
Future Generation Computer Systems 17 (2001) 441–449

Parallel Ant Colonies for the quadratic assignment problem

E.-G. Talbia,∗, O. Rouxb, C. Fonluptb, D. Robillardb

a LIFL URA-369 CNRS/Université de Lille 1, Bat.M3 59655, Villeneuve d’Ascq Cedex, France
b LIL, Université du Littoral, BP 719, Calais, France

Abstract

Ant Colonies optimization take inspiration from the behavior of real ant colonies to solve optimization problems. This
paper presents a parallel model for ant colonies to solve the quadratic assignment problem (QAP). The cooperation between
simulated ants is provided by a pheromone matrix that plays the role of a global memory. The exploration of the search space
is guided by the evolution of pheromones levels, while exploitation has been boosted by a tabu local search heuristic. Special
care has also been taken in the design of a diversification phase, based on a frequency matrix. We give results that have been
obtained on benchmarks from the QAP library. We show that they compare favorably with other algorithms dedicated for the
QAP. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Metaheuristics; Ant colonies; Tabu search; Parallel algorithm; Quadratic assignment problem; Combinatorial optimization

1. Introduction

Many heuristic methods currently used in combi-
natorial optimization are inspired by adaptive natural
behaviors or natural systems, such as genetic algo-
rithms, simulated annealing, neural networks, etc. Ant
colonies algorithms belong to this class of biologi-
cally inspired heuristics. The basic idea is to imitate
the cooperative behavior of ant colonies in order to
solve combinatorial optimization problems within
a reasonable amount of time. Ant Colonies (AC)
is a general purpose heuristic (meta-heuristic) that
has been proposed by Dorigo [1]. AC has achieved
widespread success in solving different optimization
problems (traveling salesman [2], quadratic assign-
ment [3], vehicle routing [4], job-shop scheduling [5],
telecommunication routing [6], etc.).

∗ Corresponding author.
E-mail addresses:talbi@lifl.fr (E.-G. Talbi), fonlupt@lifl.fr
(C. Fonlupt).

Our aim is to develop parallel models for ACs to
solve large combinatorial optimization problems. The
parallel AC algorithm has been combined with a local
search method based on tabu search (TS). The testbed
optimization problem we used is the quadratic assign-
ment problem (QAP), one of the hardest among the
NP-hard combinatorial optimization problems.

The paper is organized as follows. First, we will in-
troduce ant colonies for combinatorial optimization.
Our ant colony based algorithm for the QAP will be
detailed in Section 3. In Section 4, we present the par-
allel implementation of the algorithm. Finally, we give
results of experiments for several standard instances
from the QAP-library.

2. Ant colonies for combinatorial optimization

The ants based algorithms have been introduced
with Dorigo’s Ph.D. [1]. They are based on the prin-
ciple that using very simple communication mecha-
nisms, an ant group is able to find the shortest path

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(99)00124-7



442 E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449

Fig. 1. Ants facing an obstacle.

between any two points. During their trips a chemi-
cal trail (pheromone) is left on the ground. The role
of this trail is to guide the other ants towards the tar-
get point. For one ant, the path is chosen according to
the quantity of pheromone. Furthermore, this chemi-
cal substance has a decreasing action over time, and
the quantity left by one ant depends on the amount of
food found and the number of ants using this trail. As
illustrated in Fig. 1, when facing an obstacle, there is
an equal probability for every ant to choose the left or
right path. As the left trail is shorter than the right one
and so required less travel time, it will end up with
higher level of pheromone. More the ants will take the
left path, higher the pheromone trail is. This fact will
be increased by the evaporation stage.

This principle of communicating ants has been used
as a framework for solving combinatorial optimization
problems. Fig. 2 presents the generic ant algorithm.
The first step consists mainly in the initialization of
the pheromone trail. In the iteration step, each ant con-
structs a complete solution to the problem according to
a probabilistic state transition rule. The state transition
rule depends mainly on the state of the pheromone.

