
IFT 6760A - Lecture 11
Tensor Train Decomposition

Scribe(s): Nicolas Laliberte, Jimmy Leroux Instructor: Jacob Miller

1 Summary
In the previous lecture tensor networks were introduced followed by a presentation of various tensor decomposition:
Tensor Train (TT), Tensor Ring (TR) and Hierarchical Tucker (HT) decomposition. Two SVD based algorithms were
presented for the former and the latter.

This lecture began with a quick review of tensor network and the tensor train decomposition. We briefly remark that
TT is a form of data compression setting the stage for applications in machine learning, which are presented at the end
of this lecture. Most of this lecture was dedicated to algebraic operations for TT. More precisely, we looked at how
we can define basic linear algebra operations (addition, pointwise multiplication, inner product) on TT such that the
structure of TT is preserved and the TT-rank of the results is somewhat bounded by the TT-ranks of the inputs. The
lecture ends with application of TT in machine learning. We look at linear regression in this setting and how we can
choose bond dimension of the TT with the Density Matrix Renormalization Group (DMRG) algorithm.

2 Tensor networks review
We have seen previously that we can represent a tensor T ∈ Rd1×d2×⋅⋅⋅×dn in a diagramatic way using the tensor
network notation. The simplest representation is the following,

where each leg represent an index in the original tensor. This form allows us to better visualize the interaction between
various tensors in big equations where calculating a particular tensor element can become very cumbersome. This
representation gives an easy way to represent tensor/matrix multiplication through the connection of matching legs.
When two legs representing a matching dimension are connected, this means that we sum over this dimension and we
say that we ”contracted” the dimension. The summed indices don’t appear in the final tensor, only the hanging one
does. Using this logic, it is easy to imagine many differents way to represent a given tensor with the product of many
elements. We can then decompose a tensor into product of smaller tensors and matrices of the form,

1

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 11:February 14, 2019

We call {d1, d2, d4, d4} the visible indices and {R1,R2} the hidden indices (bond).

3 Tensor-trains
Equipped with the tensor network notation, we can imagine many different decompositions. One of them that we will
describe below is the tensor-train.

Definition 1 (Tensor-train). Given a tensor T ∈ Rd1×d2×⋅⋅⋅×dn and a collection of core {Gs
}ns=1 where G1 ∈ Rd1×R1 ,

Gs
∈ RRs−1×ds×Rs and Gn ∈ RRn−1×dn . We can decompose T using the decomposition in figure 1, where the

components are given by,

T i1,i2,...,in =
R1

∑
r1=1

R2

∑
r2=1

. . .
Rn

∑
rn=1

G1
i1,r1G

2
r1,i2,r2 . . . G

n
rn−1,in =G(1)[i1] ⋅G(2)[i2] ⋅ . . . ⋅G(n)[in]

This form is also called Matrix product state.

Figure 1: Tensor-train decomposition.

One of the advantages of representing a tensor in this tensor-train representation is compression. One way to see that
is by denoting d = max(d1, d2, ..., dn) and R = max(R1,R2, ...,Rn) and looking at the following decomposition of
T ,

Each core Gs in this decomposition needs O(dR2) parameters, so the overall train has O(ndR2) parameters. This
is a huge improvement from the exponential number of parameters O(dn) required to store the original tensor. This
seems to good to be true, in fact, in the worst case scenario R ∼ dn/2 which takes us back to O(dn). Fortunately for
us, for certain natural tensors, we can always choose R to be constant w.r.t n

4 Algebra with Tensor-trains
Naturally, we are interested in computing basic linear algebra operations within the TT-format. Computing those
operations in the original tensor form to afterward come back to the TT-format defy the purpose of the decomposition.
Before continuing, let us introduce a definition on the TT-format.

Definition 2 (TT-Rank). The TT-rank of a tensor T is the smallest tuple (R1,⋯,Rn−1) such that T admits a TT
decomposition with cores of sizes R1,⋯,Rn−1 (see figure 1).

In this lecture, we will denote by rank(T) the maximum of the elements of the TT-rank, i.e. rank(T) =

max(R1,R2, . . . ,Rn−1).

The TT-rank of a TT decomposition is the expression of the complexity of TT. Back to algebraic operations, here
comes the main question: can we define operations on TT’s such that the TT-rank of the output somewhat respects the

2

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 11:February 14, 2019

TT-rank of the inputs. To be more specific, for 2 tensor-trains T , T̃ can we define T + T̃ = S such that rank(S) ≤
rank(T)+rank(T̃)? We now show that we have this kind of property for the following algebraic operations: addition,
pointwise multiplication and inner product.

