
IFT 6760A - Lecture 2
SVD and Orthogonality

Scribe(s): Yann BOUTEILLER, Parviz HAGGI Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we reviewed the basics of linear algebra. In this lecture we will first look into the concept of
Singular Value Decomposition of a matrix, often called SVD, followed by the concepts of orthogonality and orthogonal
projections.

2 Singular Value Decomposition

Theorem 1 (SVD). Any matrix A ∈ Rm×n can be written as:

A = UΣVT

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices (i.e. UTU = Im and VTV = In) and Σ ∈ Rm×n

is a diagonal rectangular matrix such that Σi,i 6= 0 if and only if i ≤ rank(A)

The form A = UΣVT is called the Singular-Value Decomposition (SVD) of A.

Property 2. Let r be the rank of a matrix A ∈ Rm×n. Let U and V be the matrices from the SVD of A with columns
u1, . . . ,um ∈ Rm and v1, . . . ,vm ∈ Rm respectively. Then the following hold:

• u1, . . . ,ur forms a basis a basis of R(A)

• ur+1, . . . ,um forms a basis of N (AT )

• v1, . . . ,vr forms a basis a basis of R(AT )

• vr+1, . . . ,vn forms a basis of N (A)

Definition 3 (Truncated SVD). Theorem 1 can be rewritten as:
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Where:
Λ ∈ Rr×r is diagonal with Λi,i 6= 0

ŨT Ũ = ṼT Ṽ = Ir (Ũ and Ṽ are both orthogonal matrices)

The form A = ŨΛṼT is called the Truncated Singular-Value Decomposition (Truncated SVD) of A.

1



IFT 6760A - Matrix and tensor factorization for machine learning Lecture 2: January 15, 2019

Remark : In truncated SVD, Ũ is such that ŨT Ũ = Ir. However, it is not true in general that ŨŨT = Im. If r < m,
we actually know that ŨŨT 6= Im because Im is of rank m, and cannot be linearly generated by Ũ of rank r < m.

U is orthogonal, so we have:
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(R×m)

ŨT
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
The same holds for VTV with n instead of m.

3 Orthogonality and Projections

Definition 4 (The dot product). The dot product on Rn has the following properties:

• The dot product 〈a,b〉 := aTb is an inner product on Rn.

• Two vectors a,b ∈ Rn are orthogonal iff 〈a,b〉 = 0.

• The inner product induces a norm on Rn: ‖v‖ =
√
〈v,v〉.

• A basis u1,u2, · · · ,uk ∈ Rn of a sub-space U is orthonormal iff
{
〈ui, uj〉 = 0 ∀ i 6= j√
〈ui, ui〉 = ‖ui‖ = 1 ∀ i

Definition 5 (Orthogonal matrix). A matrix U ∈ Rn×k is orthogonal if its columns form an orthonormal basis of
R(U). Equivalently U is orthogonal if and only if UTU = I.

Note: UUT is not necessarily equal to the identity matrix: UUT 6= I. However, if the matrix U is square i.e.
U ∈ Rn×n, then UTU = I implies UUT = I

Remark: if U ∈ Rn×k is orthogonal, then ‖Ux‖ = ‖x‖. This is easily seen that this follows from the orthogonality
of the matrix U: ‖Ux‖2 = xTUTUx = xTx = ‖x‖2.

Property 6. If u1,u2, · · · ,uk ∈ Rn is an orthonormal basis of a sub-space U ,

U =

 | | |
u1 u2 · · · uk

| | |

 ∈ Rn×k ⇒ ∀x ∈ U , x = UUTx

Consequently ‖x‖ = ‖UTx‖.

Note: Even though UUT is not the identity matrix, it acts as such on the sub-space U .

Proof. A vector x in the sub-space U can, by definition, be written as a linear combination of its basis vectors.
x ∈ U ⇒ ∃ a ∈ Rk : x = Ua
To prove that UUT acts as an identity matrix, we look at what it does to x. Using the fact that x can be written as a
linear combination of the basis vectors of the sub-space U , and that U is defined as an orthogonal matrix, we have:
UUTx = UUTUa = Ua = x.
A consequence of this property is that x and UTx are vectors of the same size:
‖x‖2 = xTx = (UUTx)Tx = xTUUTx = (UTx)T (UTx) = ‖UTx‖2
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Figure 1: Orthogonal projection of a vector x onto a sub-space U
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Definition 7 (Orthogonal Projection). Let u1,u2, · · · ,uk ∈ Rn be an orthonormal basis of some sub-space U and

U =

 | | |
u1 u2 · · · uk

| | |

 ∈ Rn×k

The orthogonal projection onto U is defined as:

ΠU :Rn → Rn

x→ UUTx

This is well defined and unique. In other words, if there is another orthogonal matrix V ∈ Rn×k such thatR(V) = U ,
then we can prove that the two projections are the same: UUT = VVT .

