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Abstract. Graph weighted models (GWMs) have recently been pro-
posed as a natural generalization of weighted automata over strings, trees
and 2-dimensional words to arbitrary families of labeled graphs (and
hypergraphs). In this paper, we propose polynomial time algorithms
for minimizing and deciding the equivalence of GWMs defined over the
family of circular strings on a finite alphabet (GWMcs). The study of
GWMcs is particularly relevant since circular strings can be seen as
the simplest family of graphs with cycles. Despite the simplicity of this
family and of the corresponding computational model, the minimization
problem is considerably more challenging than in the case of weighted
automata over strings and trees: while linear algebra tools are over-
all sufficient to tackle the minimization problem for classical weighted
automata (defined over a field), the minimization of GWMcs involves
fundamental notions from the theory of finite dimensional algebra. We
posit that the properties of GWMcs unraveled in this paper willprove
useful for the study of GWMs defined over richer families of graphs.

1 Introduction

Functions defined over syntactical structures such as strings, trees and graphs are
ubiquitous in computer science. Automata models allow one to succinctly repre-
sent such functions. In particular, weighted automata can efficiently model func-
tions mapping structured objects to values in a semi-ring. Weighted automata
have been defined to handle functions whose domain are e.g. strings [9,26],
trees [8,16] and 2-dimensional words [11]. More recently, Bailly et al. [2] proposed
a computational model for functions mapping labeled graphs (or hypergraphs)
to values in a field (see also [22, Chap. 2]): Graph Weighted Models (GWMs).
GWMs extend the notion of linear representation of a function defined over
strings and trees to functions defined over graphs labeled by symbols in a ranked
alphabet: loosely speaking, while string weighted automata can be defined by
associating each symbol in a finite alphabet to a linear map and tree weighted
automata by associating each symbol in a ranked alphabet to a multilinear map,
GWMs are defined by associating each arity k symbol from a ranked alphabet
to a kth order tensor. The computation of a GWM boils down to mapping each
vertex in a graph to the tensor associated to its label and performing contrac-
tions directed by the edges of the input graph to obtain a value in the supporting
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field. When restricted to the families of strings, trees or 2-dimensional words,
GWMs are expressively equivalent to the classical notions of weighted automata
over these structures.

Weighted automata have recently received interest from the machine learn-
ing community due to their ability to represent functions defined over struc-
tured objects. Efficient (and often consistent) learning algorithms have been
developed for such computational models defined over sequences [3,6,10,19] and
trees [1,4,14]. Motivated by the relevance of learning functions defined over richer
families of labeled graphs, our long term objective is to design efficient learning
algorithms for GWMs. This is however a challenging task. Given the close rela-
tionship between minimization and learning for classical weighted automata (see
e.g. [7,21,27]), we take a first step in this direction by tackling the problem of
minimizing GWMs defined over the simple family of circular strings.

Circular strings are strings whose last symbol is connected to the first. A
circular string can be seen as a directed graph where each vertex is labeled by
a symbol from a finite alphabet and is connected to his unique successor (i.e.
a labeled graph composed of a unique cycle). Circular strings are relevant in
biology (see e.g. [20] and references therein) and have been studied from a for-
mal language perspective in the non-quantitative setting in [24]. The study of
GWMs defined over such graphs is particularly relevant since circular strings are
in some sense the simplest family of graphs with cycles (and cycles can be seen
as the key obstacle for going from strings and trees to general graphs). More-
over, GWMs defined over the family of circular strings—which we henceforth
denote by GWMcs to avoid confusions—take a simple form making them easily
amenable to theoretical study: a GWMc is given by a set of matrices Aσ for
each symbol σ in a finite alphabet, and maps any circular string σ1σ2 · · · σk to the
trace of the products of the matrices associated with the letters in the string1.
Despite the simplicity of this computational model and its strong connection
with string weighted automata, the minimization problem is considerably more
challenging than in the case of string or tree weighted automata. More precisely,
while the minimization problem can easily be handled using notions from lin-
ear algebra for e.g. real-valued string weighted automata (see e.g. [7]), we show
in this paper that the minimization of GWMcs requires fundamental concepts
from the theory of finite-dimensional algebras (such as the ones of radical and
semi-simplicity).

Contributions. Throughout the paper, we only consider automata defined over
a field of characteristic 0. After introducing notions on weighted automata,
GWMcs and finite-dimensional algebras in Sect. 2, we first tackle the problem of
deciding the equivalence of GWMcs in Sect. 3. The study of the equivalence prob-
lem is motivated by the simple observation that two minimal GWMs computing

1 Note that this is a not a definition per se but rather a consequence of the definition
of general GWMs (as introduced in [2,22]): when restricted to the family of circular
strings, a GWM is given by a set of matrices and its computation can be succinctly
expressed using the trace operator (whereas a general GWM is given by a set of
tensors and its computation relies on partial traces).
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the same function are not necessarily related by a change of basis, which is in con-
trast with a classical result stating that two minimal string weighted automata
are equivalent if and only if they are related by a change of basis. Building
from this observation, we unravel the fundamental notion of semi-simple GWMc

and we show that any function recognizable by a GWM c can be computed by a
semi-simple GWMc (Corollary 1) and that two semi-simple GWM cs of equal
dimensions computing the same function are necessarily related by a change of
basis (Corollary 2). These two results naturally give rise to a polynomial time
algorithm to decide whether two GWM cs are equivalent. We then move on to the
minimization problem in Sect. 4, where we give a polynomial time minimization
algorithm for GWM cs which fundamentally relies on the notion of semi-simple
GWMc (Corollary 3). While the problem of minimizing a GWM defined over
the simple family of circular strings is central to this paper, we see it as a test
bed for developing the theory of general GWMs: beyond the minimization and
equivalence algorithms we propose, we believe that one of our main contributions
is to illustrate how the theory of GWMs will rely on advanced concepts from
algebra theory and to unravel fundamental properties that will surely be central
to the study of GWMs defined over more general families of graphs (such as the
one of semi-simple GWMc).

