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1 Summary
In the previous lecture, we have introduced one of the matrix decompositions called the singular value decomposition.
Then, we have introduced some definitions related to orthogonality and projections such that orthonormal basis and
orthogonal matrix.
In this lecture, we will continue to introduce some notions related to orthogonality and projections which are or-
thogonal complement and orthogonal projection. Then we will present another matrix decomposition called the QR
decomposition along with an application in linear regression. In addition, we will present some basics about matrix
inverse. Finally, we will introduce eigenvalues and eigenvectors.

2 Orthogonality and Projections (continued)

Definition 1 (Orthogonal complement). If U is a subspace of Rn, the orthogonal complement of U is defined as

U⊥ = {v ∈ Rn | 〈u,v〉 = 0 ∀u ∈ U}

A graphical illustration of the orthogonal complement can be found in figure 1.

The orthogonal complement U⊥ is a subspace of Rn and we can define Rn as a direct sum between U and U⊥, i.e,
Rn = U ⊕ U⊥.
If U ∈ Rn×k is orthogonal then for all x ∈ R(U) we have the following property: UUTx = x.

Proof. We want to show that for all x ∈ R(U), we have UUTx = x. Let x ∈ R(U) then there exists a ∈ Rk such
that x = Ua. Thus, UUTx = UUTUa = Ua = x since we have UTU = I.

Figure 1: Illustration of the orthogonal complement of U
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Definition 2 (Orthogonal projection). Let u1, · · ·uk ∈ Rn an orthonormal basis of a subspace U and U ∈ Rn×k
such that

U =

 | |
u1 · · · uk
| |


The orthogonal projection onto U is defined as:

Πu : Rn → Rn

x 7→ UUTx

A graphical illustration of the orthogonal projection can be found in figure 2.

Proof. We need to show that Πu is well-defined, i.e, if V ∈ Rn×k is orthogonal and R(V) = R(U) then UUT =
VVT . Let v1, · · ·vk another orthogonal basis of U and V ∈ Rn×k such that

V =

 | |
v1 · · · vk
| |


We haveR(V) = R(U) then there exists P ∈ Rk×k such that V = UP.
Since:

• P is square

• I = VTV = PT UTU︸ ︷︷ ︸
I

P = PTP

then PPT = I. Thus, we have VVT = UPPTUT = UUT

Figure 2: Illustration of the orthogonal projection of x onto U

The orthogonal projection has the following properties:

• Π2
u = Πu

• For all x ∈ Rn, 〈Πu(x),Πu(x)− x〉 = 0

• Im(Πu) = U

• Ker(Πu) = U⊥
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• For all x ∈ Rn, ‖Πu(x)‖ ≤ ‖x‖

• For all x ∈ Rn, arg minu∈U ‖x− u‖ = Πu(x)

Proof. We want to show that for all x ∈ Rn, we have 〈Πu(x),Πu(x)− x〉 = 0.
Let x ∈ Rn and Πu(x) its orthogonal projection onto U , i.e, Πu(x) = UUTx. Then,

〈Πu(x),Πu(x)− x〉 = 〈UUTx,UUTx− x〉
= xTUUTU︸ ︷︷ ︸

I

UTx− xTUUTx

= xTUUTx− xTUUTx

= 0

(1)

Proof. We want to show that for all x ∈ Rn, we have arg minu∈U ‖x− u‖ = Πu(x).
Let v ∈ U , we have ‖x− v‖2 = ‖x−Πu(x)‖2 + ‖v −Πu(x)‖2. Therefore, the minimum distance between x and
v is when v is the orthogonal projection of x onto U which gives us ‖v −Πu(x)‖2 = 0 as shown in figure 3.

Figure 3: Illustration of the distance between x and v

3 The QR decomposition
In order to solve some matrix problems, we use matrix decompositions (factorizations). In this section, we present the
QR decomposition which can be used to solve the linear least squares problem for example.

Theorem 3. Any matrix A ∈ Rm×n can be written as A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is
upper triangular. This decomposition of A is called the QR decomposition.
If m > n then the reduced (thin) QR decomposition of A is defined as:

A =
[
Q1 Q2

] R1

0

 = Q1R1

where Q1 ∈ Rm×n is orthogonal and R1 ∈ Rn×n is upper triangular.
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Remark 4. If U ∈ Rn×k and rank(U) = k then its thin QR decomposition U = QR is such that:

• R(Q) = R(U)

• R is invertible

where Q ∈ Rn×k and R ∈ Rk×k

If u1, · · ·uk ∈ Rn is a basis of U , which is not necessarily orthonormal, and U ∈ Rn×k such that

