compare the efficiency of the techniques, the numerical
results obtained for 9 different problems including 20 substa-
tions and 500 to 30 000 consumer points, are analyzed in Sec-
tion IV. Section V concludes the paper.

II. PROBLEM SPECIFICATION

Let be a directed graph associated with a DTP,
where the set of nodes is given by , and
is the artificial node, is the set of substations, and is the
set of consumer points. Three types of arcs exist in : arcs con-
necting pairs of consumer points, arcs connecting a substation
to consumer points, and fictitious arcs connecting an artificial
node to substation nodes. A primary distribution network having
a radial topology corresponds to a directed spanning out-tree

rooted at the artificial node in the directed graph
. Note that such a directed spanning out-tree in-

cludes all arcs connecting the artificial node to the substations,
unless some substations are not used (Fig. 1).

The problem can be formulated as a nonlinear integer pro-
gram as follows:

Fig. 1. DTP Representation.

Input data
;

set of substations;
set of consumer nodes;
set of conductor types;
set of incidents arcs to node ;
set of emergent arcs from node ;

;
: Electrical resistance of conductor type w;

: power required by the consumer node .
Variables

: power flow on arc ;
if arc is part of a tree and otherwise;

if a conductor of type is assigned to arc and
otherwise;

: voltage at the beginning of the arc .
Parameters

: adjustment parameters;

(1)

Subject to

(2)

(3)

(4)
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(5)

(6)

(7)

(8)

(9)

(10)

The model for DTP has an objective function that minimizes
both the power loss and the cost involved in the investment and
the installation of conductors. Constraints (2) specify the satis-
faction of the demand at each node, while (3) ensures the total
energy balance on the network. The equality (4) implies that
the topology must be a tree. By means of (5) only one type of
conductor is assigned to each arc. Constraint (6) guarantees the
satisfaction of the capacity of each arc. Constraints (7), (8), (9),
and (10) state the valid range for the variables. As to solve this
problem by a mathematical programming algorithm could be-
come a computationally difficult task even for small instances,
in this study we propose two approaches based on metaheuris-
tics. In order to explain such approaches, first let us define a
procedure to evaluate the objective function.

We associate an investment and installation cost with each arc
, corresponding to the cost of adding capacity

to substation . Denoted by , a selection of conductors
allowing a power supply capacity equal to , the cost of
modifying the current components to reach this selection is
represented as . Then for each fictitious arc
connecting the artificial node and a substation is se-
lected as the cheapest among those supplying suffi-
cient power, i.e.:

Note that for the fictitious arc , we indicate
the current power supply capacity of substation by ,
hence . Furthermore, we assume the existence of a
dummy selection providing a very large capacity at a
very large cost .

The second and the third components of the cost function
depend on the type of feeder conductors used on the arcs of
the directed spanning out-tree connecting a substation and a
consumer point, or connecting two consumer points (i.e.,

. Several conductor types with different
capacities and characteristics can be used. In general, invest-
ment and installation costs increase with the capacity of the con-
ductor, whereas power loss decreases. Hence, a trade-off is re-
quired in the feeder size selection in order to minimize the total
cost. The procedure to evaluate these costs includes two steps:
Step 1) For each arc of the directed spanning out-tree

connecting a substation and consumer
point, or connecting two consumer points (i.e.,

, the conductor type
is selected as the cheapest among those in set
of conductor types that can be used on segment ,
having a power flow large enough then:

Fig. 2. Neighborhood.

where is the investment and installation cost per
kilometer for conductor type and is its power
flow capacity. Note that for all

, we assume the existence of a dummy conductor
type having a very large flow capacity

and a very large unit cost .
Step 2) Modify the conductor type in order to reduce power-

loss by increasing its size (hence increasing the ca-
pacity and the investment cost) to reduce total cost.

To properly modify the selection of the conductor type on
some arcs and additional transformers in the substations, an it-
erative load-flow algorithm from Arias, et al. [13] is used. This
algorithm generates the magnitude and the phase angle of the
voltage at the consumer points, and the real and reactive power
flowing in each arc of the directed spanning out-tree. Analysis
of load-flow algorithms for distribution feeders is beyond the
scope of this paper and different approaches can be found in
[14] and [15].