1.1 Notations

For any integer n we let [n] = {1, 2, · · · , n}. We denote the set of integers by N

and the fields of real and rational numbers by R and Q respectively. Let F be a
field of characteristic 0, we denote by Mn(F) = F

n×n the set of all n×n matrices
over F. We use lower case bold letters for vectors (e.g. v ∈ F

d1) and upper case
bold letters for matrices (e.g. M ∈ F

d1×d2). We denote by In the n × n identity
matrix (or simply I if the dimension is clear from context). Given a matrix M ∈
F

d1×d2 , we denote its entries by Mi,j and we use vec(M) ∈ F
d1d2 to denote the

column vector obtained by concatenating the columns of M. We use ker(A) to
denote the kernel (or null space) of a matrix A. Given two matrices A ∈ Mm(F)
and B ∈ Mn(F) we denote their Kronecker product by A ⊗ B ∈ Mmn(F) and
their direct sum by A ⊕ B ∈ Mm+n(F): A ⊗ B is the block matrix with blocks
(Ai,jB)i,j and A⊕B is the block diagonal matrix with A in the upper diagonal
block and B in the lower one. We denote by Σ∗ the set of strings on a finite
alphabet Σ and the empty string by λ. We denote by Σ+ the set of non-empty
strings and by Σk the set of all strings of length k.

2 Preliminaries

We first present notions on weighted automata, graph weighted models and finite
dimensional algebras. The reader is referred to [9,16,25] for more details on
weighted automata theory, to [2] and [22, Chap. 2] for an introduction to graph
weighted models, and to [13,17] for a thorough introduction to finite dimensional
algebras.
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2.1 Weighted Automata and GWMs over Circular Strings

Let Σ be a finite alphabet. A weighted finite automaton (WFA) over a field F

with n states is a tuple M = (α, {Mσ}σ∈Σ ,ω) where α,ω ∈ F
n are the initial

and final weight vectors respectively, and Mσ ∈ Mn(F) is the transition matrix
for each symbol σ ∈ Σ. A WFA computes a function fM : Σ∗ → F defined for
each word x = x1x2 · · · xk ∈ Σ∗ by

fM (x) = α�Mx1Mx2 · · ·Mxkω.

We will often use the shorthand notation Mx = Mx1Mx2 · · ·Mxk for any word
x = x1x2 · · · xk ∈ Σ∗. A WFA M with n states is minimal if its number of
states is minimal, i.e. any WFA M ′ such that fM = fM ′ has at least n states.
We say that a function f : Σ∗ → R is WFA-recognizable if there exists a WFA
computing it.

Graph weighted models (GWMs) have been introduced as a computational
model over arbitrary labeled graphs and hypergraphs in [2]. In this paper, we
focus on the simple model of GWMs defined over the family of circular strings.
A circular string is a string without a beginning or an end, one can think of it
as a string closed onto itself (see Fig. 1).

α a b b a ω a

b

b

a

Fig. 1. (left) Graph representation of the string abba where the special vertices labeled
with α and ω denote the beginning and end of the string respectively. (right) In contrast,
the circular string abba has no beginning and no end, it is thus the same object as e.g.
the circular string baab.

A d-dimensional GWM A over circular strings (GWMc) on Σ is given by a set
of matrices {Aσ}σ∈Σ ⊂ Md(F). It computes a function fA : Σ+ → F defined2

for each word x = x1x2 · · · xk ∈ Σ+ by

fA(x) = Tr(Ax1Ax2 · · ·Axk) = Tr(Ax).

By invariance of the trace under cyclic permutation, we have fA(x1x2 · · · xk) =
fA(x2x3 · · · xkx1) = fA(x3x4 · · · xkx1x2) = · · · . This is in accordance with the

2 Observe that we exclude the empty string from the domain of fA. This is on purpose
since fA(λ) would be the dimension of A (using the convention Aλ = I): given two
GWMcs of different dimensions computing the same function on Σ+, we want to con-
sider them as equivalent even though they disagree on λ.
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definition of a circular string: for any stringx′ obtained by cyclic permutation of the
letters of a string x, both x and x′ correspond to the same circular string. Similarly
to WFAs, a GWMc is minimal if its dimension is minimal and a function f : Σ+ →
F is GWM c-recognizable if it can be computed by a GWMc.

It is immediate to see that there exist WFA-recognizable functions that are
not GWMc-recognizable, this is the case of any WFA-recognizable function that
is not invariant under cyclic permutation of letters in a word3. In contrast, one
can easily show that any GWMc-recognizable function is WFA-recognizable.
More precisely, we have the following result.

Proposition 1. For any d-dimensional GWMcA = {Aσ}σ∈Σ on Σ, the WFA
M with d2 states (α, {Mσ}σ∈Σ ,ω) where α = ω = vec(Id) and Mσ = Id ⊗ Aσ

for each σ ∈ Σ, is such that fM (x) = fA(x) for all x ∈ Σ∗.

