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Linear Algebra Refresher

Scribe(s): Arthur Dehgan, Adrien Mainka Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture, we have introduced eigenvalues and eigenvectors and how they relate to matrix diagonalization.
In today’s lecture we will go more in depth on eigenvalues and eigenvectors and introduce the Spectral Theorem and
the Schur Decomposition. Finally we will be able to prove the singular value decomposition.

2 Eigenvalues and eigenvectors (continued)

Definition 1 (Diagonalizability). A matrix A ∈ Rm×m is diagonalizable over R if it is similar to a diagonal matrix :

• There exists an invertible matrix V ∈ Rm×m, such that V−1AV = D where D is a diagonal matrix.

• Or equivalently, there exists a basis v1, ...,vm of Rm consisting of eigenvectors of A

Proof. We show that the two definitions are equivalent :

Let λ1, ..., λm the eigenvalues associated with v1, ...,vm and V =

 | |
v1 · · · vm

| |

 then we have :

AV =

 | |
λ1v1 · · · λmvm

| |

 = VD (1)

Since V forms a basis of Rn it is invertible. Hence V−1AV = D. where D is a diagonal with Di,i = λi

Example 2.

A1 =

(
0 −1
1 0

)
is diagonalizable over C but not over R.

A2 =

(
2 1
0 2

)
is not diagonalizable. Since λ = 2, Eλ = N (A2 − 2I) = N

(
0 1
0 0

)
= span

(
1
0

)
.

Thus we have dim(Eλ) = 1 and since λ = 2 is the only eigenvalue of A2 we cannot find a basis consisting of
eigenvectors of A.

Definition 3 (Eigenvalues multiplicities). Let λ be an eigenvalue of A then :

• The geometric multiplicity, mg(λ) is the dimension of Eλ

• The algebric multiplicity ma(λ), is the multiplicity of λ as root of det(A − λI). Equivalently, ma(λ) is the
dimension of the generalized eigenspace

⋃
k≥0
N ((A− λI)k)
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Example 4. Let A =

[
2 1
0 2

]
, the corresponding characteristic polynomial is (2−λ)2. The eigenvalue of A is 2 with

multiplicity ma(λ) = 2.

Eλ = N (A− 2I)

= N (

[
0 1
0 0

]
)

= span(

[
1
0

]
)

(2)

We have mg(λ) = dim(Eλ) = 1 which is different from its eigenvalue multiplicity ma(λ) = 2 hence the matrix A is
not diagonalizable.

Property 5. The eigenvectors v1, ...,vn associated with distinct eigenvalues of A are linearly independent.

Proof. Let v1 and v2 two eigenvectors of A associated with the distinct eigenvalues λ1 and λ2 and let a and b such
that av1 + bv2 = 0. It follows that :

A(av1 + bv2) = 0

aAv1 + bAv2 = 0

aλ1v1 + bλ2v2 = 0

(3)

But by multiplying av1 + bv2 = 0 by λ2, we also have :

aλ2v1 + bλ2v2 = 0 (4)

Hence by substracting (3) and (4) we have :

(aλ1v1 + bλ2v2)− (aλ2v1 + bλ2v2) = 0

a(λ1 − λ2) = 0
(5)

If the eigenvalues λ1 and λ2 are distinct, i.e, λ1 6= λ2, we can conclude a = 0. We would use the same method to
prove b = 0.
Therefore the eigenvectors v1 and v2 are linearly independent.
We can then repeat the process for each pair of eigenvectors of A and we would conclude that the eigenvectors
v1, ...,vn associated with distinct eigenvals of A are linearly independent.

Definition 6 (Positive definite and semi-definite matrices). A symmetric matrix A ∈ Rm×m is :

• positive definite iff all of its eigenvalues are strictly positive.

• positive semi-definite or non-negative definite if all of its eigenvalues are non negative.

Property 7. For any matrix A ∈ Rm×n, A>A is positive semi-definite

Theorem 8 (Spectral theorem). If A ∈ Rm×m is symmetric then:

(i) All of its eigenvalues are real

(ii) A is diagonalizable by an orthogonal matrix i.e, there exists U ∈ Rm×m orthogonal such that A = UDU>

with D ∈ Rm×m diagonal

Proof.
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(i) Let v 6= 0 be an eigenvector of A, we note v for the complex conjugate of v.

v>Av = v>A>v = (Av)
>

v = λv>v (6)

A is real and symmetric, hence we have A = A. We also have :

v>Av = v> ·A · v = v>Av = v>λv = λv>v (7)

Since v>v 6= 0, then λ = λ hence λ ∈ R.