Fig. 2. A generic ant algorithm.

Once all ants generate a solution, a global pheromone
updating rule is applied in two phases — an evapora-
tion phase where a fraction of the pheromone evapo-
rates, and a reinforcement phase where each ant de-
posits an amount of pheromone which is proportional
to the fitness of its solution. This process is iterated
until a stopping criteria.

3. Ant colonies for the quadratic assignment
problem

The AC algorithm has been used to solve the QAP.
The QAP represents an important class of NP-hard
combinatorial optimization problems with many ap-
plications in different domains (facility location, data
analysis, task scheduling, image synthesis, etc.).

3.1. The quadratic assignment problem

The QAP can be defined as follows. Given a set of
n objectsO = {O1, O2, . . . , On}, a set ofn locations
L = {L1, L2, . . . , Ln}, a flow matrixC, where each
elementcij denotes a flow cost between the objectsOi

andOj , a distance matrixD, where each elementdkl
denotes a distance between locationLk andLl , find an
object-location bijective mappingM : O → L, which
minimizes the objective functionf :

f =
n∑

i=1

n∑

j=1

cij × dM(i)M(j).

3.2. Application to the quadratic assignment problem

Our method is based on a hybridization of the ant
system with a local search method, each ant being as-
sociated with an integer permutation. Modifications
based on the pheromone trail are then applied to each
permutation. The solutions (ants) found so far are then
optimized using a local search method, update of the
pheromone trail simulates the evaporation and takes
into account the solutions produced in the search strat-
egy. In some way, the pheromone matrix can be seen
as shared memory holding the assignments of the best
found solutions. The different steps of the ANTabu
algorithm are given in Fig. 3.



E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449 443

Fig. 3. ANTabu: Ant colonies algorithm for the QAP.

3.2.1. Initialization
We have used a representation which is based on a

permutation ofn integers:

s = (l1, l2, . . . , ln),

where li denotes the location of the objectOi . The
initial solution for each ant is initialized randomly.
Three phases are necessary to initialize the ma-
trix of pheromones. First, we apply a local search
optimization of them initial solutions. Then, we
identify the best solution of the populationπ∗. Fi-
nally, the matrix of pheromonesF is initialized as
follows:

τ0
ij = 1

100
× f (π∗), i, j ∈ [1, . . . , n].

3.2.2. Solution construction
The current solution of each ant is transformed

function of the pheromone matrix. We use a pair ex-
change move as a local transformation in which two
objects of a permutation are swapped.n/3 swapping
exchanges (n is the problem size) are applied as fol-
lows: the first elementr is selected randomly, and the
second ones is selected with a probability 0.9 such
asτ k

rπs
+ τ k

sπr
is maximal (τ k

rπs
is the pheromone for

the positionr containing the elements whereπ is a
solution). In the other cases, the element is selected

with a probability proportional to the associated
pheromone:

τ k
rπs

+ τ k
sπr∑

r 6=s(τ
k
rπs

+ τ k
sπr

)
.

3.2.3. Local search
We have designed a local search procedure based

on the TS method [7]. To apply TS to the QAP,
we must define the short-term memory to avoid
cycling. The long-term memory for the intensifica-
tion/diversification phase has not been used, because
it was handled by the ant system. The tabu list con-
tains pairs(i, j) of objects that cannot be exchanged
(recency-based restriction). The efficiency of the al-
gorithm depends on the choice of the size of the tabu
list. Our experiments indicate that choosing a size
which varies betweenn/2 and(3n)/2 gives very good
results. Each TS task is initialized with a random tabu
list size in the intervaln/2 to (3n)/2. The aspiration
function allows a tabu move if it generates a solution
better than the best found solution. In our implemen-
tation, we have restricted the TS to a limited number
of iterations to avoid premature convergence.