Proof. For any w = w1 · · · wn ∈ Σ∗ we have fA(w) = Tr(Aw) =
∑

i∈[d] A
w
i,i =

∑
i∈[d] e

�
i Awei where ei is the i-th vector of the canonical basis of F

d. Since
α = ω = (e�

1 , · · · , e�
d )� and Mσ = I ⊗ Aσ is the block-diagonal matrix with

Aσ repeated d times on the diagonal, one can check that fM (w) = α�Mwω =∑
i∈[d] e

�
i Awei = fA(w). ��

It follows from this proposition that the learning and equivalence problems for
GWMcs could be handled by using the corresponding algorithms for WFAs.
We will nonetheless study the equivalence problem in the next section4 without
falling back onto the theory of WFAs, which will allow us to unravel fundamental
properties of GWMs that will be particularly relevant to further studies (more-
over, the minimization problem obviously cannot be handled in such a way).

2.2 Finite-Dimensional Algebras

An algebra A over a field F (or F-algebra) is a vector space over the field F

equipped with a bilinear operation (called multiplication or product). An algebra
is associative if its product is associative and it is finite-dimensional if it is of
finite dimension as a vector space over F. In this paper, we will only consider
finite-dimensional associative algebras. A sub-algebra B of an algebra A is a
linear subspace of A which is closed under product (i.e. B equipped with the
operations of A is an algebra itself).

A classical example of finite-dimensional algebra is the set L(V ) of linear
operators on some finite-dimensional vector space V (where the product is com-
position). In this particular example, the algebra L(V ) is isomorphic to the full
matrix algebra Md(F), where d is the dimension of V ; we will mainly focus on
matrix algebras in this paper, i.e. sub-algebras of the full matrix algebra Md(F)
for some d (an example of such an algebra is the set of d × d upper triangular
matrices). In particular, we will often consider the algebra generated by a finite

3 Note that this is not a necessary condition: the function f defined on {a, b}∗ by
f(x) = 1 if x = a and 0 otherwise is WFA-recognizable but not GWMc-recognizable.

4 The learning problem has been previously considered in [5,22].
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set of matrices {Aσ}σ∈Σ ⊂ Md(F) for some finite alphabet Σ, that is the set of
all finite linear combinations of matrices of the form Ax = Ax1Ax2 · · ·Axk for
x = x1x2 · · · xk ∈ Σ∗. More formally, if we denote by A this algebra, we have

A =

{
n∑

i=1

αiAwi : n ∈ N, α1, · · · , αn ∈ F, w1, · · · , wn ∈ Σ∗
}

.

Let A be a finite-dimensional algebra over F. A sub-algebra X of A is called
an ideal of A if both xa ∈ X and ax ∈ X for any x ∈ X , a ∈ A (i.e. X is
both left and right A-invariant), which we will denote by AX = XA = A. A
sub-algebra X of A is nilpotent if there exists some integer k such that X k =
{x1x2 · · · xk : xi ∈ X , i ∈ [k]} = {0}. The factor algebra A/X of an algebra A
by an ideal X is the algebra consisting of all cosets a + X for a ∈ A, in other
words A/X is the quotient of A by the equivalence relation (a ∼ b if and only
if a − b ∈ X ). The radical5 of A is the maximal nilpotent ideal of A and will be
denoted by Rad(A) (the existence of Rad(A) follows from the fact that A is of
finite dimension). An algebra A is semi-simple if its radical is {0}.

Let us illustrate these definitions with a very simple example. Let G ⊂ M2(R)

be the algebra generated by the matrix G =
[
1 1
0 1

]

. One can easily check that

G =
{[

α β
0 α

]

: α, β ∈ R

}

and is thus of dimension 2. Consequently, both

G1 =
{[

α 0
0 α

]

: α ∈ R

}

and G2 =
{[

0 β
0 0

]

: β ∈ R

}

(1)

are sub-algebras of G. Moreover, G2 is a nilpotent ideal and one can check that
it is maximal, i.e. Rad(G) = G2 and hence G is not semi-simple.

Intuitively, the radical of an algebra A contains its bad elements (in the sense
that these elements annihilate all simple A-modules). In our previous example,
this bad property translates into the fact that the non-zero elements of G2 cannot
be diagonalized. We will use two fundamental results from the theory of finite
dimensional algebra. The first one is the Wedderburn-Malcev theorem which
states that (under some conditions on the ground field F) the elements of the
radical can be filtered out from the algebra, i.e. one can find a sub-algebra of A
that is isomorphic to A/Rad(A) (see e.g. [17, Theorem 6.2.3]).

Theorem 1 (Wedderburn-Malcev Theorem). Let A be a finite-dimensional
algebra over a field of characteristic0. There exists a semi-simple subalgebra Ã of
A which is isomorphic to A/Rad(A) and such that A = Ã ⊕ Rad(A) (direct sum
of vector spaces).

Going back to the example of the algebra G described above, we showed that it is
not semi-simple, however one can easily check that G/Rad(G) is isomorphic to the
algebra G1 in Eq. (1) which is semi-simple, and furthermore that G = G1⊕Rad(G).
5 Note that this definition is specific to the finite-dimensional case; for general rings,

there exist distinct non-equivalent definitions of radicals, which all agree with the
one given here in the case of finite-dimensional algebras.
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The second fundamental result we will need is related to the notion of repre-
sentation of an algebra. A representation of an F-algebra A is a homomorphism
of A into the algebra L(V ) of the linear operators on some vector space V (over
F). Two representations ρ : A → L(V ) and τ : A → L(W ) are similar if there
exists an isomorphism φ : V → W such that ρ(a) = φ−1τ(a)φ for all a ∈ A.
For semi-simple algebras, the notion of similar representations is fundamentally
related to the trace operator, which will be particularly relevant to the present
study. Formally, we have the following theorem (see e.g. [17, Corollary 2.6.3]).