III. DTP STRATEGY

In this paper, we are using two different neighborhood search
techniques to deal with the DTP: Simulated Annealing and Tabu
Search. A neighborhood search technique is an iterative proce-
dure allowing movement from a current solution to a new one

in the neighborhood of the current solution until an
admissible solution which satisfies the stopping criterion, is
found.

A. General Description

In our implementation of the two local search techniques, the
structure of the neighborhood of any solution is specified as
follows. Let (where ) is the directed
spanning out-tree rooted at the artificial node associated with
the current solution as illustrated in Fig. 2. For each consumer
point , the (unique) edge on the path between and

allows the identification of the predecessor node of in . The
set of consumer nodes having on their path from are the set
of successor nodes of . In Fig. 2, is the predecessor of , and

is the set of successors of in the directed spanning
out-tree .

The following procedure (illustrated in Fig. 2) is used to gen-
erate a directed spanning out-tree associated with
a neighborhood solution :
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• Randomly select a consumer point
• Disconnect node from its predecessor by eliminating

edge ;
• Reconnect node to a new node selected randomly in the

set in order to generate
a new directed spanning out-tree . Then, it is possible
to reach any feasible solution, in particular the optimum
solution, from any given solution belonging to the feasible
domain.

It follows that the number of neighborhood solutions of any
solution is smaller than .

To generate an initial solution for the local search
techniques, consider the underline graph (non-directed)

obtained from by eliminating the
orientation on the arcs. Denote by the distance between the
locations of nodes and associated with edge .
The fictitious edges link the super-substation and
substations . An initial solution is generated by
randomly constructing a spanning tree with a random version
of the well-known Prim’s algorithm [16]. Initially the set of
nodes included in the current sub-tree is , and the
set of nodes left to be included is ; the corresponding
sub-tree includes only the fictitious edges. At each iteration, a
new edge is added to the current sub-tree by randomly selecting
a node and linking it to the closest node already in
the sub-tree, such that the substation ss providing the power
to has the capacity to also provide the power required
by . The associated directed spanning out-tree is obtained by
orienting the edge to specify paths from the artificial node to
the substations and the consumer points.

B. Simulated Annealing Procedure

Simulated Annealing allows non-descent modification to
avoid being trapped in a local minimum. Originally the ap-
proach was used to simulate the evolution of an unstable
physical system toward a thermodynamically stable equilib-
rium-point at a fixed temperature. Kirkpatrick et al. [17] were
the first to use it to solve optimization problems.

At each iteration of this probabilistic technique, a solution
is selected randomly in neighborhood of the current

solution . Solution replaces as the current solution if
. But can replace even if

(i.e., no improvement of is induced by moving from to )
according to probability decreasing as the value of increases.
More specifically, replaces with probability where
is a parameter (referred to as the temperature factor) decreasing
with the number of iterations. In our representation is eval-
uated with the two-steps procedure described in Section II.

Any implementation of the Simulated Annealing technique is
characterized by the values selected for the two parameters as-
sociated with the technique: the initial temperature and the
number of iterations completed using a specific tempera-
ture . An additional parameter must be specified to
modify temperature . Even if the geometric cooling schedule

cools more rapidly than a logarithmic schedule, it is
nevertheless widely used. The values of these parameters in our

implementation are analyzed in Section IV. Finally, the stop-
ping criterion is specified in terms of a minimal value that
the temperature can reach.

C. Tabu Search Procedure

The Tabu Search procedure also avoids being trapped in a
local minimum [18]. At each iteration, the best solution in
a subset of the neighborhood in the current solu-
tion is selected to be the current solution of the next iteration.
As long as , the procedure behaves like a descent
method. But if , then movement from to
does not improve but may even deteriorate the objective func-
tion. Nevertheless, this movement allows escape from a local
minimum.

Now, since the value of the objective function is not nec-
essarily monotonic in its behavior, decreasing during the reso-
lution, a safeguard against cycling is required. This is provided
through a memory mechanism to forbid returning to an earlier
solution by keeping the most recent modifications used to gen-
erate the sequence of current solutions in a short-term Tabu List
TL. More specifically, suppose that selected to be
the current solution for the next iteration is generated by elimi-
nating the arc . To avoid cycling, we forbid the arc to
be in the directed spanning out-tree associated with any solution
during the next iterations. The mechanism is implemented
by using a cyclic Tabu List TL that is updated at each iteration
by including the arc . Since the length of the list is
fixed, if the list is full when the arc is included, then the
oldest element of the list is eliminated. Accordingly, a solution
is said to be tabu (and cannot be selected as the current solution
for the next iteration) if it is generated by reconnecting a node
to a node , and if arc is on the Tabu List TL. Hence the
subset is obtained by eliminating the solutions of
that are tabu.

