
IFT 6760A - Lecture 5
Matrix Norms, Low Rank Approximation and Min-max Theorem

Scribe(s): Erik-Olivier Riendeau, William Duguay Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we continued reviewing the fundamentals of linear algebra. We started by covering diago-
nalizability. Then, we looked at the difference between the geometric and algebraic multiplicity. In particular, for
a matrix to be diagonalizable, both these multiplicities must be equal. Also, we defined the definiteness of a matrix
and the Spectral theorem. Moreover, we covered the Shur decomposition. We finished by proving the singular-value
decomposition.

In this lecture we reviewed matrix norms, in particular the p-norm and the Frobenius norm. Then, we covered low
rank approximation, specifically the Ecart-Young-Mirsky theorem. We looked at the Rayleigh-Ritz theorem and the
Courant-Fischer (Min-max) theorem. Finally, we showed trace maximization and minimization.

2 Matrix Norms

2.1 Matrix p-norm
We start by defining the basic building block of the matrix p-norm:

Definition 1 (Vector p-norm). The vector p-norm, where p ∈ R is greater than 1, is defined as:

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

.

See [1] for more information on vector norms.

Now, any norm on vectors induces a norm on matrices. The matrix p-norm of an arbitrary matrix A, denoted ‖A‖p,
is defined as:

‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

.

Remember that the difference between the supremum and the maximum is that the maximum must be an element of
the set while the supremum need not to be. More specifically, if X is an ordered set, and S is a subset, then s0 is the
supremum of S iff:

1. s ≤ s0,∀s ∈ S

2. if x ∈ X and s ≤ x, ∀s ∈ S, then s0 ≤ x

On the other hand, an element m is the maximum of S iff:

1. s ≤ m,∀s ∈ S
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2. m ∈ S

Considering that a property of a vector norm is ‖cx‖p = |c|‖x‖p, for any scalar c, we choose c such that ‖x‖p = 1.
So the following equivalent statement defines the matrix p-norm.

Definition 2 (Matrix p-norm). The matrix p-norm, where p ∈ R, is defined as:

‖A‖p = max
‖x‖=1

‖Ax‖p

Some geometric intuition about the matrix p-norm can be seen in [2].

As a side note, the main difference between a norm and a distance is that one can consider the norm of only one
element, while a distance needs at least two elements.

2.2 Matrix Frobenius Norm
Definition 3 (Frobenius Norm). The Frobenius norm is the 2-norm of the vector obtained by concatenating the rows
(or equivalently the columns) of the matrix A:

‖A‖F =

 n∑
i=1

m∑
j=1

|aij |2
1/2

From the previous definition, the Frobenius norm can also be obtained by rearranging the square of the norm in the
following way:

‖A‖2F =

n∑
i=1

m∑
j=1

|aij |2 = Tr(ATA) = Tr(AAT )

Where we used the following property of traces: Tr(ABC) = Tr(CAB) = Tr(BCA)

Property 4. Let A ∈ Rm×n, x ∈ Rn and let P ∈ Rm×m, Q ∈ Rn×n be two orthogonal matrices. Then, the
following holds:

• Matrix norms induced by vector norms: ‖Ax‖p ≤ ‖A‖p‖x‖p

• Orthogonal matrices preserve the Frobenius norm: ‖PAQ‖F = ‖A‖F

• Orthogonal matrices preserve the 2-norm: ‖PAQ‖2 = ‖A‖2

Property 5. For any A ∈ Rm×n, we have ‖A‖2 = σ1, where σ1 is the largest singular value of A.

Proof.

‖A‖2 = max
‖x‖=1

‖Ax‖2 (definition of the 2-norm)

= max
‖x‖=1

‖UΣVTx‖2 (replacing A by its SVD)

= max
‖x‖=1

‖ΣVTx‖2 (U is orthogonal and does not change the norm)

= max
‖y‖=1

‖Σy‖2 (replacing VTx by y)

yT =
[
1 0 0 · · ·

]
(since we want to maximize, and Σ is an ordered diagonal matrix, we set y1 = 1)

‖A‖2 =


σ1

σ2
. . .