Theorem 2. Let ρ and τ be two representations of a semi-simple algebra A
over a field of characteristic 0. These representations are similar if and only if
Tr(ρ(a)) = Tr(τ(a)) for all a ∈ A.

3 Semi-Simple GWMs and the Equivalence Problem

In this section, we study the equivalence problem: given two GWMs over circular
strings, how can we decide whether they compute the same function? In light of
Proposition 1, one could solve this problem by simply converting the two GWMcs
into WFAs and checking whether these two WFAs compute the same function;
indeed the equivalence problem for WFAs defined over a field is decidable in
polynomial time [9]. Nonetheless, we will tackle this problem without relying
on this proposition and, by doing so, we will unravel the notion of semi-simple
GWM c which will be relevant to the study of the minimization problem in the
next section (and which should also be central to the study of GWMs defined
over more general families of graphs).

3.1 Semi-Simplicity, Nilpotent Matrices and Traces

Let A be a finite dimensional matrix algebra. Recall that the radical of A is
its maximal nilpotent ideal. A useful characterization of the elements of the
radical relies on the notion of strongly nilpotent elements: A ∈ A is strongly
nilpotent if AX is nilpotent for any X ∈ A. It turns out that the radical of A
is exactly the set of its strongly nilpotent elements [17, Corollary 3.1.10]. Since
the computation of a GWMc boils down to applying the trace operator, we
will leverage this property to relate the notions of radical and semi-simplicity to
simple properties of the elements of A with respect to the trace operator. We
start with a simple lemma relating nilpotency and trace.

Lemma 1. Let F be a field of characteristic 0 and let A ∈ Md(F). Then A is
nilpotent if and only if Tr(An) = 0 for all n ≥ 1.

Proof. Let A be a nilpotent matrix and let k be such that Ak = 0. Suppose
Av = γv for some v �= 0 (where γ could belong to an algebraically closed field
extension of F). Then Akv = γkv = 0 hence γ = 0 since F is of characteristic 0,
thus A has only 0 eigenvalues and Tr(An) = 0 for all n ≥ 1.

Conversely, suppose that Tr(An) = 0 for all n ≥ 1. Then, we have
Tr(P (A)) = 0 for any polynomial P with constant term 0. Suppose that A
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has a non-zero eigenvalue γ and let m > 0 be its multiplicity. Choose a polyno-
mial P such that P (γ) = 1, P (0) = 0 and P (μ) = 0 for any eigenvalue μ of A
distinct from γ. We then have 0 = Tr(P (A)) = m, a contradiction. Hence A has
only zero eigenvalues and is nilpotent. ��
One can use the previous lemma to show that an element A ∈ A is strongly
nilpotent if and only if Tr(AX) = 0 for all X ∈ A, which leads to the following
useful characterization of the semi-simplicity of an algebra.

Proposition 2. Let A ⊂ Md(F) be a matrix algebra. We have

Rad(A) = {A ∈ A : Tr(AX) = 0 for all X ∈ A} .

Consequently, A is semi-simple if and only if for all A ∈ A different from 0
there exists X ∈ A such that Tr(AX) �= 0.

Proof. We will show that A ∈ A is strongly nilpotent if and only if Tr(AX) = 0
for all X ∈ A. The proposition will then directly follows from the fact that
Rad(A) is the set of strongly nilpotent elements of A and from the fact that A
is semi-simple if and only if Rad(A) = {0}.

Let A ∈ A be such that Tr(AX) = 0 for all X ∈ A. Since X(AX)n−1 ∈ A
for all n ≥ 1 and all X ∈ A we have Tr((AX)n) = 0 for all n ≥ 1 and all X ∈ A,
hence AX is nilpotent for all X ∈ A by Lemma 1, i.e. A is strongly nilpotent.
Conversely, let A be a strongly nilpotent element of A. By Lemma 1 we have
Tr((AX)n) = 0 for all X ∈ A and all n ≥ 1, in particular Tr(AX) = 0. ��

3.2 Equivalence of GWMs

We now consider the problem of deciding whether two GWMcs are equivalent.
Let us first briefly show how one can decide whether two real-valued WFAs com-
pute the same function. One way to address this problem relies on the following
result: two minimal real-valued WFAs computing the same function are related
by a change of basis. Note that it is easy to check that WFAs are invariant under
a change of basis of their weight vectors and transition matrices. The following
proposition show that such a change of basis is actually the only way for two
minimal WFAs to compute the same function [26] (see also [6, Corollary 4.2]).

Proposition 3. If two WFAs A = (α, {Aσ}σ∈Σ ,ω) and Ã = (α̃, {Ãσ}σ∈Σ , ω̃)
with d states taking their values in R are minimal and compute the same func-
tion, i.e. fA = fÃ, then there exists an invertible matrix P ∈ Md(R) such that

α� = α̃�P, ω = P−1ω̃ and Aσ = P−1ÃσP for each σ ∈ Σ.