Proof. Since the columns of U and V consist of the orthonormal basis vectors of the sub-space U , they span the same
sub-space i.e. they have the same range: R(V) = R(U).
But if this is true, then there must exist a linear map P between the two matrices:
∃P ∈ Rk×k such that V = UP
But since the matrices U and V are orthogonal, we have:
I = VTV = PTUTUP = PTP
So we have proven that P is also orthogonal. Since P is a square matrix, we have that: PTP = PPT = I
Inserting this identity matrix below, we prove that orthogonal projection is unique.
VVT = UPPTUT = UUT

Definition 8 (Orthogonal Complement). If U is a sub-space of Rn, the orthogonal complement of U is defined as:
U⊥ = {v ∈ Rn|〈u,v〉 = 0 ∀u ∈ U}.

Property 9. U⊥ is a sub-space of Rn and Rn = U ⊕ U⊥.

Proof. Let u,v ∈ U⊥. For any w ∈ U we have 〈w,u + v〉 = 〈w,u〉+ 〈w,v〉 = 0 + 0 = 0, so u + v ∈ U⊥.
Let u ∈ U⊥ and α ∈ R. Then for any w ∈ U we have 〈w, αu〉 = α〈w,u〉 = α0 = 0, so αu ∈ U⊥.
Therefore U⊥ is a sub-space.
We also know that zero must be a part of every sub-space. In fact, zero is the only common element of these two sub-
spaces (Assuming that there is a non-zero vector w that belongs to both of the sub-spaces U and U⊥, using the above
definition of U⊥, it is easily seen that the inner product of w with itself is 0 i.e. 〈w,w〉 = 0 which is contradictory
to the assumption that w 6= 0.) A vector x ∈ Rn can be written as x = ΠU (x) + v. It can be proven (see property
10 below) that the vector v = x−ΠU (x) must be orthogonal to ΠU (x) ∈ U and that it must, therefore, belong to the
orthogonal complement of U . So Rn = U + U⊥.
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Figure 2: Splitting a vector into its components on two sub-spaces U and U⊥
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Since 0 is the only vector in common of U and U⊥, Rn = U⊕U⊥, i.e. every vector in Rn can be decomposed uniquely
into a sum of two vectors, one belonging to U and the other to U⊥.

Property 10. Based on the above definitions of orthogonality and orthogonal complement, we can summarize the
following properties of orthogonal projection:

• Π2
U = ΠU

• ∀x : 〈ΠU (x),ΠU (x)− x〉 = 0

• Im(ΠU ) = U

• Ker(ΠU ) = U⊥

• ∀x : ‖ΠU (x)‖ ≤ ‖x‖

Proof. These properties can be proven as follows :

• Π2
U = ΠU :

To prove this we use the definition of projection in terms of matrices: Knowing that UUTx is a projection, we
have: Π2

U (x) = ΠU (UUTx) = UUTUUTx = UUTx = ΠU (x).
Note that in this calculation we used UTU = I.

• ∀x : 〈ΠU (x),ΠU (x)− x〉 = 0 :

〈ΠU (x),ΠU (x)− x〉 = 〈UUTx,UUTx− x〉
= xTUUTUUTx− xTUUTx

= 0

• Im(ΠU ) = U :
∀x ∈ Rn we have that ΠU (x) ∈ U because since U is a basis of U , UUTx ∈ U , so Im(ΠU ) ⊂ U .
If y ∈ U then ΠU (y) = UUTy = y (see property 6), so Im(ΠU ) ⊃ U .
So Im(ΠU ) = U

• Ker(ΠU ) = U⊥:
Let x ∈ Ker(ΠU ). Then ΠU (x) = 0, so UUTx = 0.
We know from property 9 that x can be uniquely decomposed into x = x′ + x′⊥ where x′ ∈ U and x′⊥ ∈ U⊥.
So 0 = UUTx′ + UUTx′⊥ = x′ + UUTx′⊥.
Since x′⊥ ∈ U⊥, UUTx′⊥ = 0, so x′ = 0.
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Therefore x = x′⊥ ∈ U⊥, so Ker(ΠU ) ⊂ U⊥.
Let x ∈ U⊥, then ∀u ∈ U , 〈u,x〉 = 0, so UUTx = 0. So Ker(ΠU ) ⊃ U⊥.
So Ker(ΠU ) = U⊥.

• ∀x : ‖ΠU (x)‖ ≤ ‖x‖:
We know that any vector x can be uniquely decomposed into two components: one is ΠU (x) ∈ U , and the other
is in U⊥. For simplicity we call the other component v.
x = ΠU (x) + v
‖x‖2 = ‖ΠU (x) + v‖2 = 〈ΠU (x) + v,ΠU (x) + v〉 = 〈ΠU (x),ΠU (x)〉+ 〈ΠU (x),v〉+ 〈v,ΠU (x)〉+ 〈v,v〉
Since the vector v is in the orthogonal complement of U , it must be orthogonal to all the vectors on U .
‖x‖2 = ‖ΠU (x)‖2 + ‖v‖2 ⇒ ‖ΠU (x)‖2 ≤ ‖x‖2 ⇒ ‖ΠU (x)‖ ≤ ‖x‖

Property 11. Let U be a subspace of Rn. Then, for any x ∈ Rn we have arg minu∈U ‖u − x‖ = ΠU (x). I.e. the
closest point to x which belongs to U is the orthogonal projection of x onto U .
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