(ii) Let v 6= 0 a unit eigenvector for λ, i.e. Av = λv, and ||v|| = 1. Let U = span(v)⊥ = {u ∈ Rm|〈u,v〉 = 0}.
We can observe that U is A invariant, i.e. if u ∈ U , then Au ∈ U . 〈Au,v〉 = (Au)>v = u>A>v =
u>Av = λu>v = 0 that implies that we have Au ∈ U . Let u1, ...,um−1 ∈ Rm be an orthonormal basis of

U , and let U =

 | | |
v u1 . . . um−1
| | |

 ∈ Rm×m. We notice that U is orthogonal, and Rm = U ⊕ U> =

U ⊕ span(v), with dim(span(v)) = 1. For each i, we have Aui ∈ U , which means that Aui = U

(
0
bi

)

for some bi ∈ Rm−1 (indeed, Aui is orthogonal to v). We also have Av = λv = U


λ
0
...
0

, from which

AU = U


λ 0 . . . 0
0
... B
0

 follows. Since B is symmetric, we can reiterate the process m − 1 times to

diagonalize B and end up with A =

 | |
v1 . . . vm

| |




λ1 0
. . .

0 λm


 – v1 –

...
– vm –

 where vi is

the eigenvector associated with an eigenvalue λi for each i ∈ {1, . . . ,m}

Theorem 9 (Schur Decomposition). Let A ∈ Rm×m. The following hold:

• There exists an unitary matrix U ∈ Cm×m such that U∗AU = T with T an upper triangular matrix.
Here we have U∗ = U

>
, and unitary means U∗U = I.

• There exists a real orthogonal matrix Q ∈ Rm×m such that :

Q>AQ =


R1,1 . . . . . . R1,k

0
. . .

...
...

. . .
. . .

...
0 . . . 0 Rk,k

 (8)

where each Ri,i ∀i ∈ {1, 2, . . . , k} is either a 1×1 matrix (corresponding to a real eigenvalue) or a 2×2 matrix

(corresponding to a pair of conjugate complex eigenvalues, with the block having the form
(
α −β
β α

)
).

3 The Singular Value Decomposition
In a previous lecture we defined the Singular Value Decomposition (SVD), now that we have defined the spectral
theorem we can prove the SVD decomposition.
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3.1 Singular Value Decomposition

Theorem 10 (SVD). Any matrix A ∈ Rm×n can be written as:

A = UΣV>

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices (i.e. U>U = Im and V>V = In) and Σ ∈ Rm×n
is a diagonal rectangular matrix such that Σi,i 6= 0 if and only if i ≤ rank(A)

The form A = UΣV> is called the Singular-Value Decomposition (SVD) of A.

Proof. A>A is positive semi-definite and symmetric. Using the spectral theorem we can write A>A = VΣ2V>

with V orthogonal and Σ diagonal. Let A>A = [V1V2]

(
Σ̃2

0

)[
V1
>

V2
>

]
with Σ̃ ∈ Rr×r with strictly posi-

tive entries, where r is the rank of A>A. It follows that A>A = V1Σ̃2V1
>. Let U1 = AV1Σ̃−1. We have to prove:

(i) U1
>U1 = I

(ii) U1
>AV1 = Σ̃

For (i), we have

U1
>U1 = Σ̃−1V1

>A>AV1Σ̃1

= Σ̃−1V1
>V1Σ̃2V1

>V1Σ̃−1

= I

(9)

(ii) follows from the equality U1
>AV1 = Σ̃−1V1

>A>AV1 = Σ̃

Now we define U2 ∈ Rm×(m−r) orthogonal such thatR(U2) = R(U1)
⊥ and let U = (U1U2) ∈ Rm×m. Observe

that U is orthogonal by construction. We have

U>AV =

[
U1
>

U2
>

]
A
[
V1
>V2

>
]

=

[
U1
>AV1 U1

>AV2

U2
>AV1 U2

>AV2

] (10)

We already now that the top left block is equal to Σ̃. We also have

A>AV2 = V1Σ̃v1
> = 0

which implies V2
>A>AV2 = ||AV2||2F = 0, hence AV2 = 0 and the two blocks in the second column are also

equal to zero. It remains to show that U2
>AV1 = 0, which follows from the fact that U2

>U1 = 0 = U2
>AV1Σ̃−1

since Σ̃−1 is an invertible matrix.
In conclusion, we have

U>AV =

[
Σ̃ 0
0 0

]
(11)
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