3.2.4. Update of the pheromone matrix
First, we update the pheromone matrix to simulate

the evaporation process, which consists in reducing



444 E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449

the matrix valuesF with the following formula:

τ k+1
ij = (1 − α)τk

ij , i, j ∈ [1, . . . , n],

where 0< α < 1 (α = 0.1 in our experiments). If
α is close to 0 the influence of the pheromone will
be efficient for a long time. However, ifα is close
to 1 its action will be short-lived. In a second phase,
the pheromone is reinforced function of the solution
found. Instead of only taking into account the best
found solution for updating the pheromone matrix as
it is done in the HAS-QAP algorithm [3], we have de-
vised a new strategy where each ant adds a contribu-
tion inversely proportional to the fitness of its solution.
This contribution is weakened by dividing the differ-
ence between the solution and the worst one with the
best one. So far, the update formula is:

τ k+1
iπ(i) = (1 − α)τk

iπ(i) + α

f (π)

f (π−) − f (π)

f (π∗)
,

i ∈ [1, . . . , n],

whereτ k+1
iπ(i) is the pheromone trail at the(k + 1)th

iteration associated to the element(i, π(i)), π− the
worst solution found so far,π∗ the best one, andπ
the current solution.

3.2.5. Diversification
In the case where the best solution found has not

been improved inn/2 iterations, the diversification
task is started. This diversification scheme will force
the ant system to start from totally new solutions with
new structures. The diversification in the HAS-QAP
system consisted in re-initializing the pheromone ma-
trix and randomly generating new solutions [3]. In our
case, we have created a long-term memory calledfre-
quency matrix. This matrix will be used to hold the fre-
quency of all previous assignments, and will be used
when a diversification phase will be triggered. During
the diversification phase, the least chosen affectations
will be used to generate new solutions, and then we
focus on unexplored areas.

4. Parallel ant colonies

To solve efficiently large optimization problems, a
parallel model of ant colonies has been developed.

The programming style used is a synchronous mas-
ter/workers paradigm. The master implements a cen-
tral memory through which passes all communication,
and that captures the global knowledge acquired dur-
ing the search. The worker implements the search pro-
cess. The parallel algorithm works as follows (Fig. 4).
The pheromone matrix and the best found solution will
be managed by the master. At each iteration, the mas-
ter broadcasts the pheromone matrix to all the work-
ers. Each worker handles an ant process. It receives
the pheromone matrix, constructs a complete solution,
applies a TS for this solution, and sends the solution
found and the local frequency matrix to the master.
When the master receives all the solutions, it updates
the pheromone, the frequency matrix, and the best so-
lution found, and then the process is iterated. When
the diversification phase is started, the master sends
new generated solutions to the workers.

Our ant system has been implemented on a network
of heterogeneous workstations using the programming
environment C/PVM (parallel virtual machine). Each
ant is managed by one machine. In all the experiments,
we work with only 10 ants (10 machines, network of
Silicon Graphics Indy workstations).

5. Experimental results

We first compare our metaheuristic ANTabu with
the HAS-QAP method, which is also based on ant
colonies. Then, we compare it with parallel indepen-
dent TS to assess the cooperation paradigm of ant
colonies. Those comparisons allow us to discuss the
relative gains brought on one hand from local search,
and the other hand from ants cooperation. Finally,
the performances of our approach is compared with
other methods based on hill-climbing and genetic al-
gorithms. For those comparisons, we studied instances
from three classes of problems of the QAP-library [8]
— random uniform cost and distance matrices, random
cost matrix and a grid for the distance matrix, and real
problems. When comparing with other heuristics, the
reader should notice that it is almost impossible to use
the same experimental setting (e.g. machine, compiler
efficiency, algorithm coding,. . . ). Nonetheless, in or-
der to provide a minimal guideline for comparison, we
have used the same computing time, when time data
are available.



E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449 445

Fig. 4. Synchronous master/workers model for parallel ant colonies.