1
0
0
...

 = σ1
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3 Low Rank Approximation
Low rank approximation is a minimization problem with a cost function that measures the difference between a given
matrix A ∈ Rm×n and an approximating matrix with reduced rank. This minimization problem has an analytical
solution in terms of the singular value decomposition.

Theorem 6 (Eckart-Young-Mirsky). Let A = UDVT =
∑r

i=1 σiuiv
T
i be the SVD of A, where

• σi ∈ R,ui ∈ Rm,vi ∈ Rn

• r = rank(A) and σ1 > σ2 > ... > σr > 0 are the singular values of A

• U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices.

Now, let Ak =
∑k

i=1 σiuiv
T
i , where only the first k terms are kept from the sum defining A. Then

min
X s.t. rank(X)≤k

‖A−X‖F = ‖A−Ak‖F

Note that this is a convex optimization problem over a non convex set. Also, the same result holds for the 2-norm:

min
X s.t. rank(X)≤k

‖A−X‖2 = ‖A−Ak‖2

Proof. We show the result for the 2-norm. We start by showing that ‖A‖ = σk+1. Let Dk be the diagonal matrix with
diagonal entries 0, · · · , 0, σk+1, · · · , σr, 0, · · · , 0.

Dk =



0
. . .

0
σk+1

. . .
σr

0
. . .

0


We have

‖A−Ak‖2 = ‖
r∑

i=1

σiuiv
T
i −

k∑
i=1

σiuiv
T
i ‖2 (Definition of Ak)

= ‖
r∑

i=k+1

σiuiv
T
i ‖2

= ‖UDkVT ‖2 (Definition of Dk)
= ‖Dk‖2 (By Property 4, since U and V are orthogonal)
= σk+1 (By Property 5)

We want to show that for any matrix B = XY, where r = rank(B), X ∈ Rm×r,Y ∈ Rk×n, Ak will always be
closer to A than B with respect to the matrix 2-norm.

‖A−B‖2 ≥ ‖A−Ak‖2 (Statement to prove)
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Let Vk+1 =

 | |
v1 · · · vk+1

| |

, Where v1, · · · ,vk+1 are the eigenvectors associated with the top k + 1 singular

values.
By the Rank-Nullity Theorem:

dimN (B) = n− rank(B)

hence,
dimN (B) + dimR(Vk+1) > n

Which implies that N (B) ∩R(Vk+1) 6= {0}. Then, we can take a unit vector x ∈ N (B) ∩R(Vk+1). We have

‖A−B‖22 ≥ ‖(A−B)x‖22
= ‖Ax‖22 (Since x is in N (B), then Bx = 0)

= ‖UDVTx‖22 (SVD of A.)

= ‖DVTx‖22 (By Property 4, since U is orthogonal)

=

r∑
i=1

σ2
i 〈vi,x〉2

=

r∑
i=k+1

σ2
i 〈vi,x〉2 (x ∈ R(Vk+1), which implies that x is orthogonal to every vi for i < k + 1)

≥ σ2
k+1

r∑
i=k+1

〈vi,x〉2 (σk+1 is the largest singular value of D)

= σ2
k+1‖VT

k+1x‖22 (Definition of 2-norm)

= σ2
k+1‖VTx‖22 (VT

k+1x = VTx because x ∈ R(Vk+1))

= σ2
k+1‖x‖22 (By Property 4, since V is orthogonal)

= σ2
k+1 (x is of unit length)

= ‖A−Ak‖22 (As shown in the first part of the proof)

By taking the square root on each side of the inequality, we obtain that for any matrix B = XY:

‖A−B‖2 ≥ ‖A−Ak‖2

4 Variational Characterization of Eigenvalues of Symmetric Matrices

Definition 7 (Rayleigh Quotient). Let A ∈ Rn×n be symmetric, then the Rayleigh Quotient is the ratio

xTAx

xTx

The quotient is independent of the scale of x since the denominator is the squared norm of x.
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Theorem 8 (Rayleigh-Ritz). Let A ∈ Rn×n be symmetric. The solution to maximizing (resp. minimizing) the
Rayleigh-Ritz Quotient for x 6= 0 is given by the largest (resp. smallest) eigenvalue of A:

max
x6=0

xTAx

xTx
= max
‖x‖2=1

xTAx = λmax(A) (1)

min
x 6=0

xTAx

xTx
= min
‖x‖2=1

xTAx = λmin(A) (2)

Moreover, if v1, · · · , vk are the eigenvectors corresponding to the top k eigenvalues λ1, · · · , λk of A, then

max
‖x‖2=1

x∈span(v1,··· ,vk)
⊥

xTAx = λk+1(A) (3)

where the maximum is obtained by letting x = vk+1. The constraint x ∈ span(v1, · · · ,vk)
⊥ means that x must be

orthogonal to the first k eigenvectors of A. Since A is assumed to be symmetric, all its eigenvectors are orthogonal.

Proof. (1) Let A = VDVT be the eigendecomposition of A, where v1, · · · ,vn are the eigenvectors of A and V is
an orthogonal matrix constructed as:

V =

 | |
v1 · · · vn

| |

 ∈ Rn×n

Let x ∈ Rn be of unit norm (‖x‖2 = 1) and let y be a linear combination of the eigenbasis of A, such that y =
VTx ∈ Rn. Then we can derive the following inequality:

xTAx = xTVDVTx (Eigendecomposition of A)

= yTDy (Definition of y)

=

n∑
i=1

λiy
2
i (Where λi are the diagonal elements of D)

≤ λmax(A)

n∑
i=1

y2
i ( λmax(A) ≥ λi ∀i )

= λmax(A)‖y‖22
= λmax(A) ( ‖x‖2 = 1, then ‖y‖2 = ‖VTx‖2 = ‖x‖2 = 1,

by Property 4, since V is orthogonal)

Proof. (2) We are using the same matrices A and V, vector x and y as in (1). Then we can derive the following
inequality:

xTAx = xTVDVTx (Eigendecomposition of A)

= yTDy (Definition of y)

=

n∑
i=1

λiy
2
i (Where λi are the diagonal elements of D)

≥ λmin(A)

n∑
i=1

y2
i ( λmin(A) ≤ λi ∀i )

= λmin(A)‖y‖22
= λmin(A) ( ‖x‖2 = 1, then ‖y‖2 = ‖VTx‖2 = ‖x‖2 = 1,

by Property 4, since V is orthogonal)
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Proof. (3) We will split the matrix V in two partitions such that V =
[
V1 V2

]
, where V1 ∈ Rn×k represents the

top k eigenvectors of A and V2 ∈ Rn×n−k represents the last n − k eigenvectors of A. If x ∈ span(v1, · · · ,vk)
⊥,

then x is orthogonal to all vectors in V1 and, most importantly, x is in the range of V2 (x ∈ R(V2)). Then, we can
write

xTAx = xTV2V
T
2 AV2V

T
2 x (Replace each x by its projection ontoR(V2), which

does not change x since it is initially assumed that x ∈ R(V2) )

= xTV2V
T
2 VDVTV2V

T
2 x (Eigendecomposition of A)

(4)

Now, using the fact that
VT

2 V = VT
2

[
V1 V2

]
=
[
VT

2 V1 VT
2 V2

]
=
[
0 I

]
it follows that

xTAx = xT V



0
. . .

0
λk+1

. . .
λn


VT

︸ ︷︷ ︸
Ã

x

Hence,

max
‖x‖2=1

x∈span(v1,··· ,vk)
⊥

xTAx = max
‖x‖2=1

xT Ãx (The constraint x ∈ span(v1, · · · ,vk)
⊥ is now incorporated into the Ã.