U =

 | |
u1 · · · uk
| |


then we have the following property: Πu(x) = U(UTU)−1UTx

Proof. In order to show the previous property, let’s consider the thin QR decomposition of U, i.e, U = QR where
Q ∈ Rn×k is orthogonal and R ∈ Rk×k is upper triangular and invertible. We have

U(UTU)−1UTx = QR(RTQTQR)−1RT︸ ︷︷ ︸
I

QTx

= QQTx

= Πu(x)

(2)

4 Linear regression
In the context of statistical learning theory, we are often interested in fitting the best model to a training set (i.e. perform
regression). Formally, we aim to learn a function f : Rd → R from a set of examples which has the following form:
D = {(x1, y1), .., (xN , yN )} with yi ≈ f(xi),∀i = 1, 2, .., N .
Suppose the function f takes a linear form. That is, f(x) = wTx for some weight vector w ∈ Rn. One plausible
approach to learning this function is by minimizing the Squared Error (SE) loss on an observed dataset D:

w∗ = arg min
w∈Rd

N∑
i=1

(wTxi − yi)2 (3)

If we take

X =

xT1
...

xTN

 ∈ RN×d,y =

 y1
...
yN

 , (4)

then (3) can be written in matrix form as

w∗ = arg min
w∈Rd

||Xw − y||2, (5)

in which case Xw ∈ R(X).
In fact, finding a solution to the linear regression problem can be seen as projecting the dataset onto the hyperplane
spanned by X. For instance, assuming the rank of X is d

ŷ = arg min
v∈R(X)

||v − y||2

= ΠX(y)

= X (XTX)−1XTy︸ ︷︷ ︸
w∗

,

(6)
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5 Matrix inverses and pseudo-inverses

Definition 5 (Matrix inversion). A matrix A ∈ Rm×m is invertible if ∃A−1 ∈ Rm×m such that A−1A = I.

The matrix inverse has the following properties:

• AA−1 = I

• (AB)−1 = B−1A−1

The following statements regarding the matrix inverse are equivalent:

• det(A) 6= 0

• A−1 exists

• A has full rank

• N (A) = {0}

Definition 6 (Moore-Penrose pseudo-inverse). Let A ∈ Rm×n and let A = U︸︷︷︸
m×R

D VT︸︷︷︸
R×m

be a truncated SVD where

R = rank(A).
Then, the Moore-Penrose pseudo-inverse of A is defined as A† = VD−1UT .

The Moore-Penrose pseudo-inverse has the following properties:

• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A

Suppose (as a special case) that rank(A) = m. Then,

AA† = (UDVT )(VD−1UT )

= UUT

= I,

(7)

where the last equality holds since rank(A) = m hence U is square and UUT = UTU.
However, this simplification does not hold for A†A. For instance, if m < n, then

A†A = (VD−1UT )(UDVT )

= VVT 6= I
(8)

6 Eigenvalues

Definition 7 (Eigenvalue, eigenvector and eigenspace). Let A ∈ Rm×m. Any v ∈ Rm such that v 6= 0 and satisfying

Av = λv

for λ ∈ C is called an eigenvector of A corresponding to the eigenvalue λ. The space Eλ = {v ∈ Rm|Av = λv} is
called the eigenspace of A corresponding to λ.
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For example, if A = I then Av = Iv = v for all v and 1 is an eigenvalue with corresponding eigenspace E1 = Rm.
Eigenvalues can be found by finding the roots of the characteristic polynomial:

Av = λv ⇐⇒ (A− λI)v = 0

⇐⇒ v ∈ N (A− λI)
⇐⇒ det(A− λI) = 0

(9)

As an example, let’s find the eigenvalues for a given matrix A.

A =

(
1 1
0 2

)
It’s characteristic polynomial is

det

((
1− λ 1

0 2− λ

))
= (1− λ)(2− λ)

which implies that the eigenvalues are λ ∈ {1, 2}.
As a special case, if A is triangular, then its determinant is the product of its eigenvalues and the eigenvalues are the
diagonal entries of A.

Definition 8 (Diagonalization). A matrix A ∈ Rn×m is diagonalizable iff there exists a basis v1, ..,vn of Rn consist-
ing of eigenvectors of A.
In this case, V−1AV = D is diagonal.

An example of a matrix diagonalizable over C but not over R is

A =

(
0 −1
1 0

)
For instance, consider the problem of finding the eigenvectors of A. Simplifying the characteristic polynomial equa-
tion implies that we have to solve λ2 + 1 = 0. The equation has no real roots but has two complex roots, λ ∈ {i,−i},
which allows for A to be diagonalizable over C.
An example of a non-diagonalizable matrix is

A =

(
1 1
0 1

)
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