The preceding mechanism has the drawback of giving a tabu
status to some solutions that were not generated before. Since
some of these solutions might be very good, we introduce an
aspiration criterion to bypass the tabu status of these solutions.
Hence, even if a neighbor solution is tabu, it is nevertheless in-
cluded in whenever its value is smaller than the value

of the best solution generated so far.
Note that in our implementation, we are not generating the

whole subset at each iteration, but rather only a fixed
number of its elements. This number of elements is a parameter
of the procedure analyzed in Section IV.

The stopping criterion is specified in terms of a maximum
number (ITTMAX) of consecutive iterations where the objec-
tive function does not improve.

Periodically during the resolution, when the rate of improve-
ment slows down, it is recommended that the search be inten-
sified in promising regions. This mechanism is known as inten-
sification. Diversification of the search at various stages of the
resolution is also recommended. The criteria to detect the proper
moment to diversify or to intensify are discussed in Section IV.

In the diversification stage, in order to search the feasible do-
main more extensively, we use a larger neighborhood
where the elements are generated by disconnecting and recon-
necting one or two consumer points elsewhere. The procedure
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TABLE I
TEST SYSTEMS

to update the Tabu List is modified to include both arcs (that
were earlier eliminated) to generate the neighbor solution. Ac-
cordingly, a neighbor solution is tabu if one of the arcs used to
reconnect one node is on the Tabu List.

In the intensification stage, the search is reinitialized at the
best solution BS generated so far, and the neighborhood
is also different. The element of are obtained by discon-
necting a consumer point from its current predecessor and re-
connecting it to the node in the set

inducing the distribution network with the smallest invest-
ment and installation cost.

IV. NUMERICAL RESULTS

We use nine different randomly-generated problems to com-
plete the numerical experimentation of the procedures. One of
these problems is used to calibrate the parameters of both pro-
cedures. Later all nine problems are used to compare the effi-
ciency of the two procedures. The tests are run on an Intel(R)
CPU T2300 1.66 GHz Dual Core having 1 GB of RAM.

To achieve a comparison without introducing relative advan-
tages or bias in favor of one of the procedures, an object-oriented
design to manage the functions common to both procedures is
defined. Functions to generate the initial solution and to gen-
erate neighbor solutions randomly, are defined in an abstract
class, and both the Simulated Annealing Procedure and the
Tabu Search Procedure are derived from this common class.
The functions to generate the neighbor solutions in the inten-
sification and the diversification stages are incorporated in the
Tabu Search Procedure.

A. Problems Generation

Each of the nine problems is generated randomly, and has
20 substations and a number of consumer points as indicated in
Table I. The coordinates of these nodes are randomly generated
in a rectangle and the substations are located where the largest
concentrations of consumer points are found. The power avail-
able at each substation lies in the interval from 20 MVA to 40
MVA. The consumer points requirements are randomly gener-
ated in order that the total power required at the consumer points
does not exceed the total power available at the substations. Fi-
nally, the conductor types correspond to those typically used in
the industry.

For each problem, a lower bound on total cost is obtained
as follows: generate a minimum spanning tree (in terms of dis-

TABLE II
RESULTS FOR DIFFERENT VALUES OF �

tances) of the underlying graph for the problem; then for each
edge of the tree, select the cheapest conductor to determine the
investment and installation cost.

In Table I, the first and second columns refer to the problem
number and the number of consumer nodes respectively. The
fourth and the fifth columns include the total power available at
substations and the total power required at the consumer nodes
respectively. Finally, the third and the sixth columns indicate the
cost of the lower bound and of the initial solution respectively.

B. Calibration of Parameters

In our approach, the parameters are considered sequentially
in order to determine their best values, keeping others fixed to
some preliminary values recommended in the literature. The cri-
terion to select the best value for a parameter is specified in terms
of the average cost improvement with respect to the initial solu-
tion.

Problem 2 in Table I, which has 20 substations, 10 000 con-
sumer points, and 6 feeder types, is used to calibrate the param-
eters. Three successive resolutions of the problem are run.