5.1. Comparison with HAS-QAP

The parameters for the ANTabu algorithm are set
identical to HAS-QAP ones (α = 0.1). The TS method
is restricted to 5n iterations in order to evaluate the
performance of the ant system. We have selected 12
problems from the QAPlib [8] either from the irreg-
ular class problems (bur26d, chr25a, els19, tai20b,
tai35b) or from the regular class problems (nug30a,
sko42, sko64, tai25a, wil50). We have allowed 10 it-
erations for HAS-QAP and ANTabu. In Table 1, we
compare the results of ANTabu and HAS-QAP. Re-
sults for HAS-QAP are directly taken from [3]. The
difference relatively to the best known solution of the
QAP library is given as a percentage gap for both al-
gorithms.

It is clear that ANTabu outperforms HAS-QAP, but
we may wonder if the gain is not only due to the TS
method. We address this problem in Section 5.2.

5.2. Impact of the cooperation between agents

In order to evaluate the gain brought by the ants co-
operation system, we have compared the results with

Table 1
Solution quality of HAS-QAP and ANTabu (best results are in
boldface)

Problem Best known HAS-QAP ANTabu

bur26b 3817852 0.106 0.018
bur26d 3821225 0.002 0.0002
chr25a 3796 15.69 0.047
els19 17212548 0.923 0
kra30a 88900 1.664 0.208
tai20b 122455319 0.243 0
tai35b 283315445 0.343 0.1333
nug30a 6124 0.565 0.029
sko42 15812 0.654 0.076
sko64 48498 0.504 0.156
tai25a 1167256 2.527 0.843
wil50 48816 0.211 0.066

those of the PATS algorithm [9]. The PATS is a paral-
lel adaptive TS, and it consists in a set of independent
tabu algorithms running in a distributed fashion on a
network of heterogeneous workstations (including In-
tel PCs, Sun and Alpha workstations). The load of
each workstation is monitored and tabu tasks are auto-
matically migrated on idle machines from busy ones,
using the MARS parallel programming environment.



446 E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449

Table 2
Comparison between PATS and ANTabu algorithms (best results are in boldface)

tai100a sko100a sko100b sko100c sko100d sko100e wil100 esc128 tai256c

Best known 21125314 152002 153890 147862 149576 149150 273038 64 44759294
PATS
Best found 21193246 152036 153914 147862 149610 149170 273074 64 44810866
Gap 0.322 0.022 0.016 0 0.022 0.013 0.013 0 0.115
Time (min) 117 142 155 132 152 124 389 230 593
ANTabu
Best found 21184062 152002 153890 147862 149578 149150 273054 64 44797100
Gap 0.278 0 0 0 0.001 0 0.006 0 0.085
Time (min) 139 137 139 137 201 139 478 258 741

For this comparison, we have studied large instances
from three classes of problems. One instance with ran-
dom uniform cost and distance matrices (tai100a), a
set of instances with random cost matrix and a grid dis-
tance matrix (sko100a–e, wil100), and real-life prob-
lems (tai256c, esc128). Results are shown in Table 2.
Best found for PATS and ANTabu is the best solution
out of 10 runs. The difference relative to the QAPlib
optimum is given as a percentage gap. Running times
are in minutes, and correspond to the mean execution
time over 10 runs on a network of 126 machines for
PATS, and on a network of 10 machines for ANTabu.
Thus, the ANTabu algorithm was at a great disadvan-
tage in this regard.

