IFT 6760A - Lecture 2
SVD and Orthogonality

Scribe(s): Yann BOUTEILLER, Parviz HAGGI Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we reviewed the basics of linear algebra. In this lecture we will first look into the concept of

Singular Value Decomposition of a matrix, often called SVD, followed by the concepts of orthogonality and orthogonal
projections.

2 Singular Value Decomposition
Theorem 1 (SVD). Any matrix A € R™*™ can be written as:
A =UxVv7T

where U € R™*™ and V. € R™ "™ are both orthogonal matrices (i.e. UTU = I, and VIV = 1,,) and ¥ € R™*"
is a diagonal rectangular matrix such that 3; ; # 0 if and only if i < rank(A)

The form A = UXV7 is called the Singular-Value Decomposition (SVD) of A.

Property 2. Let r be the rank of a matrix A € R™*". Let U and V be the matrices from the SVD of A with columns

uy,..., 0, € R and vy, ..., v, € R™ respectively. Then the following hold:
e uy,...,u, forms abasis abasis of R(A)
® W, 1,..., U, forms abasis of N(AT)
® Vvi,...,V, forms abasis a basis of R(AT)

® V.i1,...,Vy forms a basis of N (A)

Definition 3 (Truncated SVD). Theorem([l|can be rewritten as:

B _ A 0 ({}T)
_ vy s vr_|U0 G o) e Y = U A VT
(k) (aseom) (i) (o) [mm (mxm—r) 0 0 Vi (mxr)(rxr)(rxn)
(m—rxr) (m—rxn—r) (n—rxn)
Where:

A € R™*" is diagonal with A; ; # 0
UTU = VTV =1, (U and V are both orthogonal matrices)

The form A = UAVT is called the Truncated Singular-Value Decomposition (Truncated SVD) of A.
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Remark : In truncated SNV~D, U is such that UTU = I,. However, it is not true in general that I~J[~I~T =1, Ifr <m,
we actually know that UU7T # I, because Iy, is of rank m, and cannot be linearly generated by U of rank » < m.

U is orthogonal, so we have:

o U U [(NJT[N)J UTu. L 0

g = (RNXm) L = ,fXTN (,?:Xm:r) o (rxr) rXm—r
x| UT (mxB) - (mxm-pm)| | UJU  UfU, | | O Im—r
(m—Rxm) (m—rxr) (m—rxm—r) (m—rxr) (m—rxm—r)

The same holds for VTV with n instead of m.

3 Orthogonality and Projections

Definition 4 (The dot product). The dot product on R™ has the following properties:

e The dot product (a,b) := a”b is an inner product on R".
e Two vectors a,b € R™ are orthogonal iff (a,b) = 0.

o The inner product induces a norm on R™: ||v|| = \/(v, V).

: ) , (us, u;) =0 Vi#gj
e A basisuy,ug,--- ,u; € R" of a sub-space U is orthonormal yj‘{ \/7 .
(ugu;) = ||lug]| =1V ¢

Definition 5 (Orthogonal matrix). A matrix U € R™** is orthogonal if its columns form an orthonormal basis of
R(U). Equivalently U is orthogonal if and only if UTU = L

Note: UUT is not necessarily equal to the identity matrix: UU? # I. However, if the matrix U is square i.e.
U € R™", then UTU = Iimplies UUT =1

Remark: if U € R™** is orthogonal, then |[Ux|| = ||x||. This is easily seen that this follows from the orthogonality
of the matrix U: ||Ux||? = xTUTUx = xTx = ||x||%.

Property 6. Ifu;,us,--- ,u; € R™ is an orthonormal basis of a sub-space U,

|
U=|u u - wl|eR™=vxeld, x=UU"x
-

Consequently ||x|| = |[UTx]|.

Note: Even though UUT7 is not the identity matrix, it acts as such on the sub-space /.

Proof. A vector x in the sub-space U can, by definition, be written as a linear combination of its basis vectors.
xeU=TJacRF :x="Ua

To prove that UU7 acts as an identity matrix, we look at what it does to x. Using the fact that x can be written as a
linear combination of the basis vectors of the sub-space U, and that U is defined as an orthogonal matrix, we have:
UU"x = UUTUa = Ua = x.

A consequence of this property is that x and U7 'x are vectors of the same size:

[x||? = xTx = (UUTx)Tx = xTUUTx = (UTx)T (UTx) = |UTx|]? O
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Figure 1: Orthogonal projection of a vector x onto a sub-space U
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Definition 7 (Orthogonal Projection). Let uj,us,--- ,u; € R™ be an orthonormal basis of some sub-space U and
| |
U= |u uwu - ug GRnXk
| |
The orthogonal projection onto U is defined as:
I, :-R* - R"
x — UUTx

This is well defined and unique. In other words, if there is another orthogonal matrix V' € R™** such that R(V) = U,
then we can prove that the two projections are the same: UU” = VVT,

Proof. Since the columns of U and V consist of the orthonormal basis vectors of the sub-space U/, they span the same
sub-space i.e. they have the same range: R(V) = R(U).

