
IFT 6760A - Lecture 1
Linear Algebra Refresher

Scribe(s): Tianyu Li Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we have introduced some applications of linear algebra in machine learning, including linear
regression, principle component analysis, as well as some basic concepts of spectral learning, method of moments.
We also extended matrices to tensors, i.e. higher dimensional (larger than two) arrays. In addition, we also introduced
the definition of rank for tensors and some sketches of the tensor decomposition formats.

In this lecture we will go back to the basics, refresh our memories of basic linear algebra. We will begin by introducing
some basic definitions so that we have a sense of vector space, subspace and their dimensions. In the second part of
this lecture, we will introduce the four types of subspace of a matrix.

2 Basic Definitions
Definition 1 (Vector Space). A vector space (V , +, ·) over a field F (e.g. R, C) is a set V with two operations:

• Addition: if u,v ∈ V then u+ v ∈ V

• Scalar multiplication: if α ∈ F,v ∈ V , then αv ∈ V

A vector space V satisfies the following properties: for ∀u,v,w ∈ V,∀α, β ∈ F

• Commutativity: u+ v = v + u

• Associativity: (u+ v) +w = u+ (v +w)

• Additive identity: ∃0 ∈ V , u+ 0 = u

• Additive inverse: ∃ − u ∈ V , u+ (−u) = 0

• Distributive properties: α(u+ v) = αu+ αv

• Distributive properties: (α+ β)u = αu+ βu

• Multiplicative identity: 1v = v (where 1 is the identity of F)

Definition 2 (Subspace). Given a vector space V , a subset of V , W ⊆ V is a subspace of V iff:

• 0 ∈W

• ∀u,v ∈W : u+ v ∈W

• ∀α ∈ F, ∀v ∈W : αv ∈W

1



IFT 6760A - Matrix and tensor factorization for machine learning Lecture 1: January 10, 2019

Definition 3 (Sum, Direct Sum). If W1,W2 are two vector spaces, denote sum of W1,W2 by W1 + W2 and it is
defined by:

W1 +W2 = {w1 +w2 | w1 ∈W1,w2 ∈W2}

In addition, ifW1 ⊆ V ,W2 ⊆ V , thenW1+W2 is a subspace of V . Moreover, if V =W1+W2 andW1∩W2 = {0},
we call the sum of W1 and W2 as the direct sum and is denoted by W1 ⊕W2.

Definition 4 (Linear Combination). A linear combination of v1,v2, · · ·vk ∈ V is defined by:

v =

k∑
i=1

αivi

where α1, α2, · · ·αk ∈ F

In fact, we can stack all the vector in a column-wise fashion, i.e.

V =

 | | |
v1 v2 · · · vk

| | |


Then the linear combination v =

∑k
i=1 αivi can be written in its matrix form: v = Va, where a> = [α1, α2, · · · , αk]

Definition 5 (Span). The span of a set of vectors v1,v2, · · ·vk ∈ V is defined as:

span(v1,v2, · · · ,vk) = {
k∑

i=1

αivi | α1, α2, · · · , αk ∈ F}

Note from the above definition, span(v1,v2, · · · ,vk) is in fact a vector space. Moreover, it is a subspace of V , i.e.
span(v1,v2, · · · ,vk) ⊆ V . We can also write Definition 5 in its matrix form. Following the matrix format above, we
have:

span(v1,v2, · · · ,vk) = {Va | a ∈ Fk}

Definition 6 (Linearly Independent). A set of vectors v1,v2, · · ·vk ∈ V is linearly independent if and only if (iff):

k∑
i=1

αivi = 0⇒ α1 = α2 = · · · = αk = 0

That is:
Va = 0⇒ a = 0

in the matrix form, where 0 ∈ Fk is an all zero vector.

Definition 7 (Basis). Let W ⊆ V be a subspace of V , w1, w2, · · · , wk ∈W form a basis of W iff:

• span(w1, w2, · · · , wk) =W .

• w1, w2, · · · , wk are linearly independent.

Definition 8 (Dimension). The dimension of a subspace W ⊆ V , denoted by dim(W ), is the number of vectors in
any basis of W .

Take the most common Euclidean 3-D space as an example. Let us denote e1 = [1, 0, 0]>, e2 = [0, 1, 0]>, e3 =
[0, 0, 1]> and denote the Euclidean 3-D space by D3. One can easily check that e1, e2, e3 are a set of basis for D3. In
addition, span(e1, e2) = D2 is a subspace of D3. In Figure 2, the plane (X, Y) is indeed the subspace D2. Note that
for any vector space, it is closed under the operation addition and scalar multiplication. Take D2 as an example, given
a,b ∈ D2, α ∈ F, then a+ b ∈ D2, αa ∈ D2, as illustrated in Figure 2.
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Figure 1: Illustration of D2 as a subspace of D3

3 Four Subspaces of a Matrix
From this section on, we will focus on the field of real numbers (i.e. R) instead of any arbitrary field. Since we will be
introducing matrix in this section, it is good to clarify some notations beforehand.
As we did in the previous section, we will use bold lower case letters to denote vectors while bold capital letters to
denote matrices. For v ∈ Rn, M ∈ Rm×n, we use vi to denote the ith entry of the vector v and Mi,j to denote
the (i, j)th entry of the matrix M, where i ∈ [n], j ∈ [m] and [n] = {1, 2, · · · , n}. Similar to Python’s notation,
We denote the ith row of M by Mi,: ∈ R1×n and the jth column of M by M:,j ∈ Rm×1 (by convention, a vector
v ∈ Rm will always denote a column vector).