Table 3
Compared results on regular instances with the same computing time (best results are in boldface)a

Problem Best known value TT RTS SA GH HAS-QAP ANTabu Time (s)

nug20 2570 0 0.911 0.070 0 0 0 30
nug30 6124 0.032 0.872 0.121 0.007 0.098 0 83
sko42 15812 0.039 1.116 0.114 0.003 0.076 0 248
sko49 23386 0.062 0.978 0.133 0.040 0.141 0.038 415
sko56 34458 0.080 1.082 0.110 0.060 0.101 0.002 639
sko64 48498 0.064 0.861 0.095 0.092 0.129 0.001 974
sko72 66256 0.148 0.948 0.178 0.143 0.277 0.074 1415
sko81 90998 0.098 0.880 0.206 0.136 0.144 0.048 2041
sko90 115534 0.169 0.748 0.227 0.196 0.231 0.105 2825
tai20a 703482 0.211 0.246 0.716 0.268 0.675 0 26
tai25a 1167256 0.510 0.345 1.002 0.629 1.189 0.736 50
tai30a 1818146 0.340 0.286 0.907 0.439 1.311 0.018 87
tai35a 2422002 0.757 0.355 1.345 0.698 1.762 0.215 145
tai40a 3139370 1.006 0.623 1.307 0.884 1.989 0.442 224
tai50a 4941410 1.145 0.834 1.539 1.049 2.800 0.781 467
tai60a 7208572 1.270 0.831 1.395 1.159 3.070 0.919 820
tai80a 13557864 0.854 0.467 0.995 0.796 2.689 0.663 2045
wil50 48816 0.041 0.504 0.061 0.032 0.061 0.008 441

aValues are the average of gap between solution value and best known value in percent over 10 runs.

Results show that the ANTabu system finds bet-
ter results using less computing resources and less
search agents (100 tabu tasks for PATS and 10
ants for ANTabu). Notice that the best known so-
lutions have been found in four out of five sko100
instances.

5.3. Comparison with other algorithms

The performances of the ANTabu algorithm have
been compared with other metaheuristics:
• the reactive tabu search (RTS) from Battiti and Tec-

chiolli [10],
• the TS from Taillard [11],



E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449 447

Table 4
Compared results on irregular instances with the same computing time (best results are in boldface)a

Problem Best known value TT RTS SA GH HAS-QAP ANTabu Time (s)

bur26a 5426670 0.0004 – 0.1411 0.0120 0 0 50
bur26b 3817852 0.0032 – 0.1828 0.0219 0 0.0169 50
bur26c 5426795 0.0004 – 0.0742 0 0 0 50
bur26d 3821225 0.0015 – 0.0056 0.0002 0 0 50
bur26e 5386879 0 – 0.1238 0 0 0 50
bur26f 3782044 0.0007 – 0.1579 0 0 0 50
bur26g 10117172 0.0003 – 0.1688 0 0 0 50
bur26h 7098658 0.0027 – 0.1268 0.0003 0 0 50
chr25a 3796 6.9652 9.8894 12.4973 2.6923 3.0822 0.8957 40
els19 17212548 0 0.0899 18.5385 0 0 0 20
kra30a 88900 0.4702 2.0079 1.4657 0.1338 0.6299 0.2677 76
kra30b 91420 0.0591 0.7121 0.1947 0.0536 0.0711 0 86
tai20b 122455319 0 – 6.7298 0 0.0905 0 27
tai25b 344355646 0.0072 – 1.1215 0 0 0 50
tai30b 637117113 0.0547 – 4.4075 0.0003 0 0 90
tai35b 283315445 0.1777 – 3.1746 0.1067 0.0256 0.0408 147
tai40b 637250948 0.2082 – 4.5646 0.2109 0 0.4640 240
tai50b 458821517 0.2943 – 0.8107 0.2142 0.1916 0.2531 480
tai60b 608215054 0.3904 – 2.1373 0.2905 0.0483 0.2752 855
tai80b 818415043 1.4354 – 1.4386 0.8286 0.6670 0.7185 2073

aValues are the average of gap between solution value and best known value in percent over 10 runs.

• the genetic hybrid method (GH) from Fleurent and
Ferland [12],

• the simulated annealing (SA) from Connolly [13],
• the HAS-QAP, previously cited, from Gambardella

et al. [3], but with a computing time extended to
100 iterations for each of the 10 ants. Again, results
are taken from [3].
It has been shown in [14] that these methods do not

have the same effectiveness according to whether they
are applied to so-called regular or irregular instances,
where regular instances have a flow dominance lower
than 1.2 as opposed to irregular ones which are also
sometimes called “structured” instances. Results for
regular instances are shown in Table 3. Our algorithm
ANTabu finds better solutions than other algorithms.