But if this is true, then there must exist a linear map P between the two matrices:

3P € R¥** such that V = UP

But since the matrices U and V are orthogonal, we have:

I=V?'Vv =PTUTUP = PTP

So we have proven that P is also orthogonal. Since P is a square matrix, we have that: P"P = PPT =1

Inserting this identity matrix below, we prove that orthogonal projection is unique.

vvT =uppPTU? = UUT O

Definition 8 (Orthogonal Complement). If U is a sub-space of R", the orthogonal complement of U is defined as:
Ut = {v e R"(u,v) =0Vu e U}

Property 9. U* is a sub-space of R and R = U & U,

Proof. Letu,v € U*. Forany w € U we have (w,u+v) = (w,u) + (w,v) =0+0=0,s0u+v e U,

Letu € U+ and o € R. Then for any w € U we have (w, au) = a(w,u) = a0 = 0, s0 au € U~.

Therefore U~ is a sub-space.

We also know that zero must be a part of every sub-space. In fact, zero is the only common element of these two sub-
spaces (Assuming that there is a non-zero vector w that belongs to both of the sub-spaces ¢/ and I/, using the above
definition of 2/, it is easily seen that the inner product of w with itself is 0 i.e. (w, w) = 0 which is contradictory
to the assumption that w # 0.) A vector x € R™ can be written as x = II;/(x) + v. It can be proven (see property
[10]below) that the vector v = x — II;(x) must be orthogonal to II;;(z) € U and that it must, therefore, belong to the
orthogonal complement of /. So R"™ = U + U~.
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Figure 2: Splitting a vector into its components on two sub-spaces I/ and U+
Y

uL

Since 0 is the only vector in common of ¢ and U , R™ = U U, i.e. every vector in R can be decomposed uniquely
into a sum of two vectors, one belonging to I/ and the other to . O

Property 10. Based on the above definitions of orthogonality and orthogonal complement, we can summarize the
following properties of orthogonal projection:

112, = Iy

Vx: (Hy(x), Hy(x) —x) =0
Im(Tly) = U

Ker(Ily) = U+

vx [Ty (x)]| < [Ix|]

Proof. These properties can be proven as follows :

HZ%{ = Hu:

To prove this we use the definition of projection in terms of matrices: Knowing that UU” x is a projection, we
have: 117 (x) = II;(UUTx) = UUTUUTx = UUTx = Iy (x).

Note that in this calculation we used UTU = 1.

Vx o (I (x), Iy (x) —x) =0

(TTy(x), Ty (x) — x) = (UUTx, UUTx — %)
=xTuvuTuulx —xTuuTx
=0

Im(Hu) =U:

Vx € R™ we have that ITy,(x) € U because since U is a basis of 4, UUTx € U, so Im(ITy,) C U.
If y € U then IT,(y) = UUTy = y (see property @) so Im(ITy,) D U.

SoIm(Ily) =U

Ker(Ily) = U, :

Let x € Ker(IIy,). Then ITy;(x) = 0, s0 UUTx = 0.

We know from property@]that x can be uniquely decomposed into x = x’ + x’; where x’ e Y andx', € U, .
So0=UUTY +UUTX', =x'+UUTY .

Sincex’ | €U, UUTx' | =0,s0x’ = 0.
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Therefore x = x|, € U, so Ker(Ily) C U, .
Letx € U, , then Vu € U, (u,x) = 0, so UUTx = 0. So Ker(Ily;) D U, .
So Ker(ITy) = U, .

o Vx: [Mu(x)] < [Ix:
We know that any vector x can be uniquely decomposed into two components: one is IT;;(x) € U, and the other
is in U . For simplicity we call the other component v.
x =Iy(x)+v
I¢]12 = 1T (3¢) + II? = (T () 4+ v, Ty () +v) = (T (), T (%)) + (I (), v) + (v, T () + (v, v)
Since the vector v is in the orthogonal complement of ¢/, it must be orthogonal to all the vectors on /.
[ = [T ) I* + [[v]I* = [T (x)[* < [Ix]1> = [T (x)]| < [x]]

O

Property 11. Let U be a subspace of R™. Then, for any x € R™ we have arg min, o, |[u — x|| = Iy(x). Le. the
closest point to x which belongs to U is the orthogonal projection of x onto U.
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