Definition 9 (Matrix Product). For A ∈ Rm×n, B ∈ Rn×p, the matrix product AB ∈ Rm×p is defined by:

(AB)i,j =

n∑
k=1

Ai,kBk,j ∀i ∈ [m], ∀j ∈ [p]

Definition 10 (Transpose). For a matrix M ∈ Rm×n, the transpose of the matrix M, M> is defined by:

(M>)i,j = Mj,i ∀i ∈ [m], ∀j ∈ [n]

Definition 11 (Inner Product). For a ∈ Rn, b ∈ Rn, the inner product of a and b is defined by:

〈a,b〉 = a>b =

n∑
i=1

aibi

Definition 12 (Outer Product). For a ∈ Rn, b ∈ Rn, the outer product of a and b is defined by:

a⊗ b = ab>

That is, for i, j ∈ [n]:
(a⊗ b)i,j = aibj

In fact, we can also define the matrix product in terms of inner product and outer product between vectors. We can
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view each matrix M ∈ Rm×n as either a stack of row vectors or a stack of column vectors, that is:

M =

 | | |
M:,1 M:,2 · · · M:,n

| | |

 =


−M1,:−

−M2,:−
...

−Mm,:−


Then for the matrix product, we can either have the inner product view:

(AB)i,j =




−A1,:−

−A2,:−
...

−Am,:−


 | | |
B:,1 B:,2 · · · B:,p

| | |




i,j

= 〈A>i,:,B:,j〉

or we can have the outer product view:

AB =

 | | |
A:,1 A:,2 · · · A:,n

| | |



−B1,:−

−B2,:−
...

−Bn,:−

 =

n∑
i=1

A:,i ⊗B>i,:

Now we can finally define the four subspaces of a matrix A ∈ Rm×n.

Definition 13 (Range). The range (image, column space) of A is the span of its columns, i.e

R(A) = span(A:,1,A:,2, · · · ,A:,n) = {Ax | x ∈ Rn} ⊆ Rm

Definition 14 (Nullspace). The nullspace (kernel) of A is defined by:

N (A) = {x ∈ Rn | Ax = 0} ⊆ Rn

Definition 15 (Row Space). The row space of A is the span of its rows, i.e.

R(A>) ⊆ Rn

Definition 16 (Left Nullspace). The left nullspace of A is defined by:

N (A>) ⊆ Rm

Note that all these four subspaces are vector subspaces (they are closed under addition and scalar multiplication).

Theorem 17. The nullspace of a matrix is orthogonal to its row space: N (A) ⊥ R(A>). That is, for all u ∈
N (A),v ∈ R(A>) we have 〈u,v〉 = 0

Proof. We want to show for all u ∈ N (A) and all v ∈ R(A>), we have 〈u,v〉 = 0. By Definition 15, there exists
x ∈ Rm such that v = A>x. Then we have 〈u,v〉 = u>A>x = (Au)>x. Note by Defintion 14, we have Au = 0.
Thus 〈u,v〉 = (Au)>x = 0 and N (A) ⊥ R(A>).

Definition 18 (Rank). The rank of A ∈ Rm×n is the dimension of the range of A:

rank(A) = dim(R(A))
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Definition 19 (Factorization). A factorization A = BC, where B ∈ Rm×r, C ∈ Rr×n and r = rank(A), is called a
rank factorization. A graphical illustration of matrix factorization can be found in Figure 3.

Figure 2: Illustration of matrix factorization

Theorem 20. For a matrix A ∈ Rm×n, all the followings are equivalent:

(1) rank(A) ≤ r

(2) dim(R(A)) ≤ r

(3) ∃B ∈ Rm×r, ∃C ∈ Rr×n such that:
A = BC

(4) ∃b1,b2, · · · ,br ∈ Rm, ∃c1, c2, · · · , cr ∈ Rn such that:

A =

r∑
k=1

bkc
>
k

(5) dim(R(A>)) ≤ r

Proof. (1)⇔ (2), by Definition 18.
(2)⇒ (3): By Definition 8, dim(R(A)) ≤ r indicates that there exists a set of vectors v1,v2, · · · ,vr ∈ Rm spanning
R(A). Therefore, for i ∈ [n], A:,i can be written as a linear combination of v1,v2, · · · ,vr. More precisely, ∀i ∈ [n],
there exists γi,1, γi,2, · · · , γi,r such that A:,i =