4.1 Addition
Suppose T , T̃ and S tensor-trains such that

S = T + T̃

with

Si1,i2,...,in =H1
[i1] ⋅H

2
[i2] . . . H

n−1
[in−1] ⋅Hn

[in] (1)

where the cores of T and T̃ are Gs[is] and G̃s[is] respectively. We now define Hs[is] and show with this definition
that we indeed get S = T + T̃ . First, we define central cores and the last one as

Hs
[is] =Gs

[is] ⊕ G̃s
[is] = [

Gs[is] 0

0 G̃s[is]
] , Hn

[in] = [
Gn[in]

G̃n[in]
]

Now, from equation (1) we have

Si1,i2,...,in =H1
[i1] ⋅H

2
[i2] . . . H

n−2
[in−2] [

Gn−1[in−1] 0

0 G̃n−1[in−1]
] [

Gn[in]

G̃n[in]
]

=H1
[i1] ⋅H

2
[i2] . . . H

n−2
[in−2] [

Gn−1[in−1]Gn[in]

G̃n−1[in−1]G̃n[in]
]

and applying this product recursively, we get

Si1,i2,...,in =H1
[i1] [

G2[i2] . . . G
n−1[in−1]Gn[in]

G̃2[i2] . . . G̃
n−1[in−1]G̃n[in].

] (2)

We can easily see that defining

H1
[i1] = [G1[i1] G̃1[i1]]

the above equation (2) comes down to

Si1,i2,...,in =
n

∏
s=1

Gs
[is] +

n

∏
s=1

G̃s
[is]

= T i1,i2,...,in + T̃ i1,i2,...,in

Thus, given that the bond dimensions of T and T̃ are {Ri}
n
i=1 and {R̃i}

n
i=1 respectively, we see that the bonds

dimension of {Hs}ns=1 are Rs + R̃s. Hence, rank(S) ≤ rank(T) + rank(T̃).

4.2 Pointwise multiplication
For the element-wise product, instead of posing, Hs[is] =Gs[is] ⊕ G̃s[is] we pose,

Hs
[is] =Gs

[is] ⊗ G̃s
[is] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Gs[is]1,1G̃
s[is] . . . Gs[is]1,RsG̃

s[is]
⋮ ⋮

Gs[is]Rs−1,1G̃
s[is] . . . Gs[is]Rs−1,RsG̃

s[is]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Having that we can write,

3

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 11:February 14, 2019

Hn−1
[in−1]Hn

[in] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Gn−1[in−1]1,1G̃n−1[in−1] . . . Gn−1[in−1]1,Rn−1G̃
n−1[in−1]

⋮ ⋮

Gn−1[in−1]Rn−2,1G̃
n−1[in−1] . . . Gn−1[in−1]Rn−2,Rn−1G̃

n−1[in−1]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Gn[in]1G̃
n[in]

⋮

Gn[in]Rn−1G̃
n[in]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Gn−1[in−1]1,1Gn[in]1G̃
n−1[in−1]G̃n[in] + ⋅ ⋅ ⋅ + Gn−1[in−1]1,Rn−1G

n[in]Rn−1G̃
n−1[in−1]G̃n[in]

⋮ ⋮

Gn−1[in−1]Rn−2,1G
n[in]1G̃

n−1[in−1]G̃n[in] + ⋅ ⋅ ⋅ + Gn−1[in−1]Rn−2,Rn−1G
n[in]Rn−1G̃

n−1[in−1]G̃n[in]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=Gn−1
[in−1]Gn

[in]G̃
n−1

[in−1]G̃n
[in]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(Gn−1[in−1]Gn[in])1G̃
n−1[in−1]G̃n[in]

⋮

(Gn−1[in−1]Gn[in])Rn−2G̃
n−1[in−1]G̃n[in]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=Gn−1
[in−1]Gn

[in] ⊗ G̃n−1
[in−1]G̃n

[in]

This shows at the same time the mixed product property of the kronecker product,

(A⊗B)(C⊗D) = (AC) ⊗ (BD) (3)

By continuing this until we have multiplied the whole tensor-train, we can easily show that,

Si1,i2,...,in = (T ∗ T̃)i1,i2,...,in =
n

∏
s=1

Gs
[is] ⊗

n

∏
s′=1

G̃s′
[is′] = T i1,i2,...,in T̃ i1,i2,...,in

4.3 Inner product
Another operation that can be done with tensors in their tensor-train representation is the inner product. Suppose
we have two tensors T , T̃ ∈ Rd1×d2×...×dn . Recall that for tensors, as well as for vectors, the inner product can
be represented by connecting all the corresponding visible index together. The inner product can then easily be
represented in the tensor-train representation by,