Hence, to decide whether two WFAs compute the same function one can simply
minimize them and check whether the weight vectors and transition matrices
obtained after minimization are related by a change of basis (which can both
be done in polynomial time). In contrast, one can easily find an example of two
minimal GWM cs whose matrices are not related by a change of basis. Consider
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the constant function f(x) = 2 for all x ∈ Σ+. One can check that the two
GWMcs G and G̃ with 2 states defined by the matrices

G =
[
1 1
0 1

]

and G̃ =
[
1 0
0 1

]

respectively are minimal and compute f , however G and G̃ are not similar.
Let us now introduce the notion of semi-simpleGWM c. We say that a GWMc

A defined by a set of matrices {Aσ}σ∈Σ ⊂ Md(F) is semi-simple if the algebra A
generated by the matrices {Aσ}σ∈Σ is semi-simple. It follows from the example
presented in Sect. 2.2 that G is not semi-simple while G̃ is a semi-simple GWM c

computing the GWM c-recognizablefunction f . We will now show that this
simple example can be generalized:any GWM c-recognizable function can be
computed by a semi-simple GWM c. This non-trivial result relies on the following
theorem which is a direct consequence of the Wedderburn-Malcev theorem.

Theorem 3. Let A ⊂ Md(F) be a matrix algebra over a field of characteristic
0. Then there exist a semi-simple sub-algebra Ã of A and a surjective homomor-
phism π : A → Ã such that Tr(A) = Tr(π(A)) for all A ∈ A.

Proof. By Theorem 1 there exists a semi-simple sub-algebra Ã of A which is
isomorphic to A/Rad(A) and such that A = Ã ⊕ Rad(A) (direct sum of vector
spaces). Let π : A → Ã be the projection associated with this direct sum. Then
for any A ∈ A we have

Tr(A) = Tr(π(A) + (1 − π)(A)) = Tr(π(A)) + Tr((1 − π)(A)) = Tr(π(A)).

Indeed, since (1 − π)(A) ∈ Rad(A), it is nilpotent, hence its trace is zero. ��
Using the notations from Theorem 3, it follows that for any d-dimensional GWMc

A given by a set of matrices {Aσ}σ∈Σ ⊂ Md(F) generating the algebra A, the d-
dimensional Ã given by the matrices {Ãσ = π(Aσ)}σ∈Σ is a semi-simple GWMc

computing the function fA, hence the following corollary.

Corollary 1. Any function that can be computed by a GWMc can be computed
by a semi-simple GWMc of the same dimension.

Given a finite dimensional algebra A, one can compute the surjective homo-
morphism π from Theorem 3 in polynomial time when F allows efficient arith-
metic computations (e.g. F = Q) [12,15]. The algorithm takes as input a basis
a1, · · · , an of A (as a vector space) and the structure coefficients of the alge-
bra (which are the scalars ck

i,j ∈ F satisfying aiaj =
∑

k ck
i,jak). Since one can

easily compute a basis and the structure coefficients of a matrix algebra A given
a set of generators {Aσ}σ∈Σ in polynomial time, it follows that any GWMc

can be transformed in polynomial time into a semi-simple GWM c (of the same
dimension) computing the same function.

We now show that a result similar to Proposition 3 holds for semi-simple
GWMcs: two semi-simple d-dimensional GWM cs are equivalent if and only if
they are related by a change of basis. This result relies on the following theorem.
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Theorem 4. Let Σ be a finite alphabet and let A,B ⊂ Md(F) be the algebras
generated by the sets of matrices {Aσ}σ∈Σ and {Bσ}σ∈Σ respectively.

If A and B are semi-simple and Tr(Aw) = Tr(Bw) for all w ∈ Σ∗ then A
is isomorphic to B. Moreover, the mapping φ̃ : A → B defined by extending the
mapping

φ : Ax �→ Bx for all x ∈ Σ∗

by linearity is well-defined and is an isomorphism.

Proof. The mapping φ is by construction a trace-preserving surjective semi-
group homomorphism. We first show6 that φ can be extended to a homomor-
phism φ̃ : A → B. By definition, any A ∈ A can be written as A =

∑n
i=1 αiAxi

for some n ∈ N, α1, · · · , αn ∈ F, x1, · · · , xn ∈ Σ∗. We will show that the mapping

φ̃ :
n∑

i=1

αiAxi �−→
n∑

i=1

αiφ(Axi)

is well-defined. By construction of φ̃, it suffices to show that if
∑n

i=1 αiAxi = 0
for some αi ∈ F, xi ∈ Σ∗, then φ̃(

∑n
i=1 αiAxi) = 0. Suppose

∑n
i=1 αiAxi = 0,

then
∑n

i=1 αiAxiAx = 0 for any x ∈ Σ∗. By linearity of the trace and since φ is
a trace-preserving morphism, it follows that

0 =
n∑

i=1

αiTr [AxiAx] =
n∑

i=1

αiTr [φ(AxiAx)] =
n∑

i=1

αiTr [φ(Axi)φ(Ax)]

= Tr

[(
n∑

i=1

αiφ(Axi)

)

φ(Ax)

]

= Tr

[

φ̃

(
n∑

i=1

αiAxi

)

φ(Ax)

]

for all x ∈ Σ∗. By linearity of the trace and since φ is surjective, we thus have
Tr

[
φ̃ (

∑n
i=1 αiAxi)B

]
= 0 for any B ∈ B, hence φ̃ (

∑n
i=1 αiAxi) belongs to

Rad(B) by Proposition 2 and must be 0 since B is semi-simple.
One can easily check that φ̃ is trace-preserving, is surjective and is a homo-

morphism. It remains to show that φ̃ is injective. Let A ∈ A be such that
φ̃(A) = 0. Since φ̃ is a homomorphism we have φ̃(AX) = 0 for any X ∈ A,
and thus 0 = Tr(φ̃(AX)) = Tr(AX) for all X ∈ A. Hence A ∈ Rad(A) by
Proposition 2 and must be 0 since A is semi-simple. ��
The previous theorem can be leveraged to show that if two semi-simple GWMcs
of the same dimension compute the same function, then they are related by
a change of basis (note that the converse of this statement is immediate since
the trace is a basis independent operator). Let A and B be two d-dimensional
semi-simple GWMcs computing the same function and let A,B ⊂ Md be the
algebras generated by their respective sets of matrices {Aσ}σ∈Σ and {Bσ}σ∈Σ .
First observe that the identity mapping ρ : A → L(Fd) defined by ρ(A) = A for
all A ∈ A is (trivially) a representation of the algebra A. Now, since A and B