∑r
j=1 γi,jvj . Define the following matrices:

B =

 | | | |
v1 v2 · · · vr

| | | |



C =


γ1,1 γ2,1 · · · γn,1
γ1,2 γ2,2 · · · γn,2
· · · · · · · · · · · ·
γ1,r γ2,r · · · γn,r


Then we have A = BC, where B ∈ Rm×r and C ∈ Rr×n.
(3)⇔ (4): It is easy to check from the inner product, outer product views of the matrix product we mentioned earlier.
(4)⇒ (5): If A = BC, where B ∈ Rm×r and C ∈ Rr×n, then it is easy to check by Definition 15, we have:

span(C1,:,C2,:, · · · ,Cr,:) = R(A>)

To see this, for i ∈ [m], we have Ai,: = Bi,:C =
∑r

k=1 Bi,kCk,:. Thus R(A>) = span(C1,:,C2,:, · · · ,Cr,:) and
dim(R(A>)) ≤ r.
(5)⇒ (1): The implication (5)⇒ (3)⇒ (2) follows from the exact same arguments reasoning by replacing A with
A>. Since we have proved (1)⇔ (2), we have (5)⇒ (3)⇒ (2)⇒ (1) holds.
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Theorem 21 (Rank Nullity). Let A ∈ Rm×n, then n = rank(A) + dim(N (A)).

Proof. Let u1,u2, · · · ,ur ∈ Rm be a basis ofR(A). Then, there exists x1,x2, · · · ,xr ∈ Rn such that ∀i ∈ [r],ui =
Axi. Let v1,v2, · · · ,vk ∈ Rn be a basis of N (A). We want to show that x1,x2, · · · ,xr,v1,v2, · · · ,vk is a basis
of Rn.
First we show that x1,x2, · · · ,xr,v1,v2, · · · ,vk spans Rn. For all y ∈ Rn, there exists α1, α2, · · · , αr such that
Ay =

∑r
i=1 αiui =

∑r
i=1 αiAxi, hence

A(y −
r∑

i=1

αixi) = 0

Therefore, we have (y −
∑r

i=1 αixi) ∈ N (A) and (y −
∑r

i=1 αixi) =
∑k

j=1 βjvj for some scalars β1, . . . , βk. It
follows that

y = (y −
r∑

i=1

αixi) +

r∑
i=1

αixi =

k∑
j=1

βjvj +

r∑
i=1

αixi

Therefore, Rn = span(x1,x2, · · · ,xr,v1,v2, · · · ,vk).
It remains to show that x1,x2, · · · ,xr,v1,v2, · · · ,vk are linearly independent. Suppose that

∑k
j=1 βjvj+

∑r
i=1 αixi =

0. This implies that A(
∑k

j=1 βjvj +
∑r

i=1 αixi) = 0 and thus that A
∑r

i=1 αixi =
∑r

i=1 αiui = 0 since∑k
j=1 βjvj ∈ N (A). Consequently α1 = α2 = · · · = αr = 0 since the ui are linearly independent. To

conclude, since α1 = α2 = · · · = αr = 0, we have 0 =
∑k

j=1 βjvj +
∑r

i=1 αixi =
∑k

j=1 βjvj , hence
β1 = β2 = · · · = βk = 0 since the vj are linearly independent.
Hence x1,x2, · · · ,xr,v1,v2, · · · ,vk form a basis of Rn. Therefore, n = r + k = rank(A) + dim(N (A))

Definition 22 (Linear Map). A map f : Rn 7→ Rm is linear, if ∀α, β ∈ R, ∀u,v ∈ Rn, we have:

f(αu+ βv) = αf(u) + βf(v)

Remark 23 (Matrices and Linear Maps).

(1) Let A ∈ Rm×n, then the map f : Rn → Rm defined by f(x) = Ax for all x ∈ Rn is a linear map.

(2) Let f : Rn → Rm be a linear map and let e1, e2, · · · , en be the canonical basis of Rn. Construct the matrix
M ∈ Rm×n such that:

M =

 | | |
f(e1) f(e2) · · · f(en)
| | |


then we have f(x) = Mx for all x ∈ Rn.

Proof. (1) is trivial to show.
(2) For all vectors x ∈ Rn, we have x =

∑n
i=1 xiei (where xi is the ith component of the vector x). Then Mx =∑n

i=1 xif(ei) = f(
∑n

i=1(x)iei) = f(x) where we crucially used the linearity of f for the second equality.

Definition 24 (Kernel, Image). Given a linear map f : Rn → Rm, the kernel of f is defined by:

Ker(f) = {x ∈ Rn | f(x) = 0}

The image of f is defined by:
Im(f) = {f(x) | x ∈ Rn}

Remark 25. Given a matrix M ∈ Rm×n, if f(x) = Mx for x ∈ Rn, then Ker(f) = N (M) and Im(f) = R(M)
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