Typically, at the early stage, the SA procedure allows to move
widely in the feasible domain, and at the end, the last third
of the iterations is used to reach convergence. In preliminary
testing, it was observed that a stopping criterion based on a
specified number of successive iterations without improving the
objective function was not efficient. Hence we use a stopping
criterion specified in terms of a smallest value that tem-
perature can reach. Preliminary testing indicates that value

is appropriate.
The initial value allows, in a sense, the control of how

widely the feasible domain is explored during the earlier itera-
tions. Indeed, the rate of acceptance of a neighborhood solution
increases with the value of to allow more extensive explo-
ration of the feasible domain.

Table II summarizes the results obtained with five different
values for : 7 000, 10 000, 12 000, 15 000, and 20 000. In
these tests, the value of is fixed at 0.9. The best value for
the average cost improvement is obtained when 10 000.
Furthermore, the efficiency of the procedure seems to decrease
as the value of increases from 10 000. For no
improvement of the objective function is observed during more
than 16 000 iterations.

Seventeen different values are used to analyze the effect of
. The value of is fixed at 10 000.

The results in Table III indicate that the best value for the av-
erage cost improvement is obtained when . Note that
there are two cases in the calibration process of and that do
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TABLE III
RESULTS FOR DIFFERENT VALUES OF �

not improve the quality of the initial solution
. We know that when is very low, SA transforms into a

local search algorithm; on the other hand, when is high and
the value of is high and constant, the convergence is slow.
Sometimes, this behavior can occur in other instances.

To determine the number of iterations at temperature
, three different strategies are analyzed:
1) ;
2) ;
3) .

where , if , and
in another case. Further-

more, denotes the smallest integer greater than or equal
to .

Preliminary experiments indicate that strategy a) induces im-
provement for small problems, but for larger problems 7, 8, and
9, the initial solution cannot be improved. Strategy b) allows the
improvement of the initial solution only for problems with less
than 10 000 consumer points. On the other hand, using strategy
c) the procedure can improve the initial solution for all problems
except for the largest containing 20 000 consumer points. There-
fore, to compare the Simulated Annealing Procedure and the
Tabu Search Procedure, strategy c) is used.

The criterion to detect the proper moment to diversify or to in-
tensify in the Tabu Search Procedure is specified as follows:
diversification is applied during the first ndiv iterations; hence

for the ndiv iterations; then, for the
rest of the iterations.

The intensification criterion is satisfied whenever the current
best solution is not improved during consecutive
iterations of the regular stage. Then the and the
current best solution BS become the current solution CS. The
Intensification criterion remains satisfied until a solution better
than BS is generated. Then we return to the regular stage. Note
that the value was determined using preliminary
tests.

TABLE IV
NEIGHBORHOOD SIZE TS

TABLE V
TABU LIST SIZE FOR TS

TABLE VI
DIVERSIFICATION EFFECT

The value of ITTMAX for the stopping criterion was fixed
to 20 using preliminary tests. Stopping criterion is specified in
terms of the maximal number of consecutive iterations where
BS is not improved. It follows that the procedure stops if during
5 consecutive iterations in the usual stage are followed by 15
consecutive iterations in the intensification stage, the value of
BS remains unchanged.

The calibration of the Tabu Search Procedure was carried
out considering the influence of the parameters in the quality of
the solution from the greater to lesser values. In the first place
we calibrated the size of the neighborhood; then the size of the
tabu list, and finally the effect of the diversification, measured
as the number of diversified search iterations (Tables IV, V and
VI). Note that this calibration procedure allows for the partial
exploration of the possible values of each parameter. It only
illustrates the impact of the parameters in the solution process,
but does not assure the delivery of optimum values of NEIG,
TL, and ndiv.

Table IV includes the results obtained for seven different
neighborhood sizes : 10, 15, 20, 25, 30, 35, and 40.
In these tests, the size of the Tabu List is fixed at 4, and the
diversification strategy is applied during the first
iterations. The best average cost improvement is obtained with

.
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TABLE VII
RESULTS WITH SA

TABLE VIII
RESULTS WITH TS

Six different sizes for the Tabu List are compared: 3, 4,
5, 6, 7, and 8. The results in Table V are obtained with

and . The best average cost improvement is ob-
tained with a Tabu List of size . It is worth noting that
the solutions are always better than those found with the Simu-
lated Annealing Procedure (see Tables II and III).