6 This part of the proof is adapted from the proof of Proposition 3.1 in [18].



Minimization of Graph Weighted Models over Circular Strings 523

compute the same function and are semi-simple, we have Tr(Aw) = Tr(Bw) for
all w ∈ Σ∗ and it follows from Theorem 4 that A is isomorphic to B; let φ̃ : A → B
be the isomorphism defined in this theorem. Then, the mapping τ : A → L(Fd)
defined by τ(A) = φ̃(A) for all A ∈ A is also a representation of A, and since
A is semi-simple it follows from Theorem 2 that ρ and τ are similar. That is,
there exists an invertible matrix P ∈ Md(F) such that ρ(A) = P−1τ(A)P for
all A ∈ A. In particular we have

Aσ = ρ(Aσ) = P−1τ(Aσ)P = P−1φ̃(Aσ)P = P−1BσP

for all σ ∈ Σ, hence the following corollary.

Corollary 2. Two d-dimensional semi-simple GWMcs A and B compute the
same function if and only if they are related by a change of basis, i.e. there
exists an invertible matrix P ∈ Md(F) such that Aσ = P−1BσP for all σ ∈ Σ.

In the case where F allows for efficient arithmetic computations (e.g. F = Q),
it follows that the equivalence of GWMcs can be decided in polynomial time.
Indeed, given two GWMcs A and B of the same dimension defined by the matri-
ces {Aσ}σ∈Σ and {Bσ}σ∈Σ respectively, one can first transform them into semi-
simple GWMcs using Theorem 3 and the algorithm in [12,15], and then check
whether the resulting matrices are related by a change of basis. The case where
the two GWMcs are not of the same dimension can be easily handled. Without
loss of generality, suppose that A and B are semi-simple GWMcs of dimension
d and d′ respectively with d′ < d. One can construct a d-dimensional GWMc B̃
computing the same function as B by considering the block-diagonal matrices
B̃σ = Bσ ⊕ 0 for each σ ∈ Σ (where 0 is the (d − d′) × (d − d′) matrix with all
entries equal to 0). It is easy to check that B̃ is semi-simple if B is semi-simple,
hence one can decide if A is equivalent to B by checking whether the matrices
Aσ and B̃σ are related by a change of basis.

4 Minimization of GWMs over Circular Strings

We now consider the minimization problem: given a GWMc A, can we find a
minimal GWMc computing fA? We will show that the answer is in the positive
and that such a minimal GWMc can be computed in polynomial time. We start
with a technical lemma that generalizes the classical result stating that for any
d × d matrix A, the kernel of Ad is equal to the kernel of Ad+k for any k ≥ 0.

Lemma 2. Let {Aσ}σ∈Σ ⊂ Md(F) be a finite set of matrices. Then for all
k ≥ 0 we have ⋂

x∈Σd

ker(Ax) =
⋂

y∈Σd+k

ker(Ay).

Proof. For any integer i, let Ei =
⋂

x∈Σi ker(Ax). We start by showing that
if Ei = Ei+1 for some i then Ei+1 = Ei+2. The inclusion Ei+1 ⊆ Ei+2 is
immediate. Suppose Ei = Ei+1 for some integer i. If v ∈ Ei+2 then Aσv ∈



524 G. Rabusseau

ker(Ax) for all x ∈ Σi+1 and all σ ∈ Σ, i.e. Aσv ∈ Ei+1 = Ei for all σ ∈ Σ,
which implies Aσv ∈ ker(Ay) for all y ∈ Σi and all σ ∈ Σ from which v ∈ Ei+1

follows directly. To conclude, since each Ei is a linear subspace of F
d, Ei � Ei+1

implies dim Ei < dim Ei+1, hence there must exist an i for which Ei = Ei+1 and
this i cannot be greater than d. ��
We show in the following theorem that the linear space E =

⋂
x∈Σd ker(Ax)

is not relevant to the computation of a GWMc A with matrices {Aσ}σ∈Σ , i.e.
one can project each matrix Ax onto the orthogonal complement of E without
changing the function computed by A.

Theorem 5. Let A be a GWMc given by the set of matrices {Aσ}σ∈Σ ⊂
Md(F). Consider the linear space

E =
⋂

x∈Σd

ker(Ax) = {v ∈ F
d : Axv = 0 for all x ∈ Σd}

and let Π ∈ F
d×d be the matrix of the orthogonal projection onto E.

Then, the GWMc Â given by the matrices Âσ = Aσ(I − Π) for each σ ∈ Σ
is such that fA = fÂ.