We can see that this representation is correct by simply using the definition,

⟨T , T̃ ⟩ =
d1

∑
i1=1

d2

∑
i2=1

d3

∑
i3=1

. . .
dn

∑
in=1
T i1, ... in T̃ i1, ... in

From the usual sum ordering in the natural tensor representation, we can encode a ”contraction stategy” for the inner
product in the tensor-train representation. By replacing the value of the product T i1, ... in T̃ i1, ... in by the eqation
found for the element wise product we have that,

⟨T , T̃ ⟩ =
d1

∑
i1=1

d2

∑
i2=1

d3

∑
i3=1

. . .
dn

∑
in=1

n

∏
s=1

Gs
[is] ⊗

n

∏
s′=1

G̃s′
[is′]

4

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 11:February 14, 2019

By using the mixed product property of the kronecker product that we showed earlier (3), the above expression can we
reduced to,

⟨T , T̃ ⟩ =
d1

∑
i1=1

G1
[i1] ⊗ G̃1

[i1]
d2

∑
i2=1

G2
[i2] ⊗ G̃2

[i2]
d3

∑
i3=1

G3
[i3] ⊗ G̃3

[i3] . . .
dn

∑
in=1

Gn
[in] ⊗ G̃n

[in]

Where we posed Hs[is] = ∑
ds

is=1G
s[is] ⊗ G̃s[is] and pushed the corresponding sums to the corresponding product

to reduce computation. It is important to note that since tensor rank(T) is bounded by max(R1,R2, ...,Rn) and that
we do n summation ofO(d), the total time to compute the inner-product is ofO(ndR4). This is a huge improvement,
compared to the standard way of computing ⟨T , T̃ ⟩ which is of O(dn)

5 Tensor-trains for Machine Learning
This section follows [2] and [1]. First, let’s remind quickly what is a linear regression. Given a dataset {(xi, yi}Di=1 we
define

ŷ(xi) = ⟨W,xi⟩

The objective is to learn the parameter W which minimizes L(ŷ(xi), yi) for a choosen loss function L. Note that W
is defined with the bias trick. Furthermore, suppose a feature map φ(x) defined as the following (model from [2])

φ(xi) = [
1
xi

]

where

X ∶= φ(X) = φ(x1) ○ . . . ○ φ(xn)

Remark thatX represents a n-dimensional tensor with 2n elements corresponding to permutations of features such as
x1x2x3. Each of those elements have exactly one associated weight. In this setting, the above problem comes down to

ŷ(xi) = ⟨W ,X ⟩

With a weight tensorW . This is where the tensor-trains comes handy, as we saw, we can represent this exponentially
large tensorW in a compact TT-format. We can show (see theorem 1 of [2]) that the model ŷ(x) can be computed in
O(nr2) where r is the TT-rank. Some questions arise from this, note that the TT-rank is an hyperparameters of this
model. Suppose this setting

ŷ(xi) = ⟨T ,X ⟩

where T is a tensor-train.

So, how can we train the model and how do we choose the TT-rank of T ? First, we can show the mapping

(G1, . . . ,Gn;x) → ŷ(x)

5

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 11:February 14, 2019

is differentiable. Then, the gradient descent works. Secondly, the way to choose the bond dimension is inspired by
the Density Matrix Renormalization Group (DMRG) algorithm developed in physic. The idea is to train with adaptive
bond dimensions. The algorithm is the following with ε as an hyperparameter

Repeat:

1. Merge the cores Gs and Gs+1 into B.

2. Train with respect to {G1, . . . ,Gs−1,B,Gs+1, . . . ,Gn}

3. Split B→ G̃s, G̃s+1 using SVD.

4. From the singular values, we choose the maximum R such that σR > ε. The new bond dimension is R′
s = R.

References
[1] E. Miles Stoudenmire and D. J. Schwab. Supervised Learning with Quantum-Inspired Tensor Networks. arXiv

e-prints, art. arXiv:1605.05775, May 2016.

[2] A. Novikov, M. Trofimov, and I. Oseledets. Exponential Machines. arXiv e-prints, art. arXiv:1605.03795, May
2016.

6

	Summary
	Tensor networks review
	Tensor-trains
	Algebra with Tensor-trains
	Addition
	Pointwise multiplication
	Inner product

	Tensor-trains for Machine Learning