Next we have compared those algorithms on a set
of 20 irregular instances ranging from 10 to 80 loca-
tions. Results are in Table 4. In this case best results
are obtained by HAS-QAP, which found best average
fitness for a set of 16 instances. ANTabu found the
best average for only 13 instances.

In an attempt to understand the reasons behind this
difference in behavior between regular and irregular
instances, we have also monitored not only average
results but also best and worst ones. These datas are
shown in Table 5.

Table 5
Best and worst results on 10 runs on irregular instances for
ANTabu a

Problem Average Time (s) Worst Best

bur26a 0.0000 50 0.0000 0.0000
bur26b 0.0169 50 0.1693 0.0000
bur26c 0.0000 50 0.0000 0.0000
bur26d 0.0000 50 0.0000 0.0000
bur26e 0.0000 50 0.0000 0.0000
bur26f 0.0000 50 0.0000 0.0000
bur26g 0.0000 50 0.0000 0.0000
bur26h 0.0000 50 0.0000 0.0000
chr25a 0.8957 40 4.5838 0.0000
els19 0.0000 20 0.0000 0.0000
kra30a 0.2677 76 1.3386 0.0000
kra30b 0.0000 86 0.0000 0.0000
tai20b 0.0000 27 0.0000 0.0000
tai25b 0.0000 50 0.0000 0.0000
tai30b 0.0000 91 0.0000 0.0000
tai35b 0.0408 148 0.2212 0.0000
tai40b 0.4640 241 2.6239 0.0000
tai50b 0.2531 486 0.9075 0.0000
tai60b 0.2752 860 1.5608 0.0000
tai80b 0.7185 2091 1.8549 0.0019

aValues are gaps between solution and best known value in
percent. Notice that an optimal solution is found in all but one
problems.



448 E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449

Notice that an optimal solution is found at least once
in 10 runs for almost all problems. Thus we think that
the slightly low average from Table 4 could be due
to low quality local optima that are found after the
diversification phase. It may well be the price to pay
for a more complete exploration of the search space.

6. Conclusion and future work

In this paper we have proposed a powerful and ro-
bust algorithm for the QAP, which is based on ant
colonies. Compared with previous ant systems for the
QAP (HAS-QAP algorithm), we have refined the ants
cooperation mechanism, both in the pheromone ma-
trix update phase and in the exploitation/diversification
phase by using a frequency matrix. The search pro-
cess of each ant has also been reinforced with a local
search procedure based on TS.

Results show a noticeable increase in performance
compared to HAS-QAP and also to parallel inde-
pendent TS, thus demonstrating the complementary
gains brought by the combined use of a powerful lo-
cal search, ants-like cooperation and parallelism. The
comparison with the parallel TS algorithm pleads for
a more widely spread use of cooperation in parallel
heuristics.

Future works include an application of the meta-
heuristic to other optimization problems (set covering,
graph coloring, multi-objective problems), and an im-
plementation under the execution support Multi-user
Adaptive Resource Scheduler (MARS) to allow effi-
cient fault-tolerant runs on larger heterogeneous net-
work of workstations [15]. We are also interested in
investigating more closely the impact of the diversifi-
cation phase, and in leading a finer study on the condi-
tions needed for appearance of a fruitful cooperation
in parallel agents systems.

References

[1] M. Dorigo, Optimization, learning and natural algorithms,
Ph.D. Thesis, Politecnico di Milano, Italy, 1992.

[2] M. Dorigo, V. Maniezzo, A. Colorni, The ant system:
optimization by a colony of cooperating agents, IEEE
Transactions on Systems, Mans, and Cybernetics 1 (26)
(1996) 29–41.