We now have the same maximization problem as in (1),

except that Ã replaces A)

= λk+1(A) (By (1), since the largest eigenvalue of Ã is λk+1)

Theorem 9 (Courant-Fischer / Min-max). Let A ∈ Rn×n be symmetric, and let Gr(k) denote the set of all k-
dimensional subspaces of Rn. Then,

min
U∈Gr(n−k)

max
x∈U
‖x‖=1

xTAx = λk+1(A)

max
U∈Gr(k)

min
x∈U
‖x‖=1

xTAx = λk(A)
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5 Trace Maximization
Theorem 10 (Trace maximization). Let A ∈ Rn×n be a positive semi-definite matrix. We have

max
U∈Rn×k

UTU=I

Tr(UTAU) =

k∑
i=1

λi(A)

Similarly, the following holds for the trace minimization problem:

min
U∈Rn×k

UTU=I

Tr(UTAU) =

n∑
i=n−k+1

λi(A)

So, the maximum trace is obtained by the top k eigenvectors of A and the minimum trace is obtained by the last k
eigenvectors of A.

Proof. We want to solve

max
uT

i ui=1∀i
uivj=0∀i 6=j

k∑
i=1

uT
i Aui

In order to do so, we will use the method of Lagrange multipliers.

L =

k∑
i=1

(uT
i Aui + λi(1− uT

i ui) +
∑
j 6=i

γiju
T
i uj) (we write the lagrangian)

∂L
∂λi

= 1− uT
i ui

1 = uT
i ui (setting the partial derivative to 0)

∂L
∂γij

= uT
i uj

0 = uT
i uj (setting the partial derivative to 0)

Now, we have showed that the vectors u are orthonormal.
∇ui

(L) = Aui − λiui

Aui = λiui (setting the gradient to 0)

Hence, ui is an eigenvector of A with eigenvalue λi. From the initial formula, we can use the information gained from
the method of Lagrange multipliers such that

k∑
i=1

uT
i Aui =

k∑
i=1

uT
i λiui (because Aui = λiui)

=

k∑
i=1

λi (because uT
i ui = 1)

To summarize, we have showed that one can take the top k eigenvector-eigenvalue pairs to maximize the trace, or the
bottom k eigenvector-eigenvalue pairs to minimize the the trace.

The following minimization offers an alternative proof to the Eckart-Young-Mirsky theorem. Starting from the goal
of minimizing the Frobenius norm of the difference between a matrix A ∈ Rn×n and its orthogonal projection on
U ∈ Rn×k, we show that the minimization problem can be solved by projecting the columns of A onto the space
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spanned by its top k left singular vectors:

min
U∈Rn×k

UTU=I

‖A−UUTA‖2F

= min
U∈Rn×k

UTU=I

Tr((A−UUTA)T (A−UUTA)) (writing the Frobenius norm in terms of trace)

= min
U∈Rn×k

UTU=I

Tr((AT −ATUUT )(A−UUTA))

= min
U∈Rn×k

UTU=I

Tr(ATA−ATUUTA−ATUUTA + ATUUTUUTA)

= min
U∈Rn×k

UTU=I

Tr(ATA−ATUUTA−ATUUTA + ATUUTA) (using UTU = I)

= min
U∈Rn×k

UTU=I

Tr(ATA)− Tr(ATUUTA) (Tr(A + B) = Tr(A) + Tr(B))

= min
U∈Rn×k

UTU=I

Tr(ATA)− Tr(UTAATU) (changing the order of the matrices in the second trace)

= min
U∈Rn×k

UTU=I

Tr(ATA)−
k∑

i=1

uT
i AATui (rewriting the second trace in terms of Rayleigh terms)

The first term Tr(ATA) does not depend on U, so we focus on the second term. To minimize the whole equation,
we need to maximize the second term. As seen in the previous proof, to maximize this term, we take the top k
eigenvectors of AAT . This way, the minimal difference between A and its orthogonal projection onto U in the
k-dimensional subspace is given by the top k eigenvectors of AAT .
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