Proof. Let A be the algebra generated by the matrices {Aσ}σ∈Σ . Let us first
observe that E is A-invariant, which follows from Lemma 2. Indeed, if v ∈ E and
y ∈ Σ∗ we have AxAyv = 0 for any x ∈ Σd (since |xy| ≥ d), hence Ayv ∈ E;
the extension to an arbitrary element of A is immediate by linearity. This implies
that for any A ∈ A, we have

ΠAΠ = AΠ and (I − Π)AΠ = 0. (2)

Now, let k ≥ 1, let x = x1x2 · · · xk ∈ Σk and let P1 = Π and P2 = I − Π.
We can decompose Ax into

Ax =
k∏

i=1

Axi =
k∏

i=1

Axi(P1 + P2) =
∑

j1,··· ,jk∈{1,2}
Ax1Pj1A

x2Pj2 · · ·AxkPjk

= Âx + Ax1ΠAx2Π · · ·AxkΠ +
∑

j1,··· ,jk∈{1,2} s.t.
∃r,r′:jr �=j

r′

Ax1Pj1A
x2Pj2 · · ·AxkPjk .

We will show that the traces of all the summands in this last expres-
sion, except for the first one, are equal to 0. First, using Eq. (2) we have
Ax1ΠAx2Π · · ·AxkΠ = AxΠ. Moreover, for any integer s such that sk ≥ d
we have (AxΠ)s = Axs

Π = 0 by definition of E and by Lemma 2, thus
AxΠ is nilpotent and its trace is 0 by Lemma 1. For the remaining terms,
let j1, · · · , jk ∈ {1, 2} not all equal. Let l ∈ [k] be an index such that jl = 2 and
jl+1 = 1 where l + 1 = l +1 if l < k and 1 otherwise. Using the invariance of the
trace under cyclic permutations of a matrix product, we obtain

Tr(Ax1Pj1A
x2Pj2 · · ·AxkPjk) = Tr(AxlPjlA

x ¯l+1Pjl+1
· · · )

= Tr(Axl(I − Π)Axl+1Π · · · ) = 0
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where we used Eq. 2 again for the last equality. To conclude, we have shown that
Tr(Ax) = Tr(Âx) for all x ∈ Σ∗, hence A and Â compute the same function on
circular strings. ��
Moreover, we now show that the subspace E from the previous theorem can be
used to obtain a characterization of the minimality of a GWMc.

Theorem 6. Let A be a GWMc given by the set of matrices {Aσ}σ∈Σ ⊂
Md(F). Then, A is minimal if and only if the linear space

E =
⋂

x∈Σd

ker(Ax) = {v ∈ F
d : Axv = 0 for all x ∈ Σd}

is trivial, i.e. E = {0}.
Proof. Suppose that E is not trivial and let Π be the matrix of the orthogonal
projection onto E. Then, the rank R of I − Π is strictly less than d and there
exists an orthogonal matrix U ∈ R

d×R such that I−Π = UU�. It follows from
the previous proposition that, for any non-empty word x = x1 · · · xk, we have

Tr(Ax) = Tr(Ax1(I − Π)Ax2(I − Π) · · ·Axk(I − Π))

= Tr(Ax1UU�Ax2UU� · · ·AxkUU�) = Tr((U�Ax1U)(U�Ax2U) · · · (U�AxkU)).

Hence, the R-dimensional GWMc given by the matrices Âσ = U�AσU com-
putes the same function as A, showing that A is not minimal.

Suppose now that A is not minimal. Let B be a GWMc of dimension d′ < d,
given by the matrices {Bσ}σ∈Σ , such that fB = fA. Let A (resp. B) be the
algebra generated by the matrices {Aσ}σ∈Σ (resp. {Bσ}σ∈Σ). By Corollary 1,
we can assume that both A and B are semi-simple GWMcs, i.e. that the algebras
A and B are semi-simple. For each σ ∈ Σ, let B̂σ = Bσ ⊕0 ∈ R

d×d be the block
diagonal matrix having Bσ in the upper diagonal block and 0’s elsewhere. Let B̂
be the algebras generated by the matrices {B̂σ}σ∈Σ ⊂ Md(F). It is easy to check
that the GWMc B̂ computes the same function as A and B and that the algebra
B̂ is semi-simple (it is indeed isomorphic to the semi-simple algebra B). It then
follows from Corollary 2 that there exists an invertible matrix P ∈ Md(F) such
that Aσ = PB̂σP−1 for all σ ∈ Σ. Let ed be the dth vector of the canonical basis
of F

d, by definition of B̂σ we have B̂σed = 0 for any σ ∈ Σ, and consequently
AσPed = 0 for any symbol σ, showing that Ped ∈ E and E �= {0}. ��
It follows from the two previous theorems that by restricting the linear opera-
tors Aσ of a GWMc A to the subspace E⊥, one can obtain a minimal GWMc

computing fA. We formally state this result in the following corollary.

Corollary 3. Let A be a GWMc given by the matrices {Aσ}σ∈Σ ⊂ Md(F)
and let Π be the matrix of the orthogonal projection onto the space E =⋂

x∈Σd ker(Ax). For any orthogonal matrix U ∈ F
d×R such that I − Π =

UU� (where R is the dimension of E⊥), the R-dimensional GWMc Â given
by the matrices Âσ = U�AσU is a minimal GWMc computing fA.
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Proof. Using the invariance of the trace under cyclic permutations of a matrix
product, it directly follows from Theorem 5 that fÂ = fA. Moreover, one can
check that Ê =

⋂
x∈Σd ker(Âx) = {0} by construction of the matrices Âσ, hence

Â is minimal by Theorem 6. ��
We showed that a GWMc can be minimized by restricting its matrices to the sub-
space E⊥. In order to do so, one needs to compute a basis of E =

⋂
x∈Σd ker(Ax).

This can naively be done by first computing ker(Ax) for each x ∈ Σd and then
computing a basis for the intersection of these linear subspaces, however the
complexity of this approach is exponential in the dimension d. We show in the
following proposition that for semi-simple GWMcs, one simply needs to compute
a basis of the space

⋂
σ∈Σ ker(Aσ), which can be done in polynomial time (pro-

vided that the field F admits efficient symbolic arithmetic, e.g. F = Q).