Diversification was applied during the first ndiv iterations
for 6 different values of ndiv (0, 5, 10, 15, 20, and 25) using

and 4. The results in Table VI indicate that
the best average cost improvement is obtained when the search
is diversified during the first 20 iterations.

C. Comparison of Proposed Procedures

By using the nine problems described in Section IV-A, we
compare the two procedures where the parameters are fixed ac-
cording to the calibration analyses of Section IV-B. The results
are summarized in Tables VII and VIII.

For the Simulated Annealing Procedure, if the number of
iterations at temperature is , then
the stopping criterion using induces a maximal
number of iterations equal to 423 831 when . Hence,
this is the number of iterations or the number of solutions gen-
erated in the resolution of each problem in Table VII.

In order to have a fair comparison of the two proce-
dures, we have to take into account that at each iteration
of the Tabu Search Procedure, 35 solutions are gener-
ated while only one is generated at each iteration of the
Simulated Annealing Procedure. For the same problem,

Fig. 3. SA and TS cost functions.

the number of solutions with TS is on the fifth column of
Table VIII. In all cases, we can see that TS visits fewer neigh-
borhood solutions than SA.

The results in Table VII indicate that the efficiency (specified
in terms of the percentage of the cost improvement with respect
to the initial solution) of the Simulated Annealing Procedure
decreases as the problem size increases. Furthermore the per-
centage of improvement is very small for larger problems, and
the procedure is unable to improve the initial solutions of the
largest problem.

The results obtained using the Tabu Search Procedure are
summarized in Table VIII. The Tabu Search Procedure gen-
erates an improvement for the problems which is much more
stable than the Simulated Annealing Procedure. As expected,
the number of iterations (and hence the number of solutions gen-
erated) increases with the problem size.

If we compare the results in Tables VII and VIII, we ob-
serve that the Tabu Search Procedure generates solutions
with a better percentage of improvement than the Simu-
lated Annealing Procedure for all problems, even if the
number of neighborhood solutions generated is smaller. Hence,
the Tabu Search Procedure is clearly more efficient than the
Simulated Annealing Procedure. Fig. 3 also shows a graphic
comparison of the efficiency of both methods.

Fig. 4 illustrates the behavior of the value of the cur-
rent best solution during a typical execution of the Sim-
ulated Annealing Procedure by solving problem 8.
The straight line corresponds to the value of the ini-
tial solution. In the first 150 000 iterations, the Simu-
lated Annealing Procedure examines solutions having a
worse value than the initial solution. Afterward, the value of the
objective function improves. This behavior can be explained
by the fact that several solutions involving changes in the type
of conductors are examined in the early stage of the procedure
which causes a cost increase. Nevertheless, as the process
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Fig. 4. Iteration progress of SA for instance 8.

Fig. 5. Iteration progress of TS for instance 1.

advances, the search reaches a stable solution after 400 000
iterations.

Fig. 5 illustrates the last iterations of the
Tabu Search Procedure applied to problem 1. The
first curve corresponds to the cost of the current solution,
and its lower envelope illustrates the cost of the current best
solution.

V. CONCLUSION

In this paper we introduce and compare two neighborhood
search techniques (the Simulated Annealing Procedure and
the Tabu Search Procedure) to solve the Distribution Tree
Problem. The solution of this problem is the set of ideal
distribution out-trees in order to supply the current demand.
This solution (the ideal network) can compare with the real
network to evaluate the deviation between both, and then plan
the actions to reduce this deviation. Both methods can solve
problems with 20 substations and up to 20 000 consumer points.
The largest problem including 30 000 consumer points can
be solved efficiently only with the Tabu Search Procedure.
The results indicate that the Tabu Search Procedure is more
efficient in general, and it requires less neighborhood solutions

than the Simulated Annealing Procedure to reach a similar
level of efficiency. In the analysis of a distribution network
corresponding to a given region, each node can not only identify
one consumer point but a set of them representing for example,
a sub-region. Then, a network with 30 000 consumer points
seems to be adequate to reflect the situation of a medium size
city. Based on this consideration, the computer program devel-
oped can be used for engineers to analyze distribution networks
at different planning levels: the expansion, the structural and
the operational level. To run each situation it is only required to
adequately input the data.
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