[3] L. Gambardella, E. Taillard, M. Dorigo, Ant colonies for the
QAP, Technical Report 97-4, IDSIA, Lugano, Switzerland,
1997.

[4] B. Bullnheimer, R.F. Hartl, C. Strauss, Applying
the ant system to the vehicle routing problem, in:
Second Metaheuristics International Conference, MIC’97,
Sophia-Antipolis, France, 1997.

[5] A. Colorni, M. Dorigo, V. Maniezzo, M. Trubian, Ant
system for job-shop scheduling, JORBEL-Belgian Journal of
Operations Research Statistics and Computer Science 34 (1)
(1994) 39–53.

[6] R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz,
Ant-based load balancing in telecommunications networks,
Adaptive Behavior 5 (2) (1997) 169–207.

[7] F. Glover, Tabu search-I, ORSA Journal of Computing 1 (3)
(1989) 190–206.

[8] R.E. Burkard, S. Karisch, F. Rendl, Qaplib: a quadratic
assignment problem library, European Journal of Operational
Research 55 (1991) 115–119.

[9] E.G. Talbi, Z. Hafidi, J-M. Geib, Parallel adaptive tabu search
for large optimization problems, in: Second Metaheuristics
International Conference, MIC’97, Sophia-Antipolis, France,
1997, pp. 137–142.

[10] R. Battiti, G. Tecchiolli, The reactive tabu search, ORSA
Journal on Computing 6 (1994) 126–140.

[11] E. Taillard, Robust tabu search for the quadratic assignment
problem, Parallel Computing 17 (1991) 443–455.

[12] C. Fleurent, J.A. Ferland, Genetic hybrids for the
quadratic assignment problem, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 16 (1994)
173–188.

[13] D.T. Connolly, An improved annealing scheme for the QAP,
European Journal of Operational Research 46 (1990) 93–100.

[14] E. Taillard, Comparison of iterative searches for the quadratic
assignment problem, Location Science 3 (1995) 87–103.

[15] E.-G. Talbi, J-M. Geib, Z. Hafidi, D. Kebbal, A fault-tolerant
parallel heuristic for assignment problems, in: José Rolim
(Ed.), BioSP3 Workshop on Biologically Inspired Solutions
to Parallel Processing Systems, IEEE IPPS/SPDP’98
International Parallel Processing Symposium on Parallel and
Distributed Processing, Orlando, FL, USA, 1998, Lecture
Notes in Computer Science, vol. 1388, Springer, Berlin,
pp. 306–314.

E.-G. Talbi received the Master’s and
Ph.D. degrees in Computer Science, both
from the Institut National Polytechnique
de Grenoble. He is presently Associate
Professor in Computer Science at Univer-
sité de Lille 1, and researcher in Lab-
oratoire d’Informatique Fondamentale de
Lille. He took part in several CEC Esprit
and national research projects. His cur-
rent research interests are in the fields of

parallel optimization, evolutionary computation, and multi-criteria
combinatorial optimization.



E.-G. Talbi et al. / Future Generation Computer Systems 17 (2001) 441–449 449

O. Roux is a Ph.D. student at the Uni-
versité du littoral, Calais, France. His
research interests include evolutionary al-
gorithm using ant colonies and distribut-
ing computing. He received the master’s
degree (DEA) from the université de Lille
1, France.

C. Fonlupt received the Ph.D. degree in
Computer Science from the Université de
Lille 1, France, in 1994. He is currently
an Assistant Professor of Computer Sci-
ence at the Université du Littoral, Calais,
France. His research interests are in the
areas of evolutionary computation, ants
colony and genetic programming.

D. Robilliard obtained a Ph.D. degree in
Computer Science in 1996, at the Univer-
sité de Lille 1, France. He is now Assistant
Professor at the Université du Littoral-Côte
d’Opale, France. His research interests are
in the field of evolutionary computation
and applications, notably to combinatorial
optimization and image analysis.