Proposition 4. Let A ⊂ Md(F) be the finite dimensional algebra generated by
the set of matrices {Aσ}σ∈Σ. Then if A is semi-simple we have

⋂

x∈Σd

ker(Ax) =
⋂

σ∈Σ

ker(Aσ).

Proof. For any integer i ≥ 1, let Ei =
⋂

x∈Σi ker(Ax). Recall from the proof
of Lemma 2 that Ei ⊂ Ei+1 for all i and that Ei = Ei+1 implies Ei = Ei+k

for any integer k ≥ 0, hence it will be sufficient to show that E1 = E2. One
can check that each Ei is A-invariant, i.e. each Ei is an A-module. Since A is
semi-simple, any A-module is semi-simple [17, Theorem 2.6.2], which implies
that if M is an A-module, every submodule U of M has a complement [17,
Proposition 2.2.1], i.e. there exists an A-module V such that M = U ⊕ V . Now
since E1 is a submodule of the A-module E2, E1 has a complement U in E2,
i.e. U is A-invariant and E2 = E1 ⊕ U . Let v ∈ U . We show v = 0. Since
v ∈ E2, we have Aσ1Aσ2v = 0 for all σ1, σ2 ∈ Σ, hence Aσv ∈ E1 for all σ ∈ Σ.
Moreover, we have Aσv ∈ U for all σ ∈ Σ since U is A-invariant. It follows that
Aσv ∈ E1 ∩U = {0} and Aσv = 0 for all σ ∈ Σ, hence v ∈ E1 and since v ∈ U
we have v = 0. To conclude, we have U = {0}, hence E1 = E2. ��
Since a GWMc can be transformed into an equivalent semi-simple GWMc

in polynomial time (see Corollary 1 and the following discussion), the mini-
mization of a GWMc defined over circular strings can be achieved in polyno-
mial time by first converting it to a semi-simple GWMc and then applying
Corollary 3 with Proposition 4. The overall minimization algorithm is summa-
rized in Algorithm 1.
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Algorithm 1. Minimization of a GWM defined over circular strings
Input: A d-dimensional GWMc A given by a set of matrices {Aσ}σ∈Σ ⊂ Md(F).
Output: A minimal GWMc Â computing fA.
1: Let A be the algebra generated by the matrices {Aσ}σ∈Σ .
2: Compute a basis (A1, · · · ,An) of A (as an F-vector space) and the structure coef-

ficients ck
i,j ∈ F for i, j, k ∈ [n] satisfying AiAj =

∑n
k=1 ck

i,jAk.

3: Compute the sub-algebra Ã and the corresponding surjective homomorphism
π : A → Ã satisfying A = Rad(A) ⊕ Ã and Ã ∼= A/Rad(A) (using the algorithm
from [15], see Theorem 3).

4: Let Ã be the semi-simple GWM given by the set of matrices {Ãσ = π(Aσ)}σ∈Σ .
5: Compute a basis of E1 = {v ∈ F

d : Ãσv = 0 for all σ ∈ Σ} =
⋂

σ∈Σ ker(Ãσ).

6: Let Π ∈ F
d×d be the matrix of the orthogonal projection onto E1.

7: Let R be the rank of I − Π and let U ∈ F
d×R be an orthogonal matrix such that

I − Π = UU�.
8: return The R-dimensional GWMc given by the matrices {Âσ = U�ÃσU}σ∈Σ .

5 Conclusion

We proposed polynomial time algorithms to handle both the minimization and
the equivalence problems for GWMs defined over circular strings. By doing so,
we unraveled fundamental notions from algebra theory that will be central to the
study of GWMs. In particular, the notion of semi-simple GWMc was paramount
to our analysis. Intuitively, semi-simplicity can be thought of as a weak form of
minimality: components from the radical do not contribute to the final compu-
tation of a GWMc (semi-simplification thus corresponds to annihilating these
irrelevant components from the algebra, i.e. from the GWMc’s dynamics).

The next step is of course to try to extend the results obtained in this paper to
GWMs defined over more general families of graphs. One promising direction we
are currently investigating relies on extending the central notion of semi-simple
GWMc to GWMs defined over arbitrary families of labeled graphs: by opening
any edge e in a graph G one obtains a graph Ge with two free ports (i.e. edges
having one end that is not connected to any vertex) which would be mapped by
a d-dimensional GWM A to a matrix AGe ∈ Md(F) (indeed, a GWM naturally
maps any graph with k free ports to a kth order tensor; see [22, Sect. 2.2.3]
for more details). For circular strings, opening an edge corresponds to choosing
a particular position in the circular string leading to an actual string x ∈ Σ∗

which is mapped to Ax by the GWM. For arbitrary labeled graphs, we have
fA(G) = Tr(AGe) similarly to the case of circular strings. One can then consider
the algebra A generated by the matrices AGe for any graph G in some family
of graphs and any edge e in G, and define a semi-simple GWM as a GWM for
which this algebra A is semi-simple (note that one exactly recovers the notion of
semi-simple GWM introduced here in the special case of circular strings). Hence,
the fundamental results from algebra theory we leveraged in this paper should be
directly relevant to the study of general GWMs. Beyond minimization, we intend
to study the problem of approximate minimization (such as the ones considered
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in [7,23] for string and tree weighted automata) along with the closely related
problem of learning GWMs defined over richer families of graphs than the one
of